
Under review as a conference paper at ICLR 2020

ADA+: A GENERIC FRAMEWORK WITH MORE ADAP-
TIVE EXPLICIT ADJUSTMENT FOR LEARNING RATE

Anonymous authors
Paper under double-blind review

ABSTRACT

Although adaptive algorithms have achieved significant success in training deep
neural networks with faster training speed, they tend to have poor generaliza-
tion performance compared to SGD WITH MOMENTUM(SGDM). One of the
state-of-the-art algorithms, PADAM, is proposed to close the generalization gap
of adaptive methods while lacking an internal explanation. This work pro-
poses a general framework, in which we use an explicit function Φ(·) as an
adjustment to the actual step size, and present a more adaptive specific form
ADAPLUS(ADA+). Based on this framework, we analyze various behaviors
brought by different types of Φ(·), such as a constant function in SGDM, a lin-
ear function in ADAM, a concave function in PADAM and a concave function
with offset term in ADAPLUS. Empirically, we conduct experiments on clas-
sic benchmarks both in CNN and RNN architectures and achieve better per-
formance(even than SGDM). The code is anonymously provided in https:
//anonfiles.com/daV7Ed6enb/AdaPlus_zip.

1 INTRODUCTION

First-order optimization algorithms play a significant role in training deep neural networks. One
of the dominant methods is SGD(Robbins & Monro, 1951), which updates parameters in a very
concise form. SGD WITH MOMENTUM(Polyak, 1964) is a momentum-based improvement of SGD
that combines raw gradients to reduce the interference of noise gradients and has proved itself to
be an efficient first-order optimization algorithm. Besides, adaptive variants of SGD, such as ADA-
GRAD (Duchi et al., 2011), RMSPROP(Tieleman & Hinton, 2012), ADAM(Kingma & Ba, 2015),
have recently emerged and achieved success due to their convenient and fast automatic learning rate
adjustment mechanisms. However, since ADAM is indicated not to converge in certain instances,
AMSGRAD(Reddi et al., 2018) suggests maintaining a non-increasing step size by a maximum his-
torical term, so as to deal with the non-convergence problem.

On the one hand, adaptive methods are widely applied due to their quicker convergence at an early
stage. However, there remain potential perils of adaptivity (Wilson et al., 2017), which suggest
worse performance than the fine-tuned SGD/SGDM. Therefore, many architectures in the field
of computer vision, such as VGGNet(Simonyan & Zisserman, 2015), ResNet(He et al., 2016),
DenseNet(Huang et al., 2017), and natural language processing tasks(Klein et al., 2017), would
be inclined to choose SGD-like algorithms to act as an optimizer. On the other hand, the ‘small
learning rate dilemma’(Chen & Gu, 2018) is also a challenge for adaptive methods, that is, it is
difficult to apply the well-worked learning rate decaying strategy in SGD to adaptive gradient meth-
ods. With better performance, the PADAM algorithm(Chen & Gu, 2018) is proposed to solve this
problem. However, the motivation of this partially adaptive momentum fails to explain the intrinsic
implication of doing grid search for the power p of the second-order moment estimation, along with
the relationship between the desired learning rate and the partially adaptive term.

In this work, we first propose an adaptive adjustment function, which is a map based on histori-
cal gradient information to adjust the actual step size, and a framework that can explain the above
phenomenon explicitly. Through our analysis of this function, which combines the SGD-like algo-
rithm with the ADAM-like algorithm, we further explain the different behaviors of different algo-
rithms. Moreover, we propose a brief but efficient specific form, called ADAPLUS(ADA+), with
better adaptability to cope with the aforementioned challenges effectively. Empirically, we conduct

1

https://anonfiles.com/daV7Ed6enb/AdaPlus_zip
https://anonfiles.com/daV7Ed6enb/AdaPlus_zip

Under review as a conference paper at ICLR 2020

experiments on popular models and tasks both in CNN and RNN architectures with ADAPLUS.
Comparing favorably to SGD-like approaches, it gains faster convergence, reduced oscillation and
better performance. Compared with ADAM-like methods, it can adapt to a variable learning rate
schedule, thus achieving significant improvement in performance in complex deep neural network
architectures.

2 PRELIMINARIES AND MOTIVATIONS

2.1 NOTATIONS

As is generally agreed, we use lowercase letters a for scalars, lowercase bold letters a for vectors,
and uppercase bold lettersA for matrices. Then, we set θt ∈ Rd as a parameter vector of a sequence
in d-dimensional space, and use the scalar θt,i to represent the i-th elements in vector θt. The set of
all positive definite d×dmatrices is denoted by Sd+. Besides, operators are defined as following. For
vectors a and b in the same dimension, we use

√
a to donate element-wise squares, a/b to donate

element-wise divisions. These notations are the same for matrices. For a given matrixA ∈ Sd+ and a
vector b ∈ Rd, we use ΠX ,A(b) as a projection operator which means arg mina∈X

∥∥A1/2(a− b)
∥∥,

where X is a convex set which has a bounded diameter D∞, i.e., ‖a − b‖∞ ≤ D∞,∀ a, b ∈ X .
Additionally, with a mild abuse of the notation of norms, we represent the Lp norm formation of an
exponential moving average (EMA) of gt like this:

‖gt‖p , v
1
p

t

= [βp2vt−1 + (1− βp2) |gt|p]
1
p

=

[
(1− βp2)

t∑
i=1

β
p(t−i)
2 · |gi|p

] 1
p

(2.1)

2.2 MOTIVATIONS

As is described in Figure 1, for optimizers, we treat their adjustment term of αt as a mapping from
‖gt‖p to the actual adjustment value, i.e.,

θt+1 = θt −
αt

Φ(‖gt‖p)
·mt (2.2)

To avoid confusion, we call αt the learning rate, which is a parameter that needs tuning and applying
a decaying schedule. Apart from that, αt

Φ(‖gt‖p) is called the actual step size. In this section, we
summarize popular first-order stochastic optimization algorithms into the following four categories:

Figure 1: Different choices for Φ(‖gt‖p), changing from Adam to SGD. We propose a specific
function Φ(‖gt‖p) ,

√
‖gt‖p + ∆, which is shown above.

2

Under review as a conference paper at ICLR 2020

• Type I SGDM (Constant function):

θt+1 = θt −
αt
1
·mt, i.e., Φ(‖gt‖p) = 1. (2.3)

It can be seen from the formula in SGD WITH MOMENTUM(SGDM)that the actual step
size of each update equals to αt, which is applied without adaptive adjustments. The high
learning rate in an early stage makes the loss function fluctuate significantly on the surface,
and its learning speed is not as fast as adaptive optimization algorithms and their variants.

