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ABSTRACT

Brain-computer interfaces (BCI) are systems that link the brain with machines us-
ing brainwaves as a medium of communication using electroencephalography to
explore the brain activity which is an affordable solution, noninvasive, easy setup,
and portability. However, the neural signals are noisy, non-stationary, and nonlin-
ear where the processing of those signals in a pattern recognition problem needs
a complex pipeline of preprocessing, feature extraction, and classification algo-
rithms that need an apriori knowledge to avoid compatibility issues and a deep
understanding of the studied signals. Moreover, some techniques need a huge
computational power on the CPU and a huge size of RAM. Therefore, several
papers proposed to use Deep Learning to get state of the art performance and vi-
sualization of the learned features to have more understanding about the neural
signals. But, the convolutional neural network (Convnet) are not used properly
and the results are often random when we reproduced the works. Hence, we pro-
pose a combination of the discrete wavelet transform (DWT) and a Convnet that
processes raw EEG data. The DWT will be used to reduce the size of the data
without losing useful information. Also, a modified version of EEGNET will be
used to extract the features and classification.

1 INTRODUCTION

Brain-computer interface (BCI) is an instrument that aims to link the brain with machines by translat-
ing the brain activities that are recorded with electroencephalography (EEG) into useful information
Nicolas-Alonso & Gomez-Gil (2012); Teplan (2002). This comes possibly from several break-
throughs in neurosciences, cognitive sciences, and signal processing that permits to discover the un-
derlying phenomena several cognitive events and their neural responses. To automatize the system,
machine learning where used to create fully data-driven systems Lotte et al. (2007). This permits
several applications such a neuroprosthesis, sleep monitoring system, or gamepad for videogames
Nijholt (2008); Chambon et al. (2018); Zhang et al. (2017); Faust et al. (2018).

Several researchers classified the brain activities into multiple brainwave bands where each one is
related to their cognitive states. The Motor Imagery (MI) is the neural response of the imagination
of a movement (without physical action) which is the same as the same response as a real move-
mentPfurtscheller & Neuper (2001). MI produces perturbations on the mu (also called sensorimotor
rhythm or SMR) band [8,13] Hz and the beta band[13,30] HzNicolas-Alonso & Gomez-Gil (2012).
When the amplitude of the band increase it called Event-Related Synchronization (ERS), and the
opposed (the decease) is called Event-Related Desynchronization (ERD)Jeon et al. (2011).

The processing of the EEG signal is a complicated task: The EEG signals are a non-linear and non-
stationary signal with a low signal-to-noise ratio. It is also affected by several types of artifacts like
eyes-blink (EOG), heartbeat (ECG), and muscular contraction (EMG). Fortunately, there are several
techniques to remove those noises but are complicated to set up like the EOG noises that need a
human expert while using the independent component analysis. Also, there is a compatibility issue
between the preprocessing methods, feature extraction techniques, and classifiers that complicated
the implementation of such systems Lotte et al. (2007).

As a solution, several researchers proposed deep learning as a solution where they use a light pre-
processing (filtering the signal and normalization), and let the deep neural networks to handle the
feature extraction and classification Lawhern et al. (2018); Schirrmeister et al. (2017a). Moreover,
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the interpretability of the learned features can give several clues to understand the brain. And beyond
that, deep learning can be a concrete solution to several BCI challenges. The neural response of each
person is different overtime (session to session) and over subjects (intersubject) which a universal
neural network that can generalize a model to work without specific data from a person could reduce
time to train where a pre-entrained model will be trained with a low learning rate as proposed by
Schirrmeister et al. (2017b); Farshchian et al. (2019).

