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ABSTRACT

Energy based models outputs unmormalized log-probability values given data
samples. Such a estimation is essential in a variety of application problems such
as sample generation, denoising, sample restoration, outlier detection, Bayesian
reasoning, and many more. However, standard maximum likelihood training is
computationally expensive due to the requirement of sampling the model distri-
bution. Score matching potentially alleviates this problem, and denoising score
matching (Vincent, 2011) is a particularly convenient version. However, previous
attempts failed to produce models capable of high quality sample synthesis. We
believe that it is because they only performed denoising score matching over a sin-
gle noise scale. To overcome this limitation, here we instead learn an energy func-
tion using all noise scales. When sampled using Annealed Langevin dynamics and
single step denoising jump, our model produced high-quality samples comparable
to state-of-the-art techniques such as GANs, in addition to assigning likelihood to
test data comparable to previous likelihood models. Our model set a new sam-
ple quality baseline in likelihood-based models. We further demonstrate that our
model learns sample distribution and generalize well on an image inpainting task.

1 INTRODUCTION AND MOTIVATION

Treating data as stochastic samples from a probability distribution and developing models that can
learn such distributions is at the core for solving a large variety of application problems, such as
error correction/denoising Vincent et al. (2010), outlier/novelty detection (Zhai et al., 2016; Choi
and Jang, 2018b), invariant pattern recognition, Bayesian reasoning (Welling and Teh, 2011) which
relies on good data priors, and many others.

Energy based models (Ngiam et al., 2011) assign an energy E(xxx) to each data point xxx which im-
plicitly defines a probability by the Boltzmann distribution pm(xxx) = e−E(xxx)/Z. Sampling from
this distribution can be used as as generative process that yield plausible samples of xxx. Compared
to other generative models, like GANs (Goodfellow et al., 2014), flow-based models (Dinh et al.,
2014; Kingma and Dhariwal, 2018), or auto-regressive models (Oord et al., 2016; Ostrovski et al.,
2018), energy based models have significant advantages. First, they provide explicit (unnormalized)
density information, compositionality (Hinton, 1999; Haarnoja et al., 2017), better mode coverage
(Kumar et al., 2019) and flexibility (Du and Mordatch, 2019). Second, they do not require spe-
cial model architecture (like auto-regressive and flow-based models). However, traditionally, energy
based models are trained by maximum likelihood, which requires sampling of model distribution.
As a result, learning high-dimensional benchmark datasets in energy based models was reported to
be prohibitively slow (Nijkamp et al., 2019). Variants with a truncated sampling procedure have
been proposed, such as contrastive divergence (Hinton, 2002). Such models learn much faster but
have the draw back of not exploring the state space thoroughly (Tieleman, 2008).

Score matching (Hyvärinen, 2005), which can be viewed as a special case of minimum probability
flow (Sohl-Dickstein et al., 2011), circumvents the requirement of sampling. In score matching,
the score function is defined to be the gradient of log-density or the negative energy function. The
expected squared distance of the model score function and the data score function are minimized.
Surprisingly, this can be achieved without an estimation of the data score function in the first place
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Figure 1: Illustration of anneal denoising score matching. A. During training, derivative of log-
likelihood is forced to point toward data manifold, establishing energy difference between points
within manifold and points outside. Note that energy is negative log-likelihood therefore energy is
higher for point further away from data manifold. B. During annealed Langevin sampling, sample
travel from outside data manifold to data manifold. Shown are singled step denoised sample during
sampling of an energy function trained with ADSM on Fashion-MNIST (see text for details).

under mild condition. However, the original score matching algorithm is still computationally ex-
pensive (Song et al., 2019).

Our specific starting point here is denoising score matching (Vincent, 2011), a variation to score
matching with a very efficient learning procedure. A simple noise structure with differentiable
density kernel, such as Gaussian noise, is used to generate noisy surrogates from data points. At
these noisy surrogates the scores can be matched during training. Previous models of denoising score
matching were successfully demonstrated in denoising tasks, but sampling from these models was
unable to generate good data samples, when initiated from random noise (Saremi and Hyvarinen,
2019). Wenliang et al. (2018) and Song and Ermon (2019) suspected this limitation to be due
to a failure of the training to shape the energy function in low-density data regions. This could
explain why sampling cannot reach high-density data regions when initialized at random (Saremi
and Hyvarinen, 2019).