• Type II ADAM (Linear function):

θt+1 = θt −
αt
‖gt‖2

·mt, i.e., Φ(‖gt‖2) = ‖gt‖2. (2.4)

Extremes of the learning rate(Wilson et al., 2017) in ADAM-like algorithms have brought
many issues. As is shown in Figure 1, when the gradient is very large, the function value
grows greatly in a linear rate, which leads to a rapid decrease in the step size; on the other
hand, once the gradient is extremely small (ie, when the norm of EMA of gt approaches
to 0), Φ(‖gt‖p) = ‖gt‖p is very close to 0, which makes it more than essential to select
a much smaller learning rate(a few orders of magnitude smaller than SGDM) to get a rea-
sonable actual step size. However, the much smaller initial learning rate makes ADAM-like
algorithms not flexible enough to adapt to the various learning rate schedule. Although
their early convergence is faster, the final performance tends to be poor due to the small ac-
tual step size in the final stage. A proposed solution, ADAMW(Loshchilov & Hutter, 2019),
trying to change the way the weight attenuation is updated, achieves a better generaliza-
tion performance, but there still remains a gap between adaptive methods and SGD-like
methods.

• Type III PADAM (Concave function):

θt+1 = θt −
αt
‖gt‖p2

·mt, i.e., Φ(‖gt‖2) = 4
√
‖gt‖2. (2.5)

Note that the p here means partial rather than Lp norm, its default setting is 1
4

1.
PADAM has achieved superior performance(Chen & Gu, 2018) in computer vision experi-
ments, but this algorithm only introduces a new hyper-parameter p and does grid searches
for it without realizing the essential reason for its improvement relative to ADAM. The
internal cause is that a concave function is applied rather than the linear function in ADAM.
Once ε is extremely small and ‖gt‖2 ∈ (0, ε), the mapping value of Φ(·) would be much
larger in PADAM than in ADAM; therefore, PADAM can adapt to larger learning rate αt,
thus flexibly adapting to the variable learning rate scheme.

• Type IV ADAPLUS(ADA+) (Concave function with offset):

θt+1 = θt −
αt√

‖gt‖1 + ∆
·mt, i.e., Φ(‖gt‖1) =

√
‖gt‖1 + ∆. (2.6)

In ADAPLUS, we extend the concave function by introducing an offset ∆ and present a
default setting as above. This form of Φ(·) not only directly inherits advantages of PADAM,
as is depicted in Figure 1, but also makes a better guarantee for larger learning rates. The
offset ∆ makes sure that Φ(·) can altogether avoid the extreme situation. Even when
‖gt‖1 → 0, a more extensive learning rate αt is allowed. Besides, when ‖gt‖1 is rela-
tively large, we can also adaptively constrain the updates and achieve ‘naturally annealing’
like ADAM, but more moderately. Thus, we reckon that the proposed algorithm has better
adaptive performance than both ADAM-like and SGD-like algorithms, which is why we call
it ADAPLUS(ADA+).
So far, we may surprisingly notice that this offset ∆ is the ε that we used to apply in
optimizers indeed. Nevertheless, the previous ε is only used to avoid dividing by zero to
keep the numerical stability. In fact, through our analysis above, the design of offset ∆ can
effectively avoid the occurrence of extreme step sizes, thus saliently improving adaptivity
and performance.

1It is a bit different from the formation in (Chen & Gu, 2018), but actually the same.

3

Under review as a conference paper at ICLR 2020

We present a default setting as above, due to its excellent performance and concise form;
however, there would be more elegant forms remaining for us to explore in the future. For
instance, we can replace the square function with log(·) or tanh(·) and so on, or tune it
into a p-th power function to apply a PADAM-like grid search.

3 THE PROPOSED FRAMEWORK AND METHOD

3.1 GENERIC FRAMEWORK

As is shown in Section 2.2, we propose a generic framework that includes SGD-like and ADAM-like
algorithms. With the adaptive adjustment function Φ(‖gt‖p) to combine algorithms in an organized
way, behavioral characteristics of different algorithms can be explicitly observed.

Algorithm 1 GENERIC FRAMEWORK

Input: θ1 ∈ X ; learning rate {αt}Tt=1; momentum parameters {β1t}Tt=1, β2; Lp norm parameter p;
function for step estimation Φ(·).

1: Setm0 = 0, v0 = 0, v̂0 = 0
2: for t = 1 to T do
3: gt = ∇ft(xt)
4: mt = β1tmt−1 + (1− β1t)gt
5: vt = β2vt−1 + (1− β2)|gt|p
6: v̂t = max (v̂t−1,vt)
7: // Depending on whether AMSGrad is desired, the previous line can be optionally annotated.

8: θt+1 = ΠX ,diag
(

Φ−1(v̂
1/p
t)

)(θt − αt

Φ(v̂
1/p
t)
·mt

)
9: end for

10: // We omit the bias-correction terms and other misc for clarity.

According to our analysis, different settings of the adaptive adjustment function Φ(‖gt‖p) will lead
to different behaviors of the algorithm, such as Φ(‖gt‖p) = 1 for SGDM and Φ(‖gt‖p) = ‖gt‖p
for ADAM. In practice, we can selectively decide whether or not to open AMSGRAD according to
the actual situation. We will present a specific algorithm that has a concise form and demonstrates
superior performance in Section 5.

3.2 SPECIFIC FORMATION FOR ADAPLUS

Algorithm 2 ADAPLUS

Input: θ1 ∈ X ; learning rate {αt}Tt=1; momentum parameters {β1t}Tt=1, β2; offset term ∆.
1: Setm0 = 0, v0 = 0, v̂0 = 0
2: for t = 1 to T do
3: gt = ∇ft(xt)
4: mt = β1tmt−1 + (1− β1t)gt
5: vt = β2vt−1 + (1− β2)|gt|
6: v̂t = max (v̂t−1,vt)
7: // Depending on whether AMSGrad is desired, the previous line can be optionally annotated.
8: θt+1 = ΠX ,diag(

√
v̂t+∆)

(
θt − αt√

v̂t+∆
·mt

)
9: end for

10: // We omit the bias-correction terms and other misc for clarity.

Here, we express the specific algorithm corresponding to the Type IV function mentioned in Section
2.2 as following. It is a special case of Algorithm 1.

θt+1 = θt −
αt√

‖gt‖1 + ∆
·mt, i.e., Φ(‖gt‖1) =

√
‖gt‖1 + ∆. (3.1)

Two main contributions are made, including the concave function
√
x and an offset term ∆, so the

algorithm can avoid extreme actual step sizes and achieve superior empirical results.

