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ABSTRACT

AI today is far from being able to write complex programs. What type of problems
would be best for computers to learn to program, and how should such problems
be generated? To answer the first question, we suggest programming puzzles as a
domain for teaching computers programming. A programming puzzle consists of a
short program for a Boolean function f(x) and the goal is, given the source code, to
find an input that makes f return True. Puzzles are objective in that one can easily
test the correctness of a given solution x by seeing whether it satisfies f , unlike the
most common representations for program synthesis: given input-output pairs or an
English problem description, the correctness of a given solution is not determined
and is debatable. To address the second question of automatic puzzle generation,
we suggest a GAN-like generation algorithm called “Troublemaker” which can
generate puzzles targeted at any given puzzle-solver. The main innovation is that it
adapts to one or more given puzzle-solvers: rather than generating a single dataset
of puzzles, Troublemaker generates a diverse set of puzzles that are difficult for
those solvers.

1 INTRODUCTION

Computers still perform worse than humans at many elementary programming and mathematical
reasoning problems, let alone the AI grand challenge of designing, analyzing, and implementing
sophisticated algorithms. For example, many Python and symbolic mathematical interpreters fail or
struggle to evaluate the trivial expression 1010

10 − 1010
10

to 0 or solve nn
n

= 1010
10

for n. While
such programs can be taught to immediately answer such puzzles, it points to a fundamental lack of
understanding that limits their ability to perform complex programming and mathematics.

The first question faced considering the daunting task of teaching computers to actually program is,
how should one represent programming problems to teach computers? The ideal representation may
be quite different from what suits humans. To see why, consider how a question like “What number
logically follows the sequence 1-2-1-4-1-6-1?” (Barrett et al., 2018; Saxton et al., 2019), requires: (a)
understanding some English and (b) guessing which sequence the test-writer feels is the most natural
among the many consistent sequences. We refer to these biases as human priors. Program synthesis
problems involve human priors as well. Computers are generally given programming problems in
English1 and/or by examples (Gulwani et al., 2012) such as “Extract the area code from the phone
number” and/or “(212)123-4567”→ “212”. These involve human prior knowledge about phone
numbers, which may impede computers from learning the fundamentals of programming and math.

For the purposes of advancing artificial reasoning, the ideal programming problem representation
would:

1. Be objective in that a candidate solution should be clearly correct or incorrect based on
whether or not it satisfies the problem specification. In particular, a problem-solving
algorithm should be able to trivially determine correctness without requiring knowledge of
English or consulting an answer key.

2. Capture a rich range of useful programming problems from easy to hard.
3. Capture problems that human programmers can solve easily but which foil computers.

1After creating NAPS (Zavershynskyi et al., 2018), a “Natural Programming Synthesis” dataset of program-
ming contest problems with English descriptions and input-output examples, one of the authors later conceded
that “ML, specifically natural language understanding, is not there yet.” (Polosukhin, 2018)
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# find an integer n whose square begins with 123456789
def f1(n: int, prefix=123456789):

return str(n*n).startswith(str(prefix))

# find a set S of powers of 10 summing to 11010010
def f2(S: Set[int], n=11010010):

return sum({10**i for i in S}) == n

# find a string s with 1,000 As but no two consecutive As
def f3(s: str):

return s.count("A")==1000 and s.count("AA")==1000

# solve a classic Boolean SAT CNF formula
def f4(x: List[Boolean]):

return (x[1] or x[2]) and (not x[1] or not x[2])

# find a nontrivial integer factor of 10987654321
def f5(m: int, n=10987654321):

return 1 < m < n and n % m == 0

Figure 1: Sample puzzle problems with possible answers n = 111111111 (Python: int("1"*9)),
S = {1, 4, 6, 7}, a concatenation of 1000 copies of "AB" (Python: s="AB"*1000), x=[True,
False], and m = 7 (call f5 repeatedly to factor). Problems range from easy to very hard to
unsolvable.

To this end, we propose Programming Puzzles in which one is give the source code of a function f
in a fixed programming language, such as Python, and the goal is to find an input x such that f(x)
returns the Boolean True. As illustrated in Figure 1, short puzzles can capture extremely difficult
problems such as factoring or subset-sum, but they can also represent easy questions such as: what
list x when reversed is [1,2,3,4,5], or what number x satisfies (x+1)x+1 == 100100? And such
puzzles are objective in that a candidate solution can easily be evaluated for correctness.