In this paper, we introduce a new method based on DWT and Convnet. At the opposite of the
existent method, we will feed our Convnet with raw DWT which aims to reduce the dimensionality
of the input data where we only use the half without removing the essential frequency band. Then,
we use a modified EEGNET that will process the data without the inconvenient of the original one.
The new version will use more features to increase the capacity of the network and we use a higher
dropout probability reduce any risk of overfitting. Also, this network is designed as it allows us to
visualize filter weights to explain which parts of the brain are contributing to the final decision of
the classification. We compare our results with filter bank common spatial pattern and EEGNET on
the dataset IIa of the BCI competition IV which is and open dataset with the experimental protocol
of Lawhern et al. (2018) as we aim to explore the ability of DWT to increase the performances on
inter subject problems.

2 RELATED WORKS

MI classification problems are solved with approaches that rely on the discrimination of frequency
and spatial characteristics of the EEG signals. The state of the art technology is the filter bank
common spatial pattern (FBCSP) Ang et al. (2012): The first step is a filter bank that filters the data
into several non-overlapping subbands scaling mainly from 4 Hz to 40 Hz. The second step is the
common spatial pattern that computes specific features that lead to optimal discrimination between
the different classes. Some variants include feature selection methods that reduce the size of the
feature vector. Finally, a classifier is used mainly linear discriminant analysis.

Then, some works were inspired from the FBCSP to create neural networks that have the same
paradigm where the data is shaped into a matrix of multivariate signal DC,T (rows represent the
channels, the column represents the timestamp). Cecotti & Graser (2011) proposed to replace the
filter bank with a convolution performed with a kernel of size (1, nt), the CSP is replaced with a
kernel with a size (C, 1) where C is the number of the channels. Then a multilayer perceptron
classifies the features extracted by the previous layers. Those works inspired Schirrmeister et al.
(2017b) to propose several architectures, like a shallow architecture composed with the two con-
volutional layers then the classification layers, A deep architecture that includes more aggregative
layer after the convolutional layers, and a ResNet with 31 layers. Those architectures were working
well except that they include a huge number of parameters which Lawhern et al. (2018) reduced
by creating EEGNET. EEGNET is a convnet that relies on Depthwise convolutional and separable
convolution which permitted to reduce the number of the parameter using 796 parameters only for
the EEGNET4,2. Those architectures were studied for several signals and EEGNET got state of the
art performance. Those works are the only ones that use the convnet well and compared with the
stat of the art techniques according to Lotte et al. (2018). EEGNET was compared on within-subject
and inter-subject problem.

3 EXPERIMENT PROTOCOL

We use the cross-subject protocol for SMR signals as used by with the codes provided by the authors.
The protocol relies on the dataset IIa of the BCI competition IV that consists of a 4 class problem
(Left hand, right-hand, tongue, and both feet)Tangermann et al. (2012). The data is recorded with
EEG headset composed of 22 electrodes that cover mainly the motor cortex and its surrounding
areas. The signals were sampled at 250 Hz then filtered with a bandpass filter between 0.5Hz and
100Hz together with a notch filter to suppress the line noises. Three EOG sensors were used with
the same configuration as the EEG. Fig 1a represents the position of every sensor.

In this dataset, nine subjects were comfortably sitting in an armchair and were facing a screen that
gives them instructions following a scenario in the Fig 1b that was agreed on:
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(a) Position of electrode for the dataset in red, corre-
sponding area of the brain for the tasks of the dataset

(b) Timeline of the sceario

Figure 1: Extra material for the dataset: electrodes and timing

• At t = 0, a cross appears in the screen simultaneously with a beep, it signals to the subject
to be ready for the MI.

• At t = 2s, the subject performs the MI of the body part that the orientation of an arrow that
appear in the screen.

• At t = 6s, the screen turn blank, the subject interrupt the MI and start resting and waits for
the next cross.

This operation is repeated 72 times for every class resulting in 288 trials in two sessions, the first is
the training set and the second is the testing set.

As Lawhern et al. (2018) proposed, The data is resampled to 128 Hz and filtered between 4 Hz
and 38 Hz, then an electrode-wise exponential moving standardization is performed as described in
Schirrmeister et al. (2017b). The segment of 2s after the beginning of the MI is used. Since the pro-
tocol is cross-subject, the data is partitioned as follows: for subject i, we discard his original training
set and we create a new training set from five other subjects, and a validation set from the three that
remain. The testing set stays the same as the competition. In the end, we create 9 combinations
of the training set, validation set, and test set composed respectively with 1440/864/288 trials. The
same operation is repeated 10 times to create 90 cross-validation sets folds.