4

Under review as a conference paper at ICLR 2020

4 CONVERGENCE ANALYSIS OF ADAPLUS

In this section, we provide a convergence analysis based on a standard online convex optimiza-
tion framework(Zinkevich, 2003). For each time step t ∈ [T], there are sequences of parameters
{θt}Tt=1 and convex loss functions {ft}Tt=1. Let X be a bounded convex feasible set, which in-
cludes {θt}Tt=1 and the optimal solution θ∗. The optimal solution θ∗ is defined to achieve empirical
risk minimization(ERM), i.e., θ∗ = argmin

θ∈X

∑T
t=1 ft(θ). We use regret RT to donate the entire

difference between
∑T
t=1 ft(θt) and its minimum value, i.e.,

RT =

T∑
t=1

ft (θt)−min
θ∈X

T∑
t=1

ft(θ) =

T∑
t=1

(ft (θt)− ft (θ∗)) . (4.1)

With further assumption of bounded gradients, we establish convergence analysis of ADAPLUS to
ensure the bound of regret as follows.

Theorem 1. Let αt = α/
√
t, β1, β2 ∈ (0, 1), γ = β1/

√
β2 ∈ (0, 1) and β1t ≤ β1,∀ t ∈ [T].

Assume that the convex feasible set X has a bounded diameter D∞, i.e., ∀ x,y ∈ X , ‖x− y‖∞ ≤
D∞. Also, assume that loss functions ft(·) are convex and have bounded gradients, i.e., ∃ G∞ >
0, ∀ θ ∈ X and t ∈ [T], ‖∇ft(θ)‖∞ ≤ G∞. For θt generated using the ADAPLUS (Algorithm 2),
we have the following regret bound:

RT ≤
D2
∞

2α (1− β1)

d∑
i=1

√
(v̂T,i + ∆)T +

α (1 + β1)
√

1 + log T

(1− β1)
2

(1− γ)
√

1− β2

d∑
i=1

‖g1:T,i‖2

+
D2
∞

2 (1− β1)

T∑
t=1

d∑
i=1

β1t

αt

√
v̂t,i + ∆.

(4.2)

This theorem leads directly to the following two corollaries. We will provide the proof of Theorem
1 and Corollary 1, 2 in Appendix A.
Corollary 1. Under the conditions in Theorem 1, and supposing β1t = β1/t, β1t ≥ 0, we have the
following regret bound:

RT ≤
D2
∞

2α (1− β1)

d∑
i=1

√
(v̂T,i + ∆)T +

α (1 + β1)
√

1 + log T

(1− β1)
2

(1− γ)
√

1− β2

d∑
i=1

‖g1:T,i‖2

+
β1dD

2
∞
√

(1 + ρ)G∞

2α (1− β1) (1− λ)
2 .

(4.3)

Corollary 2. Under the conditions in Corollary 1, we further have the following regret bound:

RT ≤
dD2
∞
√

(1 + ρ)G∞T

2α (1− β1)
+
α (1 + β1) dG∞

√
(1 + log T)T

(1− β1)
2

(1− γ)
√

1− β2

+
β1dD

2
∞
√

(1 + ρ)G∞

2α (1− β1) (1− λ)
2 .

(4.4)
which means RT = Õ(

√
T), where Õ(·) donates the omission of logarithmic factors.

5 EXPERIMENTS

5.1 EXPERIMANTAL SETTINGS

In this section, we conduct full experiments on classical tasks both in CNN and RNN architectures,
and compare ADAPLUS with popular algorithms, such as SGD/SGDM, ADAM and AMSGRAD to
evaluate performance. Unless otherwise specified, ADAPLUS that we utilized in practice is based
on the implementation of AMSGRAD, i.e., v̂t = max (v̂t−1,vt) is applied, as is described in
Algorithm 2. Overall experiments are summarized in Table 1.

In the field of computer vision, we consider three different architectures on the standard CIFAR-
10/100 dataset(Krizhevsky et al., 2009). We use VGGNet-16(Simonyan & Zisserman, 2015),

5

Under review as a conference paper at ICLR 2020

Table 1: An Overview of Experiments.

Tasks Architectures Datasets Framework

CV
VGGNet-16(Simonyan & Zisserman, 2015)

CIFAR-10/100 TorchResNet-50(He et al., 2016)
DenseNet-121(Huang et al., 2017)

NLP OpenNMT(Klein et al., 2017) IWSLT15 Tensorflow

ResNet-50(He et al., 2016) and DenseNet-121(Huang et al., 2017), where there was a clear dis-
tinction in the number of layers to better identify different behaviors of algorithms. We employ the
fixed budget of 200 epochs and multiply the learning rates by 0.1 at 100th and 150th epochs. In
the Neural Machine Translation experiment(?), we chose the learning rate attenuation scheme lu-
ong234, which means after 2/3 num train steps, we start halving the learning rate for 4 times before
finishing. Using the same parameter settings as the benchmark (Luong et al., 2017), we run a total
of 12000 steps on Titan XP.

For reproducibility, we provide the codes anonymously in https://anonfiles.com/
daV7Ed6enb/AdaPlus_zip and put full details of experiments in the Appendix C.

5.2 CONVOLUTIONAL NEURAL NETWORK ON CIFAR-10/100

In this section, we train three different models with various numbers of layers to accurately compare
the performance of optimizers. We also conducted experiments both on CIFAR-10 and CIFAR-100
to examine the impacts of complex tasks and different datasets on the behavior of optimizers. We
report training loss and test accuracy in the following figures.

In general, we notice that in deep neural network architecture the final performance of SGDM is
significantly better than ADAM and AMSGRAD, which shows issues in generalization of ADAM-
like algorithms once again. Additionally, to our surprise, our approach ADAPLUS outperforms
SGDM in the various models and tasks almost at all the time step (with significant differences or a
bit similar).