The weakness of learning in the previous models could be caused by the fact that training is per-
formed at a single fixed noise level. One indication for this is that model performance strongly
depended on the chosen noise level (Song et al., 2019). To further explore this explanation, we
trained energy based models on different single noise scales in Appendix B. Indeed, these models
capture some data structure but do not generate satisfactory data samples.

In order to construct an energy based model capable of high-quality sample synthesis while main-
taining the speed advantage of score matching, we propose annealed denoising score match-
ing (ADSM), a denoising score matching procedure using multiple noise levels. We expect this
sampling-free learning method to shape an energy function that can drive samples anywhere in the
state space towards high probability regions of the data. For sampling from the learned model, we
propose annealed Langevin dynamics and additionally use single step denoise jump. We show that
our model generates high-quality samples similar in quality to the-state-of-the-art image generation
techniques, such as GANs (Goodfellow et al., 2014), as well as assigning competitive likelihood
values to the test sets.

2 ENERGY BASED MODEL WITH ANNEALED DENOISING SCORE MATCHING

2.1 SCORE MATCHING AND DENOISING SCORE MATCHING

One convenient way of using score matching is learning the energy function corresponding to a
Parzen window density estimator of the data: pσ0(x̃xx) =

∫
qσ0(x̃xx|xxx)p(xxx)dx. Though hard to evaluate,

the data score is well defined: sd(x̃xx) = ∇x̃xx log(pσ0(x̃xx)). And the corresponding objective is:

LSM (θ) = Epσ0(x̃xx) ‖ ∇x̃xx log(pσ0(x̃xx)) +∇x̃E(x̃xx; θ) ‖2 (1)
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A remarkable result proved in Vincent (2011) is that the following objective for denoising score
matching (DSM) is equivalent to the objective above:

LDSM (θ) = Epσ0(x̃xx,xxx) ‖ ∇x̃xx log(qσ0(x̃xx|xxx)) +∇x̃xxE(x̃xx; θ) ‖2 (2)

Note that the Parzen window density estimator score is replaced by the derivative of log density of
the single noise kernel ∇x̃xx log(qσ(x̃xx|xxx)), which is much easier to calculate. In the particular case of
Gaussian noise log(qσ0

(x̃xx|xxx)) = − (x̃̃x̃x−xxxi)2
2σ2

0
+ C and:

LDSM (θ) = Epσ0(x̃xx,xxx) ‖ xxxi − x̃xxi + σ0
2∇x̃xxE(x̃xxi; θ) ‖2 (3)

This objective (3) forces the energy gradient to align with the vector pointing from the noisy surro-
gate to the clean data sample, which explains the term “denoising” in the name. Note further, that in
the particular case of Gaussian noise, the objective (3) coincides with the empirical Bayes objective
proposed in Saremi and Hyvarinen (2019).

A tricky question is how to select σ0, which is an important hyperparameter. It is reported in Song
et al. (2019) that a grid search is required to give the optimal result, and heuristics do not provide
enough guidance. Previous attempts of learning energy-based models with score matching over a
single noise level also do not permit effective sampling to produce high-quality samples (Song et al.,
2019; Saremi et al., 2018; Saremi and Hyvarinen, 2019). Given the drawbacks, we propose learn-
ing energy function using denoising score matching over a wide range of noise levels, effectively
abolishing the noise scale σ0 as a hyper-parameter.

