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Abstract
Lexical ambiguity, i.e., the presence of two or
more meanings for a single word, is an in-
herent and challenging problem for machine
translation systems. Even though the use of re-
current neural networks (RNN) and attention
mechanisms are expected to solve this prob-
lem, machine translation systems are not al-
ways able to correctly translate lexically am-
biguous sentences. In this work, we attempt
to resolve the problem of lexical ambiguity in
English–Japanese neural machine translation
systems by combining a pretrained Bidirec-
tional Encoder Representations from Trans-
former (BERT) language model that can pro-
duce contextualized word embeddings and a
Transformer translation model, which is a
state-of-the-art architecture for the machine
translation task. These two proposed archi-
tectures have been shown to be more effec-
tive in translating ambiguous sentences than
a vanilla Transformer model and the Google
Translate system. Furthermore, one of the pro-
posed models, the TransformerBERT−WE,
achieves a higher BLEU score compared to the
vanilla Transformer model in terms of general
translation, which is concrete proof that the
use of contextualized word embeddings from
BERT can not only solve the problem of lex-
ical ambiguity, but also boosts the translation
quality in general.

1 Introduction

Machine translation is one of the most impor-
tant tasks in the field of natural language process-
ing. In 2014, Sutskever and his fellow researchers
at Google introduced the sequence-to-sequence
(seq2seq) model (Sutskever et al., 2014), marking
the advent of neural machine translation (NMT)
in a breakthrough in the field of machine transla-
tion. Since then, seq2seq models have been grow-
ing rapidly, evolving from a purely recurrent neu-
ral network (RNN)-based encoder–decoder model

to recurrence-free models that rely on convolu-
tion(Gehring et al., 2017) or attention mecha-
nisms(Vaswani et al., 2017). The Transformer ar-
chitecture(Vaswani et al., 2017), which is based
on attention mechanism, is currently the standard
model for machine translation tasks because of
its effectiveness and efficiency. It also provides
a foundation for the advent of state-of-the-art lan-
guage models, such as Bidirectional Encoder Rep-
resentations from Transformer (BERT)(Devlin et
al., 2018) and GPT-2(Radford et al., 2019). Sec-
tion 2 shows how seq2seq models transformed
from a purely RNN-based encoder–decoder model
to a transformer model that relies entirely on atten-
tion mechanism.

Although many significant improvements have
been made in the NMT field, lexical ambiguity
is still a problem that causes difficulty for ma-
chine translation models. Liu et al. (2017)(Liu
et al., 2017) show that the performance of RNN-
based seq2seq model decreases as the number of
senses for each word increases. Section 3 demon-
strates that even modern translation models, such
as Google Translate, cannot translate some lexi-
cally ambiguous sentences and forms hypotheses
concerning some causes of this problem. Section 4
describes the BERT language model and explains
why BERT vector representations can help resolve
the problem of lexical ambiguity. Subsequently,
two context-aware machine translation architec-
tures that integrate pretrained BERT and Trans-
former models are proposed in section 5. For com-
parison purposes, a vanilla Transformer was built
with the same set of hyperparameters and trained
with the same settings as the proposed models. Fi-
nally, the three models were evaluated based on
two criteria: i.e., the capability to produce good
translations in general and the ability to translate
lexically ambiguous sentences. The evaluation re-
sults and sample translations are shown in section



6.3.

2 Neural machine translation

2.1 Sequence-to-sequence model

NMT is an approach to machine translation, where
a large neural network model learns to predict the
likelihood of a sequence of words given a source
sentence in an end-to-end fashion. The neural net-
work model used for machine translation is called
a seq2seq model, which is composed of an encoder
and a decoder. RNN and its variants such as long
short-term memory (LSTM) and gated recurrent
unit (GRU) have been a common choice to build a
seq2seq model. The encoder, which is a multilay-
ered RNN cell, encodes the input sequence x into
a fixed-sized vector v, which is essentially the last
hidden state of the encoder’s RNN. The decoder,
which is another RNN, maps this context vector to
the target sequence y. In other words, a seq2seq
model learns to maximize the conditional proba-
bility:

p(y1, . . . ,yT |x1, ...,xS)

=
T∏
t=1

p(yt|v,y1, . . . ,yt−1) (1)

where T and S are the lengths of the input sentence
of the source language and the output sentence of
the target language, respectively.