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai
ni
ng

 L
os
s

AdaPlus
SGDM
Padam
AMSGrad
Adam

(a) VGGNet-16 on Cifar-10

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai
ni
ng

 L
os
s

AdaPlus
SGDM
Padam
AMSGrad
Adam

(b) ResNet-50 on Cifar-10

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Tr
ai
ni
ng

 L
os
s

AdaPlus
SGDM
Padam
AMSGrad
Adam

(c) DenseNet-121 on Cifar-10

0 25 50 75 100 125 150 175 200
Epochs

80

82

84

86

88

90

92

94

Te
st
 A
cc
ur
ac
y
%

AdaPlus
SGDM
Padam
AMSGrad
Adam

(d) VGGNet-16 on Cifar-10

0 25 50 75 100 125 150 175 200
Epochs

80

82

84

86

88

90

92

94

96

Te
st
 A
cc
ur
ac
y
%

AdaPlus
SGDM
Padam
AMSGrad
Adam

(e) ResNet-50 on Cifar-10

0 25 50 75 100 125 150 175 200
Epochs

80

82

84

86

88

90

92

94

96

Te
st
 A
cc
ur
ac
y
%

AdaPlus
SGDM
Padam
AMSGrad
Adam

(f) DenseNet-121 on Cifar-10

Figure 2: Training loss and test accuracy of different architectures on Cifar-10.

6

https://anonfiles.com/daV7Ed6enb/AdaPlus_zip
https://anonfiles.com/daV7Ed6enb/AdaPlus_zip

Under review as a conference paper at ICLR 2020

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai
ni
ng

 L
os
s

AdaPlus
SGDM
Padam
AMSGrad
Adam

(a) VGGNet-16 on Cifar-100

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai
ni
ng

 L
os
s

AdaPlus
SGDM
Padam
AMSGrad
Adam

(b) ResNet-50 on Cifar-100

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Tr
ai
ni
ng

 L
os
s

AdaPlus
SGDM
Padam
AMSGrad
Adam

(c) DenseNet-121 on Cifar-100

0 25 50 75 100 125 150 175 200
Epochs

50

55

60

65

70

75

Te
st
 A
cc
ur
ac
y
%

AdaPlus
SGDM
Padam
AMSGrad
Adam

(d) VGGNet-16 on Cifar-100

0 25 50 75 100 125 150 175 200
Epochs

50

55

60

65

70

75

80

Te
st
 A
cc
ur
ac
y
%

AdaPlus
SGDM
Padam
AMSGrad
Adam

(e) ResNet-50 on Cifar-100

0 25 50 75 100 125 150 175 200
Epochs

55

60

65

70

75

80

Te
st
 A
cc
ur
ac
y
%

AdaPlus
SGDM
Padam
AMSGrad
Adam

(f) DenseNet-121 on Cifar-100

Figure 3: Training loss and test accuracy of different architectures on Cifar-100.

Summary of behaviors. Empirically, the behaviors of various algorithms match with what we
analyze in Section 2.2. Primarily, ADAPLUS has similar behaviors to PADAM, showing faster con-
vergence and less volatility than SGDM in the early stage. The results of PADAM and SGDM are
mostly identical, sometimes SGDM wins while other times PADAM wins. However, ADAPLUS has
achieved better performance than both of them due to the introduction of offset term ∆. In addition,
both ADAM and AMSGRAD perform poorly in the end, although their early training losses decline
rapidly and their convergence is faster.

Summary of performances. For VGGNet-16, ResNet-50 and DenseNet-121, ADAPLUS has
achieved test accuracies of 0.26%, 0.46%, and 0.15% higher than SGDM in Cifar-10 tasks; while
in Cifar-100 tasks, the gaps are about 1.18%, 1.62% and 0.54%. In terms of architectures, the most
significant improvement of ADAPLUS incurs in ResNet-50, followed by VGGNet-16 and DenseNet-
121. ADAPLUS has achieved an accuracy of about 80% in ResNet-50 on CIFAR-100, which is a
significant improvement over SGDM. In terms of complexity of tasks, when the tasks are more
complex, ADAPLUS can gain better promotions, since architectures have been improved more by
ADAPLUS on CIFAR-100 than on CIFAR-10.

5.3 NEURAL MACHINE TRANSLATION

In this section, we evaluate the performance of ADAPLUS in a classic NLP task Neural Machine
Translation (NMT)(Klein et al., 2017). Due to the particularity of NLP problems, adaptive opti-
mization algorithms and their variants do not perform as well as SGD; therefore, many researchers
prefer to use fine-tuned SGD(Wilson et al., 2017).

OpenNMT has standard benchmarks with open source codes(Luong et al., 2017), from which we
select to conduct the IWSLT15 English-to-Vietnam task with the same settings as its benchmark.
Since there is no TensorFlow implementation for PADAM, we will not consider it but focus on the
comparison of ADAPLUS with the state-of-the-art benchmark. As is generally agreed, standard SGD
with lr = 1.0 can achieve the best average performance of 26.1 in the model with beam = 10. We
apply ADAPLUS to the same task in this section. Besides, we experiment in the Vietnam-to-English
task of 15k steps in Appendix D, using the same settings as ADASHIFT(Zhou et al., 2019), which
also yields better results than SGD.

7

Under review as a conference paper at ICLR 2020

Figure 4 shows that AMSGRAD’s performance is worse than ADAM and that despite the fluctuations
of ADAM are smaller, SGD performs indeed better. Therefore, we do not apply AMSGRAD in
ADAPLUS, i.e., the sixth line of Algorithm 2 is annotated. Our NMT experiment further proves that
ADAPLUS is more suitable for NLP problems with recurrent neural network model and sparse data
set. As is shown in Figure 4, ADAPLUS is almost always superior to all other methods. Finally, it
has achieved the best BLEU slightly higher than SGD, as shown in Table 2.

0 2000 4000 6000 8000 10000 12000
Steps

0

20

40

60

80

100

Tr
ai
ni
ng

 P
er
pl
ex
ity

AdaPlus
SGD
AMSGrad
Adam

(a) Training perplexity

0 2000 4000 6000 8000 10000 12000
Steps

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Te
st
 B
LE
U

AdaPlus
SGD
AMSGrad
Adam

(b) Test BLEU

Figure 4: Training perplexity and test BLEU on NMT.

Table 2: Best BLEU for 12k steps on IWSLT15 English-to-Vietnam.

Optimizer SGD ADAM AMSGRAD ADAPLUS

Best BLEU 26.12 24.74 23.17 26.31

6 FUTURE WORK

Although we present a generic framework and an explicit algorithm with excellent performance,
there would be more elegant forms remaining for us to explore in the future.

1. The choice of function Φ(·). For instance, we can replace the square function with log(·)
or tanh(·) and so on. Also, the square function can be tuned into a p-th power function to
apply a PADAM-like grid search.