4 PROPOSED METHOD

4.1 THE CONVNET

As we changed our data from raw EEG signals into a first detail of the decomposition of the DWT,
we add few changes to EEGNET of Lawhern et al. (2018), the architecture, described in Table 1,
becomes as follow:

Firstly, we create a block that acts like FBCSP with a sequence of temporal filtering followed by
spatial filtering. Essentially, we aim to learn spatial filters that are specific to frequency by the
temporal filters: We use convolution with a F kernels of size (1, 16) with padding where the kernels
will extract the temporal proprieties of the input. Since the data was originally sampled at 128 Hz
and we used the DWT, the data is now sampled at 64 Hz, that’s why we used 16 instead of 32. Then,
we use the depthwise convolution with kernels of size (22, 1) where 22 represents the number of
sensors, and the depth parameter is set to 2 to learn 2 ∗F filters. This layer will act like a regression
where each coefficient represents a sensor. This configuration aims to spatially filtrate the data
where sensors of high importance will get a high amplitude and the value of the others will be close
to 0. To regularize this block, every convolution is followed with batch normalization and after each
convolution, a dropout of probability p = 0.5 is used at the end (the original used a probability of
p = 0.25), and the depthwise convolution will have a maximum norm constraint on its weights. No
improvement has occurred when there is an activation between the two convolutions, we add one
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Table 1: Details of the architecture

Block Layer #filter size Output Option
1 Input (1,C,T)

Conv2D F (1,16) (F,C,T) mode =same
BatchNorm (F,C,T)
DepthwiseConv2D D*F (C,1) (D*F,C,T) mode = valid,max norm = 1
Batchnorm (D*F,C,T)
Activation(ELU) (D*F,C,T)
Maxpool2D (1,2) (D*F,C,T//2)
Dropout (D*F,C,T//2) p = 0.5

2 SeparableConv2D 2*F (1,3) (D*F,C,T//2) mode = same
BatchNorm (D*F,C,T//2)
Activation (ELU) (D*F,C,T // 4)
Dropout (D*F,C,T // 4) p = 0.5
GlobalMaxPooling2D D*F

3 Dense 4 4
Softmax 4 max norm = 0.25

after the second batch normalization. A max-pooling is used between the activation and the dropout,
average pooling seems to reduce the performance.

Secondly, we set up a block to aggregate the output of the preview layers and reduce the dimension:
we use a separable convolution which consists of a depthwise convolution with 2 ∗F kernels with a
size of (1, 3) (the original uses (1, 16) which in our case must be (1, 8) due to subsampling, but no
significative difference where occurred) followed with a pointwise convolution. Those convolutions
aim to learn how to summarize the individual feature maps in the time dimension and then combine
them. We use batch normalization, an activation, and dropout with the same probability as before.
In opposite of the original version, we use a GlobalMaxpooling to drastically reduce the number of
the parameter to 2 ∗ F .

Finally, we use a classification softmax with 4 units corresponding to the classes of the problem. the
weights of the dense layer were regularized with a max norm constraint. Aggregative dense layers
were not used to reduce the complexity and overfitting issues.

4.2 HYPERPARAMETER AND EVALUATION

All deep learning methods were trained in a Nvidia Tesla T4, with CUDA 10, Tensorflow
1.14.0, with tf − keras.

The hyperparameters are the corner stone of the learning of the training because a wrong choice can
gives low result. Some works do not give a justification of the choices as reported in Lotte et al.
(2018); in the following, we give some explanation about our choices in the Table

• Batch size as for EEGNET in Lawhern et al. (2018).

• ADAM Optimizer is a generalization of the others and is more efficient and faster. Kingma
& Ba (2014).