2.2 A GEOMETRIC VIEW

Before introducing our new model, we provide a geometrical picture for denoising score matching in
high dimensional space. We adopt the common assumption that the data distribution to be learned is
high-dimensional, but only has support around a relatively low-dimensional manifold (Tenenbaum
et al., 2000; Roweis and Saul, 2000; Lawrence, 2005). We further assume that data is approximately
uniformly distributed on the manifold X . We recall two elementary properties of random Gaussian
vectors in high-dimensional spaces: First, the length distribution of random vectors becomes con-
centrated at

√
dσ (Vershynin, 2018), where σ2 is the variance of a single component. Second, a

random vector is almost always orthogonal to a fixed vector (Tao, 2012). With these premises one
can visualize the configuration of noisy and noiseless data points used in the learning of denoising
score matching: A data point xxx and its noisy version x̃xx always lie on a line which is almost per-
pendicular to the tangent space TxxxX of X at xxx and intersects X at xxx. Further, the distance vectors
between (xxx, x̃xx) pairs all have similar length

√
dσ. As a consequence, the set of noisy data points

concentrate on a set X̃√dσ,ε that has a distance with (
√
dσ− ε,

√
dσ+ ε) from the data manifold X ,

where ε� 1.

All told, performing denoising score matching learning with (xxx, x̃xx) pairs generated with a fixed
noise level σ, will enable the de-noising of noisy points lying in the described noisy set X̃√dσ,ε.
However, the learning provides little information about how to de-noise noisy points that lie outside
the set, farther or closer to the data manifold. An illustration is presented in Figure 1A. Though
pσ0

(x̃xx ∈ X̃C√
dσ,ε

) is very small in high-dimensional space, the score function in X̃C√
dσ,ε

still plays
a critical role in sampling from random noise. This phenomenon in high-dimensional space is not
sufficiently appreciated by the classical score matching and denoising score matching objective.

Another property of denoising score matching was observed in the denoising auto-encoder literature
(Vincent et al., 2010; Karklin and Simoncelli, 2011) that with higher noise level the learned repre-
sentation tend to have larger spatial scale. An intuitive reason is that natural signals have multi-scale
structure with 1/f power characteristic, meaning that features at low spatial frequencies have larger
signal power than features at high spacial frequencies (Field, 1987). Thus, a higher noise levels will
wash away features above certain spacial frequencies, but insufficiently corrupting features below
certain spacial frequencies to drive learning. Thus, a model trained with only one noise level will
only learn structures roughly of a single scale.

To illustrate this point, in Figure 1B we show some example of intermediate samples during annealed
sampling process. Displayed are samples obtained by single step denoising from the noisy sample
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carrying different levels of noise. We provide more result from this and similar experiment in Figure
3 and Figure 7.

This geometric view provides a potential explanation why score matching has so far been unsuccess-
ful in training generative models. Elementary properties of i.i.d. noise in high-dimensional spaces
suggest that training at one fixed noise level is insufficient to gather the information required for de-
noising from different noise level in high-dimensional space. Further, the one-over-f structure found
almost universally in interesting data sets with multi-scale structure causes models trained with one
noise level to be myopic to one scale and ignorant of the others.

2.3 ANNEALED DENOISING SCORE MATCHING

Motivated by the geometric view, we strive to learn an energy function that captures the structure of
data over different scales by introducing different levels of Gaussian noise corruptions.

The data distribution over different noise scales can be expressed as pσ0,T (x̃xx) =∫
qσ0,T (x̃xx|xxx)p(xxx)dx, where qσ0,T (x̃xx|xxx) = N (x̃xx|xxx;Tσ02Id) and T is the temperature param-

eter that scales the size of Gaussian kernel (Mehrjou et al., 2017). Naively running traditional
denoising score matching for different noise temperatures would lead to different energy functions
ET (x̃xx; θ). This is undesirable, the number of free model parameters will be multiplied by the
number of different temperatures used during learning, and it is unclear how to to obtain density
information from such a set of different energy functions. As an alternative, we propose a model in
which the energy functions for different temperatures are collapsed into a single function E(x̃xx; θ).
We borrow intuition from physics and simply set ET (x̃xx; θ) = E(x̃xx; θ)/T and use denoising score
matching (2) to approximate log(pσ0,T (x̃xx)) by E(x̃xx; θ)/T :

LDSM (θ;T ) = Epσ0,T (x̃xx,xxx) ‖ ∇x̃xx log(qσ0,T (x̃xx|xxx)) +∇x̃xxE(x̃xx; θ)/T ‖2 (4)

In the case of Gaussian noise (3) and by combining objective (4) over a temperature range the
objective of Annealing Denoising Score Matching is:

LADSM (θ) =
∑
T

l(T ) Epσ0,T (x̃xx,xxx) ‖ xxxi − x̃xxi,T + σ2
0∇x̃xxE(x̃xxi,T ; θ) ‖2 (5)

where l(T ) is a weighting function that normalizes terms from different temperatures. Here xxxi and
x̃xxi,T denote a clean data point and the same data point corrupted with a noise level corresponding to
temperature T . Since The difference xxxi − x̃xxi,T scales linearly with the noise level, after successful
training, we expect ∇x̃xxE(x̃xxi,T ; θ) to scale similarly, thus the energy E(x̃xxi,T ; θ) should be roughly
quadratic along the noise direction. We present a plausible physics illustration of the learned energy
function in Appendix A.

It has to be emphasized that modeling log(pσ0,T (x̃xx)) by E(x̃xx; θ)/T is an approximation. Specifi-
cally, one can think of pσ0,T (x̃xx)) as a mixture of Gaussians. However, there is no analytic expression
for an energy function whose corresponding Boltzmann distribution would equal to this distribution.
Therefore it is hard to write down the exact functional form of E(x̃xx; θ). The ADSM objective could
be seen as a means to obtain an estimate of the true data distribution p(xxx) via the Boltzmann dis-
tribution defined by the energy function E(xxx; θ). Despite the theoretical difficulty, we argue the
proposed learning method is desirable by noting the following:

1. Learning is tractable because, like the original denoising score matching, training does not
require sampling from the model.

2. As the gradient of energy function is required to point away from the noisy data point in
the opposite direction of the clean sample, the noisy sample will have higher energy, and
thus lower probability than the clean data point.

3. As temperature increases, the equilibrium distribution will have fewer and fewer modes, as
expected from physical intuition. This statement is true sinceE(xxx; θ)/T is trained to match
log(pσ0,T (x̃xx)) and the latter was shown to posses a monotonically decreasing number of
modes as T increases (Lindeberg, 2011).

4. Because training is performed over a range of temperatures, the resulting energy function
will naturally permit annealing sampling which helps with mode exploration.
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It seems that the temperature range and σ0 in (5) are both important hyper-parameters. However,
all that matters is the range of Tσ2

0 , the range of noise magnitude we apply to create the surrogates.
Ideally we want our model to work across all noise levels, but applying denoising score matching
to very large or very small noise is rather pointless. For very large noise the original sample’s
information is completely lost. Conversely, in the limit of small noise, the noisy sample is virtually
indistinguishable from real data. In neither case can one expect to learn an informative gradient.
Thus, in practice the noise range needs only be chosen broad enough to encourage learning of data
features over all scales.

2.4 SAMPLING BY ANNEALED LANGEVIN DYNAMICS AND JUMP

Simulated annealing (Kirkpatrick et al., 1983; Neal, 2001) has been successfully applied to challeng-
ing computational problems, such as combinatorial optimization. In essence, the mode exploration
in an objective function can be improved by sampling first at high temperature and then cooling
down gradually. Langevin dynamics (Welling and Teh, 2011) has been applied to sampling from
neural network energy functions (Du and Mordatch, 2019; Nijkamp et al., 2019). However, Du and
Mordatch (2019) reported that mode exploration on the CIFAR dataset was rather limited. Further,
Nijkamp et al. (2019) described that a staggering amount of Langvin steps, about 20k, were re-
quired to fully sample the energy function. To improve mode exploration even with small numbers
of sampling steps, we propose Annealed Langevin dynamics. In this sampling process the temper-
ature parameter in the Langevin dynamics is adjusted from high to low according to an annealing
schedule.