2. The choice of Lp Norm parameter p. Different Lp Norm parameter can be tried to get
better numerical performance.

7 CONCLUSION

This work proposes a novel generic framework, in which we explicitly analyze different behaviors
brought by various types of Φ(·), such as the constant function in SGDM, the linear function in
ADAM, the concave function in PADAM and the concave function with offset term in ADAPLUS.
With better adaptivity as is demonstrated, ADAPLUS has achieved remarkable superior results in
both CNN and RNN experiments. Our main contributions can be summarized as follows:

• A generic framework. Combining ADAM-like algorithms with SGD-like algorithms, the
adaptive adjustment function Φ(·) suggests a generic framework we desired.
• Explicit analysis of different algorithm behaviors by Φ(·). Based on the explicit analysis

of Φ(·), we explain the different behaviors of different algorithms, which is a fundamental
reason never mentioned before.
• The proposal of a concave function with offset term. In ADAPLUS, we propose an offset

term ∆, which can further avoid extreme actual step sizes based on the concave function
and achieve superior performance.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Jinghui Chen and Quanquan Gu. Closing the generalization gap of adaptive gradient methods in
training deep neural networks. CoRR, abs/1806.06763, 2018. URL http://arxiv.org/
abs/1806.06763.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush. OpenNMT: Open-
source toolkit for neural machine translation. In Proceedings of ACL 2017, System Demonstra-
tions, pp. 67–72, Vancouver, Canada, July 2017. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/P17-4012.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Minh-Thang Luong, Eugene Brevdo, and Rui Zhao. Neural machine translation (seq2seq) tutorial.
https://github.com/tensorflow/nmt, 2017.

H. McMahan and Matthew Streeter. Adaptive bound optimization for online convex optimization.
COLT 2010 - The 23rd Conference on Learning Theory, 02 2010.

B.T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Com-
putational Mathematics and Mathematical Physics, 4(5):1 – 17, 1964. ISSN 0041-5553.
doi: https://doi.org/10.1016/0041-5553(64)90137-5. URL http://www.sciencedirect.
com/science/article/pii/0041555364901375.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In International Conference on Learning Representations, May 2015.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In Advances in Neural Information
Processing Systems, pp. 4148–4158, 2017.

Zhiming Zhou, Qingru Zhang, Guansong Lu, Hongwei Wang, Weinan Zhang, and Yong Yu.
Adashift: Decorrelation and convergence of adaptive learning rate methods. In International
Conference on Learning Representations, 2019. URL https://openreview.net/forum?
id=HkgTkhRcKQ.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 928–936,
2003.

9

http://arxiv.org/abs/1806.06763
http://arxiv.org/abs/1806.06763
https://www.aclweb.org/anthology/P17-4012
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://www.sciencedirect.com/science/article/pii/0041555364901375
http://www.sciencedirect.com/science/article/pii/0041555364901375
https://openreview.net/forum?id=HkgTkhRcKQ
https://openreview.net/forum?id=HkgTkhRcKQ

Under review as a conference paper at ICLR 2020

A PROOF OF CONVERGENCE

A.1 PROOF OF THEOREM 1

Proof. Since all ft(·) are convex, which means ∀ x,y ∈ X ,

ft(y) ≥ ft(x) +∇ft(x)>(y − x). (A.1)

Then, we have

RT =

T∑
t=1

(ft (θt)− ft (θ∗))

≤
T∑
t=1

〈gt,θt − θ∗〉 .

(A.2)

Consider the explicit update formula in Algorithm 2, and use the notation V̂t = diag (v̂t). Here,
we can get θt+1 = Π

X ,(V̂t+∆)
1
2

(
θt − αt(V̂t + ∆)−

1
2 ·mt

)
.

We use Qt ,
√

V̂t + ∆ ∈ Sd+ to donate the matrix for simplification. Besides, we can find that

Qt , Φ(V̂t) is the general formation in Algorithm 1, as long as it satisfies the requirement of being
positive definite matrices, the following derivation suits as well.

For the definition of θ∗, it holds that ΠX ,Q (θ∗) = θ∗, ∀θ∗ ∈ X . Using Lemma 1, we have

∥∥∥Q 1
2
t (θt+1 − θ∗)

∥∥∥2

2
≤
∥∥∥Q 1

2
t

(
θt − αtQ−1

t ·mt − θ∗
)∥∥∥2

2
. (A.3)

Expanding the squared norm on the right side of the inequality and further expanding the momentum
term, there is∥∥∥Q 1

2
t (θt+1 − θ∗)

∥∥∥2

2

≤
∥∥∥Q 1

2
t (θt − θ∗)

∥∥∥2

2
+ α2

t

∥∥∥Q− 1
2

t mt

∥∥∥2

2
− 2αt 〈mt,θt − θ∗〉

=
∥∥∥Q 1

2
t (θt − θ∗)

∥∥∥2

2
+ α2

t

∥∥∥Q− 1
2

t mt

∥∥∥2

2
− 2αt 〈β1tmt−1 + (1− β1t) gt,θt − θ∗〉

(A.4)

Rearranging the terms in the above inequality, the following first inequality holds,

〈gt,θt − θ∗〉

≤ 1

2αt (1− β1t)

[∥∥∥Q 1
2
t (θt − θ∗)

∥∥∥2

2
−
∥∥∥Q 1

2
t (θt+1 − θ∗)

∥∥∥2

2

]
+

αt
2 (1− β1t)

·
∥∥∥Q− 1

2
t mt

∥∥∥2

2

− β1t

1− β1t
〈mt−1,θt − θ∗〉

≤ 1

2αt (1− β1t)

[∥∥∥Q 1
2
t (θt − θ∗)

∥∥∥2

2
−
∥∥∥Q 1

2
t (θt+1 − θ∗)

∥∥∥2

2

]
+

αt
2 (1− β1t)

·
∥∥∥Q− 1

2
t mt

∥∥∥2

2

+
β1tαt

2 (1− β1t)
·
∥∥∥Q− 1

2
t−1mt−1

∥∥∥2

2
+

β1t

2αt (1− β1t)

∥∥∥Q 1
2
t−1 (θt − θ∗)

∥∥∥2

2
.

(A.5)

and the last inequality holds due to Cauchy-Schwarz and Young’s inequality.

Combining (A.2) with (A.5), we have

10

Under review as a conference paper at ICLR 2020

T∑
t=1

[ft (θt)− ft (θ∗t)]

≤
T∑
t=1

{
1

2αt (1− β1t)

[∥∥∥Q 1
2
t (θt − θ∗)

∥∥∥2

2
−
∥∥∥Q 1

2
t (θt+1 − θ∗)

∥∥∥2

2

]
+

αt
2 (1− β1t)

·
∥∥∥Q− 1

2
t mt

∥∥∥2

2

+
β1tαt

2 (1− β1t)
·
∥∥∥Q− 1

2
t−1mt−1

∥∥∥2

2
+

β1t

2αt (1− β1t)

∥∥∥Q 1
2
t−1 (θt − θ∗)

∥∥∥2

2

}
.