• Categorical cross entropy is the most appropriate choice for multiclass problems

• 100 epochs was enough to achieve state of the art performance.

• Dropout probability is set to 0.5 as a result of manual tuning and as adviced by Baldi &
Sadowski

• Learning rate 5× 10−4 This value seems to be more efficient based on a manual tuning.

• Bias Only in dense layer As in the work of Lawhern et al. (2018).

• By manual fine tuning , we use F = 32, and D = 2.

We calculate several metrics to evaluate multiple aspects of the model. The only difference with
the original protocol is that we are obligated to use the Wilcoxon sign-rank test instead of ANOVA
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Table 2: Details of the results of different methods

metrics ACC Log Loss
statistic mean median var mean median var
EEGNET 0.3921 0.3559 0.0170 1.3799 1.3425 0.1037
FBCSP 0.3578 0.3507 0.0070 1.5073 1.4567 0.0761
bior1.3 0.4147 0.3594 0.0182 1.2951 1.3137 0.0205
bior2.2 0.4168 0.3889 0.0166 1.2944 1.3039 0.0178
coif1 0.4215 0.3750 0.0182 1.2904 1.3073 0.0194
coif3 0.4144 0.3889 0.0170 1.2947 1.3206 0.0176
db1 0.4225 0.3976 0.0175 1.2844 1.2972 0.0184
db2 0.4180 0.3837 0.0176 1.2855 1.3040 0.0177

Table 3: Result of Wilcoxon test for the comparing

Metrics
methods ACC Log Loss
EEGNET-FBCSP 1.796139e-03 4.863454e-07
EEGNET-bior1.3 1.736546e-01 5.263838e-03
EEGNET-bior2.2 1.252494e-01 4.416667e-03
EEGNET-coif1 7.880995e-03 2.738729e-03
EEGNET-coif3 1.384940e-01 6.729246e-03
EEGNET-db1 1.892683e-02 1.552796e-03
EEGNET-db2 7.626364e-02 2.183704e-03
FBCSP-bior1.3 3.250105e-08 4.220340e-15
FBCSP-bior2.2 4.307781e-10 5.811730e-15
FBCSP-coif1 6.507993e-10 6.395253e-15
FBCSP-coif3 1.216967e-08 1.029638e-14
FBCSP-db1 4.106375e-11 2.777580e-15
FBCSP-db2 3.616928e-09 2.144278e-15
bior1.3-bior2.2 7.379606e-01 4.726164e-01
bior1.3-coif1 3.194718e-02 5.028582e-02
bior1.3-coif3 8.096274e-01 7.157506e-01
bior1.3-db1 1.303267e-01 5.396168e-03
bior1.3-db2 7.029243e-01 1.174073e-03
bior2.2-coif1 1.217876e-01 1.796284e-01
bior2.2-coif3 9.759437e-01 8.045547e-01
bior2.2-db1 4.567045e-02 1.067901e-02
bior2.2-db2 4.210724e-01 7.963280e-03
coif1-coif3 7.010800e-02 3.880928e-01
coif1-db1 9.900371e-01 1.170617e-01
coif1-db2 2.682423e-01 2.424513e-01
coif3-db1 5.043233e-02 3.647789e-03
coif3-db2 4.640355e-01 1.959992e-03
db1-db2 2.684949e-01 8.358381e-01

because our data do not follow the presumption of the test (normality) for the comparison between
the methods. The Filter Bank Common Spatial Pattern (FBCSP) considered as the state-of-the-art
technology is one of the most promising methods, we trained as follows: In the first step, a bank filter
is used to filter the signals with several bandpass filters with 9 non overlapping filters a frequency
range between 4Hz and 40Hz. In the second step, we compute two CSP filters for each band. Feature
selection algorithm did not gives any improvement, we omit to use it. For the last step, the Linear
Discriminant Analysis (LDA) trained with one-versus-others strategy.
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Table 4: Comparison of different methods per subject