In the model of a physical particle undergoing Brownian motion, temperature in its Langevin equa-
tion enters as a

√
T factor in front of the noise term. Adopting this yields the following sampling

process:

xxxt+1 = xxxt −
ε2

2
∇xxxE(xxxt; θ) + ε

√
TtN (0, Id) (6)

where Tt follows some annealing schedule, and ε denotes step length. During sampling, samples
behave very much like physical particles under Brownian motion in a potential field. Because the
particles have average energies close to the their current thermic energy, they explore the state
space at different distances from data manifold depending on temperature. Eventually, they settle
somewhere on the data manifold. A typical annealing process is depicted in Appendix Figure 11B.
If the obtained sample is still noisy, we can make a single step gradient denoise jump to improve
sample quality:

xxxclean = xxxnoisy − σ2
0∇xxxE(xxxnoisy; θ) (7)

This denoising procedure can be applied to noisy sample with any level of Gaussian noise because
in our model the gradient automatically has the right magnitude to denoise the sample. Previously,
this process has been investigated experimentally in a neural network setting (Saremi et al., 2018;
Saremi and Hyvarinen, 2019). In addition, earlier theoretical work has proven that denoising by the
gradient of the correct energy function yields the least square estimator for the sample, given the
noisy sample (Raphan and Simoncelli, 2011).

3 IMAGE MODELING RESULTS

Training and Sampling Details. The proposed energy based model is trained on standard image
datasets, namely MNIST, Fashion MNIST, CelebA (Liu et al., 2015) and CIFAR-10 (Krizhevsky
et al., 2009). During training we set σ0 = 0.1 and train over a noise range of

√
Tσ0 ∈ [0.05, 1.2],

with the noise uniformly spaced on the batch dimension, for MNIST and Fashion MNIST we used
geometrically distributed noise in the range [0.1, 3]. l(T ) is set to 1/T at all times to make each
terms in the objective from different noise scale roughly the same size. We fix the batch size to 128
and use the Adam optimizer with a learning rate of 5 × 10−5. For MNIST and Fashion MNIST,
we use a 12-Layer ResNet He et al. (2016) with 64 filters, for the CelebA and CIFAT-10 data sets
we used a 18-Layer ResNet with 128 filters. No normalization layer is used in any of the networks.
We designed the output layer of all networks to take a generalized quadratic form Fan et al. (2018),
because the energy function is anticipated to be approximately quadratic with respect to the noise
level, we found this modification to boost the performance significantly. For more detail on training
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Figure 2: Samples from our model trained on Fashion MNIST, CelebA and CIFAR-10. See Figure
9 and Figure 10 in Appendix for more samples and comparison with training data.

and model architecture, see Appendix. One notable result is that since our training method does
not involve sampling, we achieved a speed up of roughly an order of magnitude compared to the
common maximum-likelihood training 1. Our method thus enables the training of energy based
models, even when limited computational resources prohibit maximum likelihood methods.

We found that the choice of the maximum noise level has little effect on learning as long as it is
large enough to encourage learning of the longest range features in the data. However, as expected,
learning with too small or too large noise levels is not beneficial and can even destabilize the training
process. Further, our method appeared to be relatively insensitive to how the noise levels are dis-
tributed over a chosen range. Geometrically spaced noise as in (Song and Ermon, 2019) and linearly
spaced noise both work, although in our case learning with linearly spaced noise was somewhat
more robust.

For sampling the learned energy function we used annealed Langevin dynamics with an empirically
optimized annealing schedule,see Figure 11 B for a the particular shape of annealing schedule we
used. In contrast, annealing schedules with theoretical guaranteed convergence property takes ex-
tremely long (Geman and Geman, 1984). For step length ε we generally used 0.02, although any
value within the range [0.015, 0.05] seemed to work fine. After annealing process we perform a
single step denoising jump to further enhance sample quality.

Table 1: Unconditional Inception score, FID scores and Likelihoods for CIFAR-10

Model IS FID Likelihood NNL (bits/dim)

iResNet (Behrmann et al., 2018) - 65.01 Yes 3.45
PixelCNN (Oord et al., 2016) 4.60 65.93 Yes 3.14
PixelIQN (Ostrovski et al., 2018) 5.29 49.46 Yes -
Residual Flow (Chen et al., 2019) - 46.37 Yes 3.28
GLOW (Kingma and Dhariwal, 2018) - 46.90 Yes 3.35
EBM (ensemble) (Du and Mordatch, 2019) 6.78 38.2 Yes - 2