(A.6)
As is separately proven in Lemma 2, Lemma 3 and Lemma 4, we can further get the desired regret
bound.

RT =

T∑
t=1

[ft (θt)− ft (θ∗t)]

≤ D2
∞

2α (1− β1)

d∑
i=1

√
(v̂T,i + ∆)T +

α (1 + β1)
√

1 + log T

(1− β1)
2

(1− γ)
√

1− β2

d∑
i=1

‖g1:T,i‖2

+
D2
∞

2 (1− β1)

T∑
t=1

d∑
i=1

β1t

αt

√
v̂t,i + ∆

(A.7)

A.2 PROOF OF COROLLARY 1

Proof.
Since we assume that β1t = β1λ

t, λ ∈ (0, 1), we have

D2
∞

2 (1− β1)

T∑
t=1

d∑
i=1

β1t

αt

√
v̂t,i + ∆

=
D2
∞

2 (1− β1)

T∑
t=1

d∑
i=1

β1λ
t−1

α

√
(v̂t,i + ∆) t

(A.8)

Besides, due to the definition of v̂t,i, we have

v̂t,i + ∆ = (1− β2)

t∑
j=1

βt−j2 |gj,i|+ ∆ ≤ (1− β2)

 t∑
j=1

βt−j2 |gj,i|+
∆

1− β2

 . (A.9)

Since ∆ > 0 is a given constant, which is chosen to be relatively small enough, it always holds that
∃ ρ > 0, s.t., ∆ ≤ ρ ·G∞. Then, we can further improve the result in (A.9), ∀ t ∈ [T],

v̂t,i + ∆ ≤ (1− β2)

 t∑
j=1

βt−j2

G∞ + ρ ·G∞ ≤ (1 + ρ)G∞, (A.10)

which leads to
D2
∞

2 (1− β1)

T∑
t=1

d∑
i=1

β1t

αt

√
v̂t,i + ∆

≤
β1D

2
∞
√

(1 + ρ)G∞
2α (1− β1)

T∑
t=1

d∑
i=1

λt−1
√
t

≤
β1dD

2
∞
√

(1 + ρ)G∞

2α (1− β1) (1− λ)
2 .

(A.11)

11

Under review as a conference paper at ICLR 2020

Submitting (A.11) into (A.7), we extend the conclusion in Theorem 1 to Corollary 1.

RT =

T∑
t=1

[ft (θt)− ft (θ∗t)]

≤ D2
∞

2α (1− β1)

d∑
i=1

√
(v̂T,i + ∆)T +

α (1 + β1)
√

1 + log T

(1− β1)
2

(1− γ)
√

1− β2

d∑
i=1

‖g1:T,i‖2

+
β1dD

2
∞
√

(1 + ρ)G∞

2α (1− β1) (1− λ)
2

(A.12)

A.3 PROOF OF COROLLARY 2

Proof.
Primarily, as is proved in (A.10), it holds that

v̂T,i + ∆ ≤ (1− β2)

 T∑
j=1

βT−j2

G∞ + ρ ·G∞ ≤ (1 + ρ)G∞. (A.13)

Thus, we have
D2
∞
√
T

2α (1− β1)

d∑
i=1

√
v̂T,i + ∆

≤ D2
∞
√
T

2α (1− β1)

d∑
i=1

√
(1 + ρ)G∞

=
dD2
∞
√

(1 + ρ)G∞ · T
2α (1− β1)

(A.14)

Second, due to the property of convex functions and bounded gradients, we further have

d∑
i=1

‖g1:T,i‖2 ≤
d∑
i=1

√√√√ T∑
t=1

g2
t,i ≤ dG∞

√
T , (A.15)

Pluging (A.14) and (A.15) back into (A.12), we finally get the result of Corollary 2

RT =

T∑
t=1

[ft (θt)− ft (θ∗t)]

≤
dD2
∞
√

(1 + ρ)G∞T

2α (1− β1)
+
α (1 + β1) dG∞

√
(1 + log T)T

(1− β1)
2

(1− γ)
√

1− β2

+
β1dD

2
∞
√

(1 + ρ)G∞

2α (1− β1) (1− λ)
2 ,

(A.16)

which means RT = Õ(
√
T), where Õ(·) donates the omission of logarithmic factors.

B AUXILIARY LEMMAS

B.1 PROOF OF LEMMA 1

Lemma 1 (McMahan & Streeter (2010); Reddi et al. (2018); Chen & Gu (2018)). For any Q ∈
Sd+ and convex feasible set X ⊂ Rd, suppose u1 = arg minx∈X ‖Q1/2(x − z1)‖2 and u2 =

arg minx∈X ‖Q1/2(x− z2)‖2 then we have ‖Q1/2(u1 − u2)‖2 ≤ ‖Q1/2(z1 − z2)‖2.

We will not provide the proof here, since it will be exactly the same as the reference and has been
proved many times.

12

Under review as a conference paper at ICLR 2020

B.2 PROOF OF LEMMA 2

Lemma 2. Under the conditions in Theorem 1, we have
T∑
t=1

{
αt

2 (1− β1t)

[∥∥∥Q− 1
2

t mt

∥∥∥2

+ β1t

∥∥∥Q− 1
2

t−1mt−1

∥∥∥2
]}
≤ α (1 + β1)

√
1 + log T

(1− β1)
2

(1− γ)
√

1− β2

d∑
i=1

‖g1:T,i‖2 .

Proof. Similar to (Reddi et al., 2018; Chen & Gu, 2018), we first describe the upper bound of
T∑
t=1

αt

∥∥∥Q− 1
2

t mt

∥∥∥2

=
T∑
t=1

d∑
i=1

αt·m2
t,i√

v̂t,i+∆
in the following derivation, since we useQt ,

√
V̂t + ∆ ∈

Sd+ to donate the update rule.