2.2 Attention-based Neural Machine
Translation

The attention mechanism proposed by Bahdanau
et al. (2014)(Bahdanau et al., 2014), is a sig-
nificant improvement to seq2seq models. By us-
ing the attention mechanism, each position in the
decoder can selectively focus on all positions in
the encoder instead of relying entirely on the last
hidden state of the encoder, which consequently
boosts the model’s capability to learn long-term
dependencies.

Basically, the attention mechanism is a mapping
of a query and a set of key-value pairs to an output
vector. Each query vector represents a decoder’s
hidden state ht, while the key and values vectors
represent all the encoder’s hidden states hs. The
output vector ct is a weighted sum of the value
vectors, where the weight corresponding to each
value vector is computed by an alignment func-

tion.

at(s) = align(ht,hs)

=
exp(similarity(ht,hs))∑
s′ exp(similarity(ht,hs′))

(2)

where the value of the similarity function de-
scribes to what extent an input at position s and
an output at position t match. The two most com-
monly used similarity functions are additive at-
tention and multiplicative attention, which were
proposed by Bahdanau et al. (2014)(Bahdanau et
al., 2014) and Luong et al. (2015)(Luong et al.,
2015) respectively, as shown in Eq. 3.

similarity(ht,hs) =

{
v>a tanh(Wa[ht;hs])

h>t hs

(3)

2.3 Transformer

Figure 1: The Transformer architecture

The Transformer model was first introduced by
Vaswani et al. (2017)(Vaswani et al., 2017), which
removes all recurrence and relies entirely on self-
attention. In a self-attention layer, all queries,
keys, and values come from the same place. As
a result, each position can attend to all other posi-
tions in the same sequence, which dispenses with



the need for recurrence. This architecture does
not only outperform RNN-based seq2seq models
in terms of performance, but also it is paralleliz-
able and requires less time to train. Thus, it has
replaced the RNN-based seq2seq model as the de
facto standard in neural machine translation.

Like other seq2seq models, a Transformer con-
sists of an encoder and a decoder, as shown in Fig-
ure 1. The encoder is a stack of N = 6 iden-
tical layers, each of which is composed of two
linked sublayers: a multihead attention mecha-
nism and a fully connected feed-forward network.
The decoder stack also consists of N = 6 identi-
cal layers. Unlike the encoder, each decoder layer
is composed of three consecutive sublayers: a
masked multihead attention, a multihead attention
mechanism, and a fully connected feed-forward
network. The first attention sublayer in each de-
coder layer performs self-attention, while the sec-
ond one pays attention to the output of the encoder
stack. In both the encoder and decoder, each sub-
layer’s input and output are added using a residual
connection and normalized using a layer normal-
ization method (Ba et al., 2016). All sublayers in
the model and the embedding layers produce out-
puts of dimension dmodel = 512.

The Transformer model uses a multihead at-
tention mechanism, i.e., many attention functions
are performed simultaneously in the same atten-
tion layer. Specifically, all queries, keys, and val-
ues of dimension dmodel are projected h = 8
times with different learned linear projections to
dk, dk, and dv dimensions, respectively (dk =
dv = dmodel/h = 64). Each attention head pro-
duces output vectors of dimension dv, which are
concatenated and linearly projected one more time
to produce the final output vectors of dimension
dmodel.

The alignment function used in the Transformer
model is called scaled dot-product attention:

Attention(Q,K, V ) = softmax(
QK>√

dk
) (4)

Each fully connected feed-forward network in
the model consists of a hidden layer with ReLU
activation and an output layer, producing outputs
of dimensions dff = 2048 and dmodel = 512,
respectively.

FFN(x) = max(0, xW1 + b1)W2 + b2

The self-attention mechanism uses symmetri-
cal matrix multiplication; therefore, it cannot cap-

ture information about the sequence order. Thus,
in addition to word embedding layers, it is nec-
essary to add some information about the rela-
tive or absolute positions of the tokens in the se-
quence(Vaswani et al., 2017). The positional en-
codings are added to the outputs of embedding
layers before being fed to the encoder and decoder
stacks. For the model to attend to relative posi-
tions, the sine and cosine functions of different
frequencies are used to generate positional encod-
ings:

PE(pos, 2i) = sin(pos/100002i/dmodel) (5)

PE(pos, 2i+ 1) = cos(pos/100002i/dmodel) (6)

where pos is the position and i is the dimension.