SNGAN (Miyato et al., 2018) 8.22 21.7 No -
ADSM(Ours) 8.31 31.7 Yes 3.76 3

NCSN (Song and Ermon, 2019) 8.91 25.32 No -

Unconditional Image Generation. We demonstrate the ability of our model to generalize by dis-
playing samples obtained by annealed Langevin and jump sampling in the trained model. We evalu-
ated 50k sampled images after training on CIFAR-10 with two performance scores, Inception (Sal-
imans et al., 2016) and FID (Heusel et al., 2017). We achieved Inception Score of 8.31 and FID
of 31.7. Scores for CelebA dataset are not reported here as they are not commonly reported and

1For example, on a single GPU, training MNIST with 12-layer Resnet takes 0.3s per batch with our method,
while maximum likelihood training with a modest 30 Langevin step per weight update takes 3s per batch.

2Author reported difficulties evaluating Likelihood
3Upper Bound obtained by reverse AIS
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may depend on the specific pre-processing used. More samples and training images are provided
in Appendix for visual inspection. We believe that visual assessment is still essential because of
issues with the Inception score (Barratt and Sharma, 2018). Indeed, we also found that the visually
impressive network was not the one achieving the highest Inception Score.

Although overfitting is not a common concern for generative models, we still tested our model for
overfitting. We found no indication for overfitting by comparing model samples with their nearest
neighbors in the data set, see Figure 6 in Appendix.

Mode Coverage. We repeated with our model the 3 channel MNIST mode coverage experiment
(Kumar et al., 2019). An energy based model was trained on 3-channel data where each channel is a
random MNIST digit. Then 8000 samples were taken from the model and each channel is classified
using a small MNIST classifier network. We obtained results of the 966 modes, comparable to GAN
approaches. Training was successful and our model assigned low energy to all the learned modes,
but some modes were not accessed during sampling, likely due to the Langevin Dynamics failing to
explore these modes. A better sampling technique such as Neal et al. (2011) or a Maximum Entropy
Generator (Kumar et al., 2019) could improve this result.

Image Inpainting. Image impainting can be achieved with our model by clamping part of the image
to ground truth and performing the same annealed Langevin and Jump sampling procedure on the
missing part of the image. Noise appropriate to the sampling temperature need to be added to the
clamped inputs. The quality of inpainting results of our model trained on CelebA and CIFAR-10
can be assessed in Figure 3. For CIFAR inpainting we used test set,

Figure 3: Demonstration of the sampling process (left), and image inpainting (right). The sampling
process is shown with Gaussian noise (top left), and denoised by single step gradient jump (lower
left). The column next to sampling process shows samples after the last denoising jump at the end
of sampling. Inpainting results are shown next to initial image (left column) and the ground truth
image (right column).

Log likelihood estimation. For energy based models the log likelihood can be obtained by estimat-
ing the partition function with Annealed Importance Sampling (AIS) (Salakhutdinov and Murray,
2008) or Reverse AIS (Burda et al., 2015). AIS is known to underestimate the partition function
(Burda et al., 2015), and this was confirmed in our experiment. Therefore, we used only Reverse
AIS to estimate the lower bound of the log probability of test samples. We optimized the sampling
parameters to obtain the best likelihood results at T = 1 with the variance of the estimation still
being low.

Table 1 shows the upper bound for the negative log likelihood (lower bound on probability) on
CIFAR-10 from our model, in comparison to the log likelihood results from previous probabilistic
generative models. More details on this experiment is provided in the Appendix. Further, our likeli-
hood results on MNIST and Fashion MNIST were 1.89 (bits/dim) and 3.01 (bits/dim), respectively.

Outlier Detection. Choi and Jang (2018a) and Nalisnick et al. (2018) have reported intriguing
behavior of high dimensional density models on out of distribution samples. Specifically, they
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showed that a lot of models assign higher likelihood to out of distribution samples than real data
samples. We investigated whether our model behaves similarly.

Our energy function is only trained outside the data manifold where samples are noisy, so the energy
value at clean data points is not always well behaved. Therefore, we added noise with magnitude
σ0 before measuring the energy value. We report that our network behaves similarly to previous
likelihood models that it assigns lower energy, thus higher likelihood, to some OOD samples. We
show one example of this phenomenon in Appendix Figure 11 A.