EEGNET FBCSP bior1.3 bior2.2 coif1 coif3 db1 db2
S1 0.4743 0.4920 0.6021 0.5927 0.6045 0.5865 0.5990 0.5997
S2 0.2861 0.2812 0.2757 0.2861 0.2858 0.2816 0.2802 0.2778
S3 0.4819 0.3753 0.5726 0.5736 0.5847 0.5878 0.5934 0.5837
S4 0.3833 0.3743 0.3517 0.3795 0.3667 0.3740 0.3972 0.3819
S5 0.2646 0.2663 0.2594 0.2542 0.2576 0.2580 0.2649 0.2597
S6 0.2830 0.2892 0.3160 0.3108 0.3177 0.3132 0.3128 0.3122
S7 0.3406 0.3003 0.3205 0.3243 0.3326 0.3160 0.3250 0.3198
S8 0.5694 0.4573 0.5424 0.5538 0.5656 0.5392 0.5503 0.5372
S9 0.4455 0.3840 0.4924 0.4760 0.4778 0.4729 0.4795 0.4899

5 EXPERIMENT & DISCUSSION

5.1 PERFORMANCE COMPARISON

To compare our methods, we used several types of wavelets. We chose the Biorthogonal wavelet
1.2 and 1.3, Daubechies wavelet db2 and db1 (also known as haar), and Coiflets wavelet coif1 and
coif3. The notation WEEGNETwav where wav references the type of the used wavelet, we only
reference the name of the wavelet in the tables Table 2, 3, and 4.

In Table 2, we compared the accuracy and the log loss of each method. We observe that
WEEGNETdb1 provide the highest mean and median for the accuracy, and got the lowest log loss
compared with all the other methods. The lowest accuracy and the highest log loss were recorded
for FBCSP . WEEGNETdb2, WEEGNETcoif1, and WEEGNETcoif3 got close values for
accuracy and log loss in the case of the mean and median. EEGnet results are WEEGNETbior1.3

and FBCSP for the accuracy and WEEGNETcoif3 and FBCSP for the log loss.

To conclude on the supremacy of a method over others, we use the statistical test which is
shown in Table 3. For the accuracy and over the WEEGNET variants, we observe that the
difference between WEEGNETbior1.3 and WEEGNETcoif1 is statistically significant (p <
0.05), the same for WEEGNETbior2.2 and WEEGNETcoif1 advantaging WEEGNETcoif1.
The difference between WEEGNETcoif1 and WEEGNETcoif3 and difference between
WEEGNETcoif1 and WEEGNETcoif3 are marginally significative (0.05 < p < 0.1) disadvan-
taging WEEGNETcoif3. For EEGNET, It was significatively outperformed by WEEGNETcoif1

and WEEGNETdb1 (p < 0.05) and marginally by WEEGNETdb2. FBCSP was outperformed
by all the other methods with a very significative difference (p < 0.005) even with it state of the
art status. For the Logloss, WEEGNETdb1 and WEEGNETdb2 ouperform the WEEGNET ’s
variants based on biorthogonal wavelet, WEEGNETcoif3, EEGNET and FBCSP. FBCSP statis-
ticly performed the worse method (p < 5.10−7) compared with all other methods. EEGNET was
only outperformed by the WEEGNET s.

Table 4 exposes the accuracy of each method by subject. For the subject 1, WEEGNETcoif1

got the highest value followed WEEGNETbior1.3. EEGNET and WEEGNETbior2.2 were egal
and reached the highest performance for subject 2. WEEGNETdb1 outperforms all methods for
subject 2,3,and 4. WEEGNETbior2.2 got the maximum value for subject 6 but it is very close to
WEEGNET ’s variant. EEGNET overcome the others for subject 7 and 8. WEEGNETbior1.3

outperforms others on subject 9.