T∑
t=1

αt

∥∥∥Q− 1
2

t mt

∥∥∥2

=

T∑
t=1

d∑
i=1

αt ·m2
t,i√

v̂t,i + ∆

=

T−1∑
t=1

d∑
i=1

αt ·m2
t,i√

v̂t,i + ∆
+

d∑
i=1

αT ·m2
T,i√

v̂T,i + ∆

≤
T−1∑
t=1

d∑
i=1

αt ·m2
t,i√

v̂t,i + ∆
+

d∑
i=1

αT ·m2
T,i√

vT,i + ∆

=

T−1∑
t=1

d∑
i=1

αt ·m2
t,i√

v̂t,i + ∆
+

α√
T

d∑
i=1

(∑T
j=1 (1− β1j)β

T−j
1 gj,i

)2

√
(1− β2)

∑T
j=1 β

T−j
2 |gj,i|+ ∆

≤
T−1∑
t=1

d∑
i=1

αt ·m2
t,i√

v̂t,i + ∆
+

α√
T (1− β2)

d∑
i=1

(∑T
j=1 β

T−j
1 |gj,i|

1
2

)(∑T
j=1 β

T−j
1 |gj,i|

3
2

)
√∑T

j=1 β
T−j
2 |gj,i|+ ∆

1−β2

(B.1)

These several equalities holds due to the update rule and definitions of αt, vt,i and mt,i. Also, the
first inequality holds due to the definition of v̂t,i, while the second inequality holds due to β1t ≤

β1,∀ t ∈ [T] and Cauchy-Schwarz inequality. Since
T∑
j=1

βT−j1 ≤ 1
1−β1

and ft(·) has bounded

gradients, we have

T∑
t=1

αt

∥∥∥Q− 1
2

t mt

∥∥∥2

≤
T−1∑
t=1

d∑
i=1

αt ·m2
t,i√

v̂t,i + ∆
+

α
√
G∞

(1− β1)
√
T (1− β2)

d∑
i=1

∑T
j=1 β

T−j
1 |gj,i|

3
2√∑T

j=1 β
T−j
2 |gj,i|+ ∆

1−β2

≤
T−1∑
t=1

d∑
i=1

αt ·m2
t,i√

v̂t,i + ∆
+

α
√
G∞

(1− β1)
√
T (1− β2)

d∑
i=1

∑T
j=1 β

T−j
1 |gj,i|

3
2√∑T

j=1 β
T−j
2 |gj,i|

≤
T−1∑
t=1

d∑
i=1

αt ·m2
t,i√

v̂t,i + ∆
+

α
√
G∞

(1− β1)
√
T (1− β2)

T∑
j=1

d∑
i=1

βT−j1 |gj,i|
3
2√

βT−j2 |gj,i|

≤
T−1∑
t=1

d∑
i=1

αt ·m2
t,i√

v̂t,i + ∆
+

α
√
G∞

(1− β1)
√
T (1− β2)

T∑
j=1

d∑
i=1

γT−j |gj,i| ,

(B.2)

where the second inequality is indeed strictly less for ∆ > 0, the third inequality holds due to the
property of concave function. At last, as is assumed, γ = β1√

β2
∈ (0, 1) is introduced.

13

Under review as a conference paper at ICLR 2020

We further expand
T−1∑
t=1

αt

∥∥∥Q− 1
2

t mt

∥∥∥2

=
T−1∑
t=1

d∑
i=1

αt·m2
t,i√

v̂t,i+∆
in the same way, which leads to

T∑
t=1

αt

∥∥∥Q− 1
2

t mt

∥∥∥2

≤ α
√
G∞

(1− β1)
√

1− β2

T∑
t=1

1√
t

t∑
j=1

d∑
i=1

γt−j |gj,i|

=
α
√
G∞

(1− β1)
√

1− β2

d∑
i=1

T∑
t=1

|gt,i|√
t

T∑
j=t

γj−t

≤ α
√
G∞

(1− β1)
√

1− β2

d∑
i=1

T∑
t=1

|gt,i|
(1− γ)

√
t

=
α
√
G∞

(1− γ) (1− β1)
√

1− β2

d∑
i=1

T∑
t=1

|gt,i|√
t

≤ α
√
G∞

(1− γ) (1− β1)
√

1− β2

d∑
i=1

‖g1:T,i‖2

√√√√ T∑
t=1

1

t

≤
α
√
G∞ (1 + log T)

(1− γ) (1− β1)
√

1− β2

d∑
i=1

‖g1:T,i‖2

(B.3)

Similarly, with
T∑
j=t

γj−t ≤ 1
1−γ , the second inequality holds. The third inequality also holds by

Cauchy-Schwarz inequality, while the last inequality holds due to the bound on harmonic sum:
T∑
t=1

1
t ≤ 1 + log T .

Thus, we finally get

T∑
t=1

{
αt

2 (1− β1t)

[∥∥∥Q− 1
2

t mt

∥∥∥2

+ β1t

∥∥∥Q− 1
2

t−1mt−1

∥∥∥2
]}

≤
α (1 + β1)

√
G∞ (1 + log T)

2 (1− γ) (1− β1)
2√

1− β2

d∑
i=1

‖g1:T,i‖2 .

(B.4)

B.3 PROOF OF LEMMA 3

Lemma 3. Under the conditions in Theorem 1, we have

T∑
t=1

1

2αt (1− β1t)

[∥∥∥Q 1
2
t (θt − θ∗)

∥∥∥2

2
−
∥∥∥Q 1

2
t (θt+1 − θ∗)

∥∥∥2

2

]
≤ D2

∞
2α (1− β1)

d∑
i=1

√
(v̂T,i + ∆)T .

14

Under review as a conference paper at ICLR 2020

Proof. Consider

T∑
t=1

1

2αt (1− β1t)

[∥∥∥Q 1
2
t (θt − θ∗)

∥∥∥2

2
−
∥∥∥Q 1

2
t (θt+1 − θ∗)

∥∥∥2

2

]

≤
T∑
t=1

d∑
i=1

√
v̂t,i + ∆

2αt (1− β1)

[
(θt+1,i − θ∗i)

2 − (θt,i − θ∗i)
2
]

=
1

2 (1− β1)

[
d∑
i=1

√
v̂1,i + ∆ (θ1,i − θ∗i)

2

α1
+

T∑
l=2

d∑
i=1

(√
v̂t,i + ∆

αt
−
√
v̂t−1,i + ∆

αt−1

)
(θt,i − θ∗i)

2

]

≤ D2
∞

2 (1− β1)

[
d∑
i=1

√
v̂1,i + ∆

α1
+

T∑
t=2

d∑
i=1

(√
v̂t,i + ∆

αt
−
√
v̂t−1,i + ∆

αt−1

)]

=
D2
∞

2 (1− β1)

d∑
i=1

√
v̂T,i + ∆

αT

=
D2
∞

2α (1− β1)

d∑
i=1

√
(v̂T,i + ∆)T ,

(B.5)
where the first inequality is based on β1t ≤ β1, and the second inequality is due to the definition of
a bounded feasible set.