We use existing techniques for learning to solve such problems – certainly innovation is needed but is
left for future work. Instead, our contribution is a “Troublemaker” (TM) algorithm that automatically
generates puzzles in an adaptive manner to challenge any given puzzle-solving system. A primitive
system may be given a set of easy puzzles, while an advanced system may be given hard puzzles (or
easy puzzles if a certain weakness is identified). Automatic problem generation has been applied
to program synthesis (Balog et al., 2016; Christakopoulou & Kalai, 2018) and numerous related
domains such as mathematical problems (Saxton et al., 2019) and IQ test problems (Barrett et al.,
2018). However, to the best of our knowledge this prior work generated problems in a non-adaptive
fashion, independent of which solver would be used to solve them.

TM searches problems that are hard for the solver. Given a trainable solver, this results in a GAN-like
setup where TM finds increasingly hard problems as the training progresses. In this work, we
employ TM to output solvable puzzle problems along with a host of symbolic and neural solvers.
Troublemaker uses a neural network to identify problems.

The contributions of this paper are: (1) introducing programming puzzles, a class of objective
problems that can be used to evaluate and improve the reasoning ability of existing AI systems; (2)
introducing an adaptive puzzle generator that can be targeted at any give puzzle solver(s). Note
that this paper does not set out to introduce novel approaches for writing puzzle solvers – we use
existing approaches including solvers based on existing approaches to solve puzzles. We focus on
adaptive problem generation and establishing the puzzle domain as especially suitable for learning
about programming, leaving the many interesting questions about how to best solve puzzles to future
work.

It is important to note that not all programming problems can be nicely defined as puzzles. In
some problems, writing the puzzle itself can be as much work as solving the problem. Examples of
this nature include adding two numbers (without using a builtin addition routine) or computing the
probability of getting a total of 30 when rolling 10 dice. Other problems involve human knowledge
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bool equation := term == term
float term := term + term | term * term

| term - term | term / term
// evaluates to 1.0 if equality holds, 0.0 otherwise
| _float(term == 0)
// various floating point constants
| π | 0.0 | e
// variable
| x

Figure 2: Simple grammar that defines a family of PSAT problems with floating point solutions.

and data, such as alphabetizing a list of names by last names, where the syntax rules determining
how to tell whether Mary De Leon is sorted under D or L. However, the formal theoretical basis for
the class of problems whose solutions can be quickly checked (in polynomial time) is NP , which
contains P and a great many problems ranging from easy to hard, including shortest-path, factoring,
and finding a neural network that achieves a training loss less than a given threshold.

2 DEFINITIONS

We assume a language of programs L defined as a Context Free Grammar (CFG). Each syntax tree
T ∈ L describes a program pT : X → X , where for simplicity, we assume inputs and outputs
belong to a common set X . When T is clear from context, we write p instead of pT . Both L and
X could simply be strings or more generally X may include other types such as numbers, arrays,
errors, and so forth (or a standard object representation such as JSON may be used). We make two
assumptions on X : (1) L ⊆ X so programs themselves can be inputs/outputs, and (2) there are two
special elements >,⊥ ∈ X respectively representing the Booleans True and False. We further denote
by time(p, x) > 0 the (possibly infinite) amount of time that program p takes to run on input x.

A programming puzzle or just puzzle is simply a program p defined as a syntax tree T ∈ L, and
a solution x ∈ X is an input that satisfies p(x) = >. A problem is solvable if it has any solution
x. Good “problems” are typically short, instructive, and solvable “snippets,” but none of these are
formal requirements.

A puzzle solver or just solver is a procedure S : L → X and is said to solve problem pT within a
time budget B if pT (S(T )) = > with time(S, T ) ≤ B. In the programming contest analogy, the
program p is a scoring function which is made transparent.

A learning solver ` : L×n → (L→ X ) is a program that takes multiple training problems T1, . . . , Tn
as input and outputs a solver program S ∈ L. Answers to the training problems, if teacher chooses to
make training answers available, may be provided for example directly in comments in the code in Ti.
We do not formally make this a requirement of the model since some problems may be unsolvable
while other problems may have multiple solutions that may be beneficial to share in the training data.

The language of Program Puzzles are known to be trivially NP-complete when given a time limit
expressed in unary and the programming language is that of a Universal Turing Machine. This
problem is sometimes called the Bounded Halting Problem (e.g. Goldreich, 2010, p. 102).