5.2 VISUALIZATION

Visualization of the spatial filters can inform us about the spatial distribution of the interest of the
network over the brain’s area. Fig 2 represent an summarized spatial filter for some methods and
with the help of Fig 1a, we can understand. First thing that we remark is that WEEGNETdb1

and WEEGNETcoif1 are very similare, but the difference is that the activation on some areas
are maximal for WEEGNETcoif . there is an maximal for the electrodes Cz,CPz and CP2 for both
methods. There is a strong interest in C5 CP3 and P1. WEEGNETdb1 has lower activation in CP4,
P2 and around CF4. WEEGNETcoif1 has a strong activation on FC4. For WEEGNETdb2 and
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(a) WEEGNETdb1 (b) WEEGNETdb2

(c) WEEGNETcoif1 (d) WEEGNETcoif3

(e) WEEGNETbior2.2 (f) EEGNET

Figure 2: text
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EEGNET, we have similar pattern where have lower activation on the central area compared with the
others. Both got a medium activation in the areas surrounding C4. WEEGNETcoif3 has a strong
interest in the electrodes C3 and CP3, and a medium activation on CP4 and P2. WEEGNETbior2.2

has a strong interest in the electrode CP1, and a medium activation the electrode surrouding the
central area. The most succesfull methods are the ones that extract features from C4,C3, and Cz
which are the areas of left hand, right hand, and feet.

6 DISCUSSION

We can explain the difference by comparing the theory of each method, the architecture of the
Convnets, ad weights visualization.

If we compare the FBCSP and the convnet, they are based on the same paradigm where they use
temporal filtering, then spatial filtering. But, the difference is that the Convnet learns temporal filters
in the opposite of the FBCSP that use a filter bank with imposed parameter. This freedom gives the
advantage to Convnet to shape temporal filtering that reduces the loss according to the given dataset.
Lawhern et al. (2018) shows that the temporal filtering learns in most cases to extract two frequencies
around mu band and beta band, which are the most imminent sign of the occurrence of an MI.

EEGNET is the result of the idea of creating a compact Convnet. The problem is that the reduction
of the feature maps increases the risk of overfitting. Also, while increasing the number of feature
maps, we observe that the network struggled with the learning and the average pooling was behind
it. Smooth feature extraction of subject-specific neural response is not compatible with the cross-
subject paradigm for EEG application, replacing with max-pooling was the solution where it reduces
the noises and increasing the dropout probability to 0.5. While increasing the number of the feature
maps, the network started to perform better which lead that the capacity of the convnet must be
higher of EEG feature extraction. Also, global pooling reduces the number of features of the final
dense input with no improvement on the accuracy. Moreover, our method needs only 100 epochs
too train where EEGNET needs 500 epoch.

WEEGNETdb1 and WEEGNETcoif1 get the best performance across all the WEEGNET ’s
variants and their result. WEEGNET s that are based on Biorthogonal wavelet did not get impor-
tant results. WEEGNETdb2 and WEEGNETcoif3 results were lower than their variants from the
same families and db1 is the simplest wavelet, we conclude that more the wavelet is complex, more
the result is low. The visualization of the spatial filters shows that the filters with several activation
and mainly covering the central part increase the chance to perform better where we can explain that
db1 wavelet is more generalizing the result as it result were high across all subject and outperform
other methods in three cases which means that db1 is more compatible with extract subject-specific
feature.

7 CONCLUSION

We introduced a novel method based on the DWT and a modified EEGNET. We exposed the weak-
nesses of the EEGNET and demonstrate that by increasing the number of the feature map, using
max-pooling and increasing the dropout probability have a considerable influence on the result and
speed of learning (epoch and size of the input). We used the DWT to reduce the size of the input
without alteration the data. We found out that db1 wavelet and coif1 wavelet which are the simplest
wavelet of the families, lead to the maximal accuracies and low losses as was found by Uyulan &
Erguzel (2016). With the help of weights visualization, we could expose that the db1 and coif1
extract the features better than EEGNET. Even so, the results are low for several subjects due to a
restricted dataset. In future studies, we will increase the size of the dataset with generative methods
which gave encouraging results in several studiesGoodfellow et al. (2014); Hartmann et al. (2018);
Abdelfattah et al. (2018).
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