3 English–Japanese Neural Machine
Translation’s Problem with Lexical
Ambiguity

Lexical ambiguity, which is also called semantic
ambiguity, can be defined as the presence of more
than one meaning for a single word. Words that
possess two or more possible meanings are called
homographs. Translating homographs is not a triv-
ial task because their meanings vary based on their
contexts. For example, given a sentence “The fish-
erman went to the bank.”, the word “bank” may
refer to “a financial institution” or “the side of a
river.” In this case, it is acceptable to interpret this
sentence in two ways. However, given another
sentence ”A fisherman is sitting on the bank.”, it
is unreasonable to interpret the word “bank” as
“a financial institution” in this case. However,
this sentence is challenging for machine transla-
tion systems to produce a correct translation, as
shown in the later part of the paper.

Even though many advancements have been
made in the field of neural machine translation
to date, contemporary translation systems are still
struggling to deal with semantic ambiguity. For
instance, although the sentence “He left a book on
the table and left the room.” contains two words
“left” of different meanings, Google Translate is
able to correctly translate it into “彼はテーブ
ルの上に本を置置置いいいててて部屋を出出出たたた。”. On
the other hand, Google Translate misinterprets the
word “bank” in the sentence ”A fisherman is sit-
ting on the bank.” and thus translates it into “漁
師が銀銀銀行行行に座っています。”. The cause of this
problem can be hypothesized that machine trans-
lation models use only one embedding vector to



represent a homograph, even though the senses of
a single homograph can be completely unrelated.
Consequently, if a machine translation model fails
to understand the meaning of a homograph from
the context, it will tend to choose the dominant
meaning. Furthermore, another hypothesis is that
the parallel corpus used to train Google Translate
system does not provide enough information for
the system to understand the context of the latter
example. This problem of semantic ambiguity can
be addressed if both following conditions are sat-
isfied:

1. Different senses of a homograph are repre-
sented by different embedding vectors. To
achieve this, the model needs to understand
the meanings of homographs from the con-
text.

2. The training set must be exceptionally large
so that the model can properly understand
the context of unseen sentences. Although
it is possible to obtain a large monolingual
data set, it becomes difficult when it comes
to finding a parallel corpus.

4 Contextualized word embeddings from
BERT

4.1 BERT
An extensive pretrained language representation
model, BERT supports transfer learning and fine-
tuning on a wide range of tasks, such as ques-
tion answering and language inference(Devlin et
al., 2018). BERT is composed of multiple lay-
ers of bidirectional Transformer encoders, with
12 layers for BERTBASE and 24 layers for
BERTLARGE model(Devlin et al., 2018). As a
result, BERT can learn bidirectional word repre-
sentations by conditioning on both left and right
contexts, which outperforms unidirectional lan-
guage models, such as ELMo(Peters et al., 2018)
and OpenAI-GPT(Radford et al., 2018).

BERT is simultaneously pretrained on two dif-
ferent tasks: masked language modeling and next
sentence prediction. As for the masked language
modeling task, 15% of all tokens in each sequence
are selected at random to be predicted. If a to-
ken is chosen, it is replaced with a [MASK] to-
ken 80% of the time, with a random token 10%
of the time or with the same token 10% of the
time. BERT learns to predict the masked tokens
instead of regenerating the entire input. As for

Figure 2: The BERT architecture

the next sentence prediction task, BERT is trained
with a collection of concatenated sentence pairs
and tries to predict whether the two sentences in
each pair are contiguous. Consequently, the pre-
trained BERT is capable of understanding the re-
lationship between two sentences and can be fine-
tuned on downstream tasks, such as question an-
swering and natural language inference(Devlin et
al., 2018).

The corpora used for pretraining BERT are
the BooksCorpus (800M words) and English
Wikipedia (2,500M words). BERT uses Word-
Piece embeddings(Wu et al., 2016) with a vocab-
ulary of 30,000 tokens. Each sequence input to
BERT starts with a [CLS] token followed by two
concatenated sentences, which are separated by a
special [SEP] token.

4.2 Contextualized word embeddings
Since the pretrained BERT generates the vec-
tor representation for a word by considering all
other words in the same sequence, this vector can
change dynamically with the context where it is
used. In other words, BERT can produce differ-
ent embeddings for different senses of the same
word. To examine this feature of BERT, a pre-
trained BERT was used to generate the vector rep-
resentations of words in different examples:

1. “There is an old man fishing on the bank.”