A natural generalization is to consider optimization programs that output a number p(x) ∈ [0, 1]
representing a score (any t(x) 6∈ [0, 1] or error can be taken to be a score of 0). In this paper we focus
on Boolean puzzles, and through the standard optimization/feasibility reduction any such real-valued
optimization problem can be reduced to solving a sequence of puzzles where pθ(x) tests whether
or not p(x) ≤ θ for various thresholds θ ∈ [0, 1] and then grid or binary search can be used on θ.
However, just as linear programming (optimization) algorithms employ different implementations
than their feasibility counterparts, the white-box program optimization problem is worth independent
consideration.
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lhs == rhs → p**lhs == p**rhs
lhs == rhs → p+lhs == p+rhs

Figure 3: Tree rewrite rules for float puzzles

3 PROGRAMMING PUZZLES

Recall that we defined a puzzle p to be described by a syntax tree T ∈ L. To be able to generate
puzzles that involve complex reasoning patterns, the language needs to be expressive enough to
represent a wide range of puzzles. For example, the grammar shown in Fig 2 can represent a wide
range of equations with a single variable. Further, note that such a grammar can be trivially extended
to be able to represent complicated equations (for e.g. involving trignometric ratios, exponentiation,
etc). Randomly sampling programs from this language is not useful as it is possible to generate
potentially unsolvable problems i.e. there is no x ∈ X s.t. p(x) = >.

Generating Solvable Programs. In order to generate solvable puzzles, we use domain-
specific knowledge to convert a puzzle sampled from L to a solvable one. To continue with the
float-puzzle example, given an equation a(x) == b(x) where both a, b ∈ Lterm, we can convert
it to a solvable puzzle at some arbitrarily chosen x0 by modifying the program to be a(x) = b(x)− k
where k = a(x0)− b(x0). Note that a solver that indicates unsatisfiability can be trivially used to
filter sampled programs for solvability; however, such a solver may not be efficient find for the broad
class of programming puzzles we are interested 2.

Generating Complex Puzzles. A standard strategy employed by experts for posing mathematical
problems is chaining (Silver, 1994). Chaining expands on an existing problem (and solution) such that
finding the solution for the modified problem requires solving the original problem as an intermediate
step. For instance, in the case of our float-puzzle problems, exponentiating both sides of the
equation is a good example of chaining – while preserving the solvability, it requires solving the
original problem as an intermediate step (after taking log on both sides). In this work, we incorporate
this strategy to generate complex puzzles that potentially require multiple steps of reasoning. In
our setting of generating programming puzzles, we incorporate this problem posing strategy via
tree-rewriting rules that transform an existing tree to another tree in the language – formally, a tree-
rewriting rule R : L→ L For the example of float-puzzles, Fig. 8 provides a bank of tree-rewrite
rules that can be used to produce complex solvable puzzles.

Further, this approach is general enough that it can be easily extended to other domains like int-
puzzles, set-puzzles, etc. For example, consider the sub-set sum problem – find set B,B ⊆ A such
that the sum of elements in B is some intenger K. If this set-puzzle is solvable, chaining can be
used to produce more complex puzzles by replacing the ground-set with A ∪ C for some non-empty
integer set C. While this transformation still preserves the solvability of the puzzle, it also makes it
harder for a solver that depends on the size of the ground set.

4 TROUBLEMAKER

In this section, we present TroubleMaker, a procedure to generate programming puzzles given access
to a solver – in a manner that progressively finds puzzles harder for the solver as the name suggests.
While Section 3 defines the grammar and tree transformations to generate PSAT problems, randomly
sampling productions and tree transofrmatoins may not lead to the generation of interesting problems.
For the purpose of this paper, we assume interesting problems are hard puzzles whose solution a
solver cannot obtain within the given time budget i.e. time(S, pT ) > B). However, note that the TM
procedure itself is agnostic to this assumptiion and can be trivially modified to generate problems for
different notions of interesting-ness. For example, we might want to generate instructional problems
solving which helps in solving a target problem – for e.g. learning to solve 102−102 might be helpful
in solving 1010

10 − 1010
10

by creating the necessary bias that any number subtracted from itself is
always 0.