4 RELATED WORKS

Previous efforts of learning energy based models with score matching Kingma and Cun (2010);
Song et al. (2019) were either computationally intensive or unable to produce high-quality samples
comparable to those obtained by other generative models such as GANs Goodfellow et al. (2014).
Recently, Saremi et al. (2018) and Saremi and Hyvarinen (2019) proposed to train energy based
models with denoising score matching, using a single noise scale for training. These models were
capable of denoising data with noise levels similar to the one used during training, but the ability
to generate data sample from random initialization is limited (See Appendix Figure 5). Other re-
cent efforts on training energy based models used maximum likelihood training (Du and Mordatch,
2019)(Nijkamp et al., 2019). These models have high computational demands, even when combined
with acceleration methods such as persistent initialization Tieleman (2008). Also, without applying
annealing, the sampling process in these models suffers from poor mixing.

Compared to the described previous studies, our model has various desirable properties, it requires
fewer computational resources, is able to denoise inputs with various levels of noise, and it generates
high quality samples. The idea of combining denoising score matching and annealing was men-
tioned already in (Geras and Sutton, 2014; Chandra and Sharma, 2014; Zhang and Zhang, 2018),
but in the context of pre-training neural networks for classification applications. Our approach is
perhaps most closely related to the NCSN model (Song and Ermon, 2019), a network that is also
trained with noisy samples corrupted with Gaussian noise at different levels. In essence, this model
learns pσ0,T (x̃xx) for each T as a separate model, in addition to the input image it receives a signal
that represents the noise level explicitly. Our model differs in that it learns one energy model for
all temperatures. Further it does not rely on explicit receive noise magnitude information but rather
infers the noise magnitude from the given image, which enables applications in single step denois-
ing. Moreover, our model provides density information, whereas it is not obvious how to transform
the score output of the NCSN model into a density. Performance scores of the different models can
be compared in Table 1. Although not the top performer in any single category, our model assigns
competitive likelihood values to test samples, and the same time produces high quality samples
comparable to none-likelihood based state-of-the-art models, such as GANs.

5 CONCLUSION

Our results confirms that the limitation of previous denoising score matching models is due to prob-
lems in the learning procedure. To remedy these problems we proposed a learning procedure using
a wide range of different noise levels. To sample from the model we propose a novel annealed
Langevin sampling and also used single step denoise jump at the end.

The resulting ADSM model is able to overcome several limitations of previous score matching meth-
ods. Specifically, we show empirically that the ADSM model is capable of denoising, producing
high-quality samples, and performing image inpainting. Our model achieved those while assigning
competitive likelihood to test samples, being roughly an order of magnitude faster over maximum
likelihood method during training, and admitting more efficient sampling procedure using annealed
Langevin sampling.
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A A PHYSICS ANALOGY TO UNDERSTAND THE ADSM OBJECTIVE
FUNCTION

Here we provide a concrete physics picture of the energy function learned by annealed score match-
ing. Given a data manifold X , we define the energy function as:

E∗(d) =
1

2
kd2 (8)

where d =‖ x̃xx − projX (x̃xx) ‖ and projX (x̃xx) is the projection operator to the data manifold X . One
can easy verify that this is an energy function and describes a generalized Hookean spring system.
At any point x̃xx away from the data manifold X , the force F is:

F = −∇xE∗(x̃xx) = k(x̃xx− projX (x̃xx)) (9)

as Figure 4 shows.

A Generalized Hookean Spring 

Figure 4: Generalized Hookean spring system, where the force F at any noise-corrupted point x̃xx
points towards its projection projX (x̃xx) on the data manifold X and is proportional to the distance
from x̃xx to X .

In high dimensional space, given a data point xxx and a Gaussian noise corrupted version x̃xx, x̃xx − xxx
provides a good approximation to x̃xx − projX (x̃xx). Thus, by matching the score to x̃xx − xxx at every
noisy point, the ADSM objective is an approximation to the energy defined by Equation 8, trained
at different distances. Empirically, we also verified that the E(x̃xx; θ) increases in quadratic fashion
w .r .t . ‖ x̃xx− xxx ‖.