2. “It’s on the north bank of the Thames.”

3. “a house on the banks of the River Severn”

4. “He jumped in and swam to the opposite
bank.”



5. “Many of these banks issue both credit and
debit cards.”

6. “My salary is paid directly into my bank.”

7. “A group of ten international banks is to un-
derwrite and sell the bonds.”

The words bank and banks in the first four ex-
amples mean “the edge of a river,” while the ones
in the next three examples mean “a financial insti-
tution.” After word embeddings of dimension 768
are extracted from the pretrained BERT, t-SNE al-
gorithm(Maaten and Hinton, 2008) is used to ex-
tract the two most significant features of each word
and the reduced word embeddings are visualized
as shown in Figure 3. It can be clearly seen that the
points representing the words “bank” and “banks”
are clustered in two separate groups based on their
meaning. Furthermore, another interesting point
is that the words “bank” and “banks,” which mean
“the edge of a river” are located near related words
such as “river,” “fishing,” and “swam,” while the
ones meaning “a financial institution” are near to
some monetary terms such as “credit” and “mort-
gage.”

5 Context-aware machine translation
architectures

In the original Transformer architecture, each
word in the predefined vocabulary list is repre-
sented by only one embedding vector. These word
embeddings are trained as the model’s parame-
ters, therefore depend greatly on the limited train-
ing set. Apparently, the original Transformer does
not satisfy the conditions mentioned in section 3.
Consequently, it is unable to correctly translate se-
mantically ambiguous sentences, as demonstrated
in section 6.3

The BERTBASE model was integrated into
a Transformer translation model to address
lexical ambiguity in neural machine transla-
tion. Specifically, two architectures are pro-
posed: TransformerBERT−WE using the pre-
trained BERT as input word embedding layer and
TransformerBERT−Encoder replacing the en-
coder stack of a Transformer with the pretrained
BERT model. The outputs of the last ten layers
of the BERT were extracted and averaged. All the
parameters of the pretrained BERT were kept un-
changed during the training phase of both models.

In this work, we implement and compare
the performance of three models: a baseline

Transformer, a TransformerBERT−WE, and a
TransformerBERT−Encoder, which share the
same hyperparameters for comparison purposes.
We denote the number of layers in both the en-
coder and decoder stacks as N , the dimension
of embedding layers and all sublayers’ output as
dmodel, the dimension of the inner layer in every
fully connected feed-forward layer as dff , and the
number of attention heads as h. Due to the lack
of memory capacity, N is set to 3, as opposed to
N = 6 in the original Transformer paper. In ad-
dition, to match the hidden size h = 768 of the
pretrained BERT model, dmodel and dff are set
to 768 and 3072 respectively. Dropout is applied
to the output of each sublayer and the sum of the
embeddings and positional encodings in both the
encoder and decoder with a rate of 0.1.

6 Experiments

6.1 Data

The models are trained with Japanese–English
Subtitle Corpus (JESC)(Pryzant et al., 2018), con-
sisting of over 3.2 million sentence pairs. This
data set includes casual language, colloquialisms,
expository writing, and narrative discourse. The
train/val/testsplits are of size 3,237,374 / 2000 /
2001.

Rakuten MA (morphological analyzer) is used
to tokenize Japanese sentences and tokens that ap-
pear at least 10 times are shortlisted. Likewise, as
for the baseline Transformer model, English sen-
tences are tokenized by using nltk library and to-
kens are shortlisted in the same manner. By con-
trast, for BERT Transformer models, the BERT’s
internal word tokenizer and vocabulary are used.
All out-of-vocabulary words are replaced with a
special [UNK] token. For the pretrained BERT to
effectively generate vector representations, special
tokens [CLS] and [SEP] are added to the begin-
ning and the end of the input English sentences,
respectively.

Over 6,000 sentences that contain homographs
are extracted from the IWSLT 2017 English–
Japanese data set to evaluate the performance of
the models on ambiguous sentences. The Bilin-
gual Evaluation Understudy (BLEU) score is used
as the evaluation metric to assess the models’ per-
formance.



Figure 3: Visualizing word representations generated by BERT using t-SNE.

BERT−WE BERT−Encoder

Figure 4: Proposed context-aware machine transla-
tion architectures integrating a pretrained BERT and a
Transformer model.