2Recall that programming puzzles are in NP and hence not being able to find a solution does not imply
unsolvability.
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bool equation (1) := term == term
float term := (0.1) term + term | (0.2) term * term

| (0.05) term - term | (0.05) term / term
// evaluates to 1.0 if equality holds, 0.0 otherwise
| (0.15) _float(term == 0)
// various floating point constants
| (0.05) π | (0.05) 0.0 | (0.05) e
// variable
| (0.3) x

Figure 4: Simple Grammar shown with associated probabilistic weights. As comapred the grammar
in Fig 2, programs sampled from this grammar include complex terms due to the increased preference
for multiplication of terms.

We now detail the working of the TM procedure and explain two strategies to generate hard problems
for a given solver.

Generation with Probabilistic Grammars. The first troublemaker strategy we consider to
improve the generation based on the solver is to use a probabilistic grammar as shown in 4. As
can be seen, depending on the solver, different rules can be encouraged to bias the production of
problems. For instance, the weights in Fig 4 display a higher preference for multiplication of terms –
this lends itself conveniently to the generation of puzzles (equations) higher degree polynomials.
Note that the probability of outputting a program pT is the product of individual rules in it i.e.∏
r∈T Pr(r). Further, as mentioned we are trying to produce hard problems or in other words,

maximize log time(S, T ). It is now easy to see that the weights θ of the probabilistic grammar can
be learnt via REINFORCE Williams (1992) – specifically maximizing EpT∼Lθ [log time(S, pT )].

While this system allows us to tailor puzzle generation for a given solver, it only allows us
to tune global preferences (i.e. encourage certain rules always) as opposed to making context-
dependent changes (i.e. rule A is preferred conditioned on the current partial tree). Factoring the
tree produced so far before predicting the next rule to use gives us fine-grained control over the
generation process – allowing us to tune it towards producing targeted puzzles for a given solver.

Neural Guided Generation. Improving from the probabilistic grammar based generation
scheme for troublemakers, we now motivate a neural network based generation scheme that outputs
the probability of the next rule conditioned on the partial tree produced so far. Given φ(T̃ ), an
encoding of the partial tree T̃ , the neural network outputs the probabilities of choosing the next rule.
Similar to the previous version of TM, REINFORCE is used to learn the parameters of the network.

To obtain a suitable representation for the tree T ∈ L, we consider two approaches in this
work. The first representation is naive, encoding a in-tree traversal of the tree via an LSTM
network (Hochreiter & Schmidhuber, 1997). The second encoding scheme uses GNN-FiLM
(Brockschmidt, 2019), a more recent Graph Neural Network architecture that allows for feature-wise
linear modulations, achieving performance improvements on standard graph-based tasks like node
classification.

TroubleMakers with Trainable Solver. While solvers (e.g. symbolic solvers) are static, neural
network based solvers are trainable and can be improved with more data. Incorporating TM with
such a trainable solver leads to an adversarial setting where the weights of the puzzle generator are
updated to produce harder problems for the solver and similarly, the solver’s weights are updated
based on the newly generated hard problems (as shown in Alg. 1).

In this work, we study two variants of solvers:

1. Induction Solver (IS): This neural solver directly outputs the solution of the puzzle given
a representation of the puzzle. In the case of structured outputs (like sets), the solver
sequentially outputs elements along with a stop token to signal the end of generation.
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2. Synthesis Solver (SS): This solver is similar to the neural generator – given a grammar and
a bank of constants, it uses an encoding of the puzzle and the partial tree (traversed so far)
to select the next rule – choosing to go down the most likely branch.

In this work, both solvers use a GNN-FiLM representation of the puzzle pT .

Algorithm 1 TroubleMakers with Trainable Solver
Result: neural generator weights, θKg
given: θ0g , θ0s , L
for k=1,..,K do

Obtain Dk, puzzles generated using θk−1g

Update θks based on Dk

Update θkg based on new solver weights
end

5 EXPERIMENTS

In this section, we present results for the TroubleMaker approach to generate hard problems for
a given solver. We consider float, int and intset puzzles in this work to demonstrate the
flexibility of the proposed puzzle generation framework. We provide the full grammar and tree-
rewrites in Appendix. Before discussing these results, we discuss the details of the puzzle generators,
solvers and metrics used.

Puzzle Generators. As discussed earlier, we study both probabilistic grammar based and
neural-guided problem generators. Further, in the grammars used, we allow a new copy operator
that can copy a node of type τ from the partial tree generated so far as opposed to generating a tree
from LNT where NT is of type τ . The introduction of this operator increases the likelihood of
generating puzzles with recursive structure (e.g. 1010 − xxx = 0) – a desirable quality that often
results in interesting reasoning patterns. As discussed in Sec. 4, both generators are trained using
REINFORCE. Finally, note that the recursion depth was capped at 10 for the production of all
puzzles (from the grammar and including tree rewrite rules).