B.4 PROOF OF LEMMA 4

Lemma 4. Under the conditions in Theorem 1, we have

T∑
t=1

β1t

2αt (1− β1t)

∥∥∥Q 1
2
t−1 (θt − θ∗)

∥∥∥2

2
≤ D2

∞
2 (1− β1)

T∑
t=1

d∑
i=1

β1t

αt

√
v̂t,i + ∆.

Proof. Consider
T∑
t=1

β1t

2αt (1− β1t)

∥∥∥Q 1
2
t−1 (θt − θ∗)

∥∥∥2

2

≤
T∑
t=1

d∑
i=1

β1t ·
√
v̂t,i + ∆

2αt (1− β1)
(θt,i − θ∗i)

2

≤ D2
∞

2 (1− β1)

T∑
t=1

d∑
i=1

β1t

αt

√
v̂t,i + ∆,

(B.6)

where the first inequality is based on β1t ≤ β1 and the non-decreasing property of v̂t,i, and the
second inequality is due to the definition of a bounded feasible set.

C EXPERIMENTAL SETTINGS

C.1 CIFAR CLASSIFICATION

• β1 and β2. We conduct experiments in (β1, β2) = {(0.9, 0.99), (0.9, 0.999)}. For ADAM
and AMSGRAD, we use (0.9, 0.99); while for SGDM, PADAM and ADAPLUS, we use
(0.9, 0.999).

• Learning Rate. For ADAM and AMSGRAD, we do grid search in {0.001, 0.0001}. For
SGDM, PADAM and ADAPLUS, we do grid search in {0.05, 0.1, 0.2, 0.3}, and most opti-
mal results are using lr = 0.1.

15

Under review as a conference paper at ICLR 2020

• Learning Rate Schedule. We conduct a learning rate schedule of decaying the learning
rate by 0.1 at the 100th and 150th epoches in all 200 epoches.

• Offset. For ADAPLUS, we do grid search in ∆ = {1/8, 1/4, 1/2} to get best results.

• Weight Decaying. For ADAM and AMSGRAD, we set weight decaying = 1e− 4; while
for SGDM, PADAM and ADAPLUS, we set weight decaying = 5e− 4.

• Best Setting. For ADAPLUS, we fine-tune the hyper-parameters and achieve best results
when lr = 0.1,∆ = 1/8 in VGGNet-Cifar100, ResNet-Cifar100 and DenseNet-Cifar10,
lr = 0.2,∆ = 1/2 in VGGNet-Cifar10, lr = 0.1,∆ = 1/4 in ResNet-Cifar10 and
lr = 0.3,∆ = 1/2 in DenseNet-Cifar10.

C.2 NEURAL MACHINE TRANSLATION

• β1 and β2. We conduct experiments in (β1, β2) = {(0.9, 0.99), (0.9, 0.999)}. For ADAM
and AMSGRAD, we use (0.9, 0.99); while for SGDM, PADAM and ADAPLUS, we use
(0.9, 0.999).

• Learning Rate. For ADAM and AMSGRAD, we do grid search in {0.001, 0.0001}. we
searched learning rates in {0.1, 0.5, 1.0, 2.0} for SGD, and get the optimal result when
lr = 1.0.

• Learning Rate Schedule. We conduct a learning rate scheme luong234, which means after
2/3 num train steps, we start halving the learning rate for 4 times in all 12000 steps.

• Offset. For ADAPLUS, we do grid search in ∆ = {1/2, 1, 2} to get best results.

• Other Details. We keep all other details the same with the benchmark(Luong et al., 2017),
there is also a json file in our codes to demonstrate parameter settings.

• Best Setting. For ADAPLUS, we achieve the best result when lr = 2.0,∆ = 2.0 or
lr = 1.0,∆ = 1.0.

C.3 ADDITIONAL EXPERIMENTS

• β1 and β2. We conduct experiments in (β1, β2) = {(0.9, 0.99), (0.9, 0.999)}. For ADAM
and AMSGRAD, we use (0.9, 0.99); while for SGDM, PADAM and ADAPLUS, we use
(0.9, 0.999).

• Learning Rate. For ADAM and AMSGRAD, we do grid search in {0.001, 0.0001}. we
searched learning rates in {0.1, 0.5, 1.0, 2.0} for SGD, and get the optimal result when
lr = 1.0.

• Learning Rate Schedule. We conduct a learning rate scheme self, which means after
8000 train steps, we start halving the learning rate every 1000 steps within 15000 steps of
training.

• Offset. For ADAPLUS, we do grid search in ∆ = {1/8, 1/4, 1/2} to get best results.

• Other Details. We keep all other details the same with ADASHIFT(Zhou et al., 2019).

• Best Setting. For ADAPLUS, we achieve the best result when lr = 0.5,∆ = 0.125.

D ADDITIONAL EXPERIMENTS IN NMT

We also conduct another NMT experiment on IWSLT15. Unlike Section 5.3, we apply a different
learning rate schedule, extend the total number of training steps to 15000 steps, and change the task
into Vietnam-to-English. We conduct a learning rate scheme self, which means after 8000 train
steps, we start halving the learning rate every 1000 steps within the total 15000 steps of training.
We have fine-tuned different optimizers and compare their best performance, where the results of
ADAM and AMSGRAD are similar to that in (Zhou et al., 2019). The experimental results still show
that ADAPLUS has significant advantages over other algorithms, both in terms of convergence speed
and final performance.

16

Under review as a conference paper at ICLR 2020

0 2000 4000 6000 8000 10000 12000 14000
Steps

0

20

40

60

80

100

Tr
ai
ni
ng

 P
er
pl
ex
ity

AdaPlus
SGD
Adam
AMSGrad

(a) Training perplexity

0 2000 4000 6000 8000 10000 12000 14000
Steps

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Te
st
 B
LE
U

AdaPlus
SGD
Adam
AMSGrad

(b) Test BLEU

Figure 5: Training perplexity and test BLEU on NMT.

Table 3: Best BLEU for 15k steps on IWSLT15 Vietnam-to-English.

Optimizer SGD ADAM AMSGRAD ADAPLUS

Best BLEU 25.02 21.68 18.92 25.35

17

	Introduction
	Preliminaries And Motivations
	Notations
	Motivations

	The Proposed Framework and Method
	Generic Framework
	Specific Formation for AdaPlus

	Convergence Analysis of AdaPlus
	Experiments
	Experimantal Settings
	Convolutional Neural Network on Cifar-10/100
	Neural Machine Translation

	Future Work
	Conclusion
	Proof of Convergence
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Corollary 2

	Auxiliary Lemmas
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Experimental Settings
	CIFAR Classification
	Neural Machine Translation
	Additional Experiments

	Additional Experiments in NMT