6.2 Training details

The three models were trained with the same train-
ing settings. The batch size was set to 32 and
AdamOptimizer(Kingma and Ba, 2014) with de-
cayed learning rate used. The initial learning rate
is set to 0.0001. The models are evaluated on a
validation set after each training epoch. When val-
idation loss increases for the first time, the learn-
ing rate starts decreasing with the rate of 0.33 per
epoch. The training process is stopped when vali-
dation loss increases again. It takes from 1.5 to 2
days to finish training a model on a GTX 1080Ti.

6.3 Results

The models were evaluated based on two crite-
ria: general translation and homograph transla-
tion. The JESC test set was used to evaluate
the models’ capability of translating English sen-
tences in general, while the IWSLT 2017 data set
was used to evaluate the models’ ability to cor-
rectly translate semantically ambiguous sentences.

The results of BLEU score evaluation are
shown in Table 1. It can be clearly seen
that the TransformerBERT−WE model out-
performs the other two models in both evalu-
ations, achieving a BLEU score of 20.31 on
JESC test set and 8.67 on IWSLT 2017 data
set. TransformerBERT−Encoder model’s per-
formance is slightly worse than the vanilla Trans-
former in terms of general translation; however,
it outperforms the vanilla Transformer when it
comes to translating homographs.

As shown in Table 2, Google Translate
and the vanilla Transformer wrongly trans-
late the word “bank” in the two given
English sentences. By contrast, the two
models TransformerBERT−WE and
TransformerBERT−Encoder can correctly
translate the word “bank” into “土手”　or “岸”,
which means “the edge of a river” in Japanese.



JESC
(general)

IWSLT 2017
(ambiguity)

Transformer 18 7.23
TransformerBERT−WE 20.31 8.67
TransformerBERT−Encoder 17.78 8.16

Table 1: BLEU score evaluation of three translation models on two different test sets

Source sentences
1. A fisherman is sitting on the bank.
2. He is swimming to the opposite bank.

Google Translate 1. 漁師が銀行に座っています。
2. 彼は反対側の銀行に泳いでいます。

Transformer 1. 漁師が銀行に座っています
2. 彼は正反対の銀行に向かって泳いでいます

TransformerBERT−WE
1. 漁師が土手に座っている
2. 反対側の岸に泳いでいる

TransformerBERT−Encoder
1. 漁師が土手に座っています
2. 彼は反対側の岸に向かって泳いでいる

Table 2: Sample translations produced by different machine translation systems. We highlight the homographs
in source sentences in bold, the corresponding wrongly translated words in red and the corresponding correctly
translated words in blue and green.

7 Related Work

Another approach to solving lexical ambiguity
was proposed by Liu et al. (2018)(Liu et al., 2017).
The authors proved that the performance of trans-
lation models degrades as the number of senses
for each word increases. They concatenated em-
bedding vectors from a word sense disambigua-
tion (WSD) system to a translation model’s word
embeddings and applied gating functions to gen-
erate contextualized word embeddings. The con-
textualized word embeddings are fed into the en-
coder of an RNN-based seq2seq model to gen-
erate translations. Their model was trained on
three different language pairs: English–German,
English—French, and English–Chinese.

Using pretrained word embeddings was empir-
ically proved to increase the BLEU score for the
machine translation task. Qi et al. (2018)(Qi et
al., 2018) compared the performance of different
translation systems that used either random ini-
tialization or pretraining on both source and tar-
get languages. The word embeddings used in their
experiments were trained by using the Common
Bag of Words (CBOW) algorithm(Mikolov et al.,
2013). According to their results, using pretrained
word embeddings, especially on the source lan-
guage side, considerably boosts the performance
of machine translation systems(Qi et al., 2018).

8 Conclusion

In this work, we demonstrate that lexical ambigu-
ity is an inherent problem that contemporary ma-
chine translation systems cannot completely ad-
dress, hypothesize two causes of the problem, and
prove that this issue can be addressed by using
contextualized word embeddings that dynamically
change based on the context of given words. In ad-
dition, the BERT language model is demonstrated
to be effective at generating contextualized word
representations and two machine translation archi-
tectures that integrate pretrained BERT and Trans-
former translation models are proposed. The two
architectures are shown to be able to translate se-
mantically ambiguous sentences effectively. Fur-
thermore, the TransformerBERT−WE model
outperforms the vanilla Transformer model, prov-
ing that our approach can not only resolve the
problem of lexical ambiguity, but also increases
the translation quality in general.
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