B FAILURE OF SINGLE NOISE DENOISING SCORE MATCHING

To compare with previous method, we trained energy based model with denoising score matching
using one noise level on MNIST, initialized the sampling with Gaussian noise of the same level, and
sampled with Langevin dynamics at T = 1 for 1000 steps and perform one denoise jump to recover
the model’s best estimate of the clean sample, see Figure 5. We used the same 12-layer ResNet
as other MNIST experiments. Models were trained for 100000 steps before sampling with 1000
Langevin steps.

C OVERFITTING TEST

We demonstrate that the model does not simply memorize training examples by comparing model
samples with their nearest neighbors in the training set. We use Fashion MNIST for this demon-
stration because overfitting can occur there easier than on more complicated datasets, see Figure 6.

D DETAILS ON TRAINING AND SAMPLING

We used a custom designed ResNet architecture for all experiments. For MNIST and Fashion-
MNIST we used a 12-layer ResNet with 64 filters on first layer, while for CelebA and CIFAR dataset
we used a 18-layer ResNet with 128 filters on the first layer. All network used the ELU activation
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Figure 5: Denoised samples from energy based model trained with denoising score matching with
single magnitude Gaussian noise on MNIST. Noise magnitude used in training is shown above
samples.

Figure 6: Samples from energy based model trained on Fashion MNIST (Left column) next to 10
(L2) nearest neighbors in the training set.

function. We did not use any normalization in the ResBlocks and the filer number is doubled at each
downsampling block. Details about the structure of our networks used can be found in our code
release.

Since the gradient of our energy model scales linearly with the noise, we expected our energy func-
tion to scale quadratically with noise magnitude. Therefore, we modified the standard energy based
network output layer to take a flexible quadratic form (Fan et al., 2018):

Eout = (
∑
i

aihi + b1)(
∑
i

cihi + b2) +
∑
i

dih
2
i + b3 (10)

where ai, ci, ci and b1, b2, b3 are learnable parameters, and hi is the (flattened) output of last residual
block. We found this modification to significantly improve performance compared to using a simple
linear last layer.

For CIFAR and CelebA results we trained for 300k weight updates, saving a checkpoint every 5000
updates. We then took 1000 samples from each saved networks and used the network with the low-
est FID score. For MNIST and fashion MNIST we simply trained for 100k updates and used the
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last checkpoint. During training we pad MNIST and Fashion MNIST to 32*32 for convenience and
randomly flipped CelebA images. No other modification was performed. Although we only con-
strained the gradient of the energy function, the energy value itself could in principle be unbounded.
However, we observed that they naturally stabilized so we did not explicitly regularize them, unlike
in Du and Mordatch (2019).

For the Log likelihood estimation we initialized reverse chain on test images plus 0.05 ∗ N (0, Id)
noise for stability, and then run 10000 Langevin updates towards an isotropic Gaussian reference
distribution. The variance of estimation was generally less then 10%.

E EXTENDED SAMPLES AND INPAINTING RESULTS

We further demonstrate the mixing process by providing more denoised images throughout sampling
process.

We provide more samples to enable the reader to visually judge the quality of our sample generation
in Figure 8, 9 and 10. All samples are randomly selected.

Figure 7: Denoised Sampling process and inpainting results. Sampling process is from left to right.

F SAMPLING PROCESS AND ENERGY VALUE COMPARISONS

Here we show how the average energy of samples behaves vs the sampling temperature. We also
show an example of our model making out of distribution error that is common in most other likeli-
hood based models (Nalisnick et al., 2018) Figure 11.
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Figure 8: Extended Fashion MNIST and MNIST samples
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Figure 9: Samples (left panel) from network trained on CelebA, and training examples from the
dataset (right panel).
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Figure 10: Samples (left panel) from energy based model trained on CIFAR-10 next to training
examples (right panel).

B.A.

Figure 11: A. Energy values for CIFAR-10 train, CIFAR-10 test and SVHN datasets for a network
trained on CIFAR-10 images. Note that the network does not over fit to the training set, but just
like most deep likelihood model, it assigns lower energy to SVHN images than its own training
data. B. Annealing schedule and a typical energy trace for a sample during Annealed Langevin
Sampling. The energy of the sample is proportional to the temperature, indicating sampling is close
to a quasi-static process.
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