Solvers. In this work, we consider multiple solvers and in fact, use TM to produce programs that are
in general hard for all solvers. The solvers used are as follows:

1. Enumerative Solver (ES): Given a grammar to generate the solution, this solver performs
enumerative search to find a satisfying solution. For the sake of simplicity, we provide
the solver with the same grammar used to generate a puzzle (of the same solution type).
However, a significant difference is that the bank of constants available to the solver is large
and corresponds to all the unique constants generated so far.

2. Guided Solver (GS): This solver builds on top of the enumerative solver by using a neural
network to guide the search process conditioned on the puzzle. By learning heuristics from
data, this solver learns to accelerate enumerative search by pruning away large portions of
the search space. Unlike other solvers, being eps close to a satisfying solution is sufficient
for the grid solver. (We set ε = 10−10 in our experiments)

3. Grid Search (GrS): This solver, as the name suggests, searches in the solution space,
narrowing down to a satisfying solution based on comparisons. This solver is not a general-
purpose puzzle solver and is used only in the context of floating point and integer puzzles.

4. Sympy3: Sympy is a python library for symbolic mathematics and similar to GrS, it is used
to only solve floating point and integer problems.

Finally, note that apart from GS, the rest are not trainable solvers and so, cannot be used as part of
adversarial method described in Alg 1.

Metrics. To evaluate the performance of the generators, we use the following two metrics:
3https://www.sympy.org
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float-puzzles

Puzzle Generators Solvers

Enumerative Solver Guided Solver Grid Solver Sympy

Random 1.21 0.92 1.5 0.05
Prob 2.47 1.95 2.22 1.02

Guided 2.78 1.99 2.34 1.45

int-puzzles

Random 3.06 2.93 3.78 4.21
Prob 3.22 2.95 3.82 4.33

Guided 3.45 3.15 3.85 4.54

int-set-puzzles

Random 4.12 3.83 - -
Prob 4.33 4.02 - -

Guided 4.51 4.19 - -

Table 1: As can be seen from the table, both generators – probabilistic grammar based (Prob) and
neural guided (Guided) lead to improvements (over randomly sampled puzzles) in the time required
for the solvers, with the guided solver showing the highest gains. Note that randomly sampled
puzzles can sometimes be unsolvable – in which case the solver just times out. Further, all values are
measured in seconds and solvers have a time bound B = 5s.

float-puzzles

Puzzle Generators Solvers

Enumerative Solver Guided Solver Grid Solver Sympy

Random 5.42 5.43 5.39 5.42
Prob 4.84 4.29 3.95 4.11

Guided 4.81 4.45 3.67 4.07

Table 2: Observe that unique-rules metric for both probabilistic grammar based and Guided
search is only slightly lesser than random sampling – indicating that the outputted programs are
sufficiently “diverse”, employing different strategies to “trouble” solvers.

1. Time taken by the solvers (time): This is computed as the average (log) time taken to
solve a set of 1000 generated problems. This metric (higher is better) corresponds to the
“hardness” of the produced solutions.

2. Number of Unique Rules used (unique-rules): This is computed as the number of
unique rules present in a problem, averaged over a set of 1000 generated problems. While
not something we optimize for, an increase in this metric corresponds to an increase in the
diversity of the problems generated.

Both solvers and puzzle generators, when trainable, were optimized using Adam (Kingma & Ba,
2014) with a learning rate of 10−4. All the LSTM networks used a hidden size of 256 and in the case
of GNN-FiLM architectures, 3 propagation steps and a node representation size of 256 were used.

Results. As can be seen from Tab. 1, the guided generator finds puzzles with the highest (average)
time required across all solvers. Note that in the case of the guided solver, the only trainable solver,
the numbers shown are after K = 100 iterations with each iteration sampling ∼ 2000 puzzles. From
Tab 2, we can see that the puzzles produced by both probabilistic and neural-guided generators are
reasonably diverse across all solvers – as the proposed generators obtain a score slightly lesser than
randomly generated puzzles. Further, the generators are relatively less diverse when trained against
the grid solver – from a qualitative inspection of the results, this is because of the frequent usage of
the rule term := _float(term == 0) (see Fig 2), that is hard for a grid solver when the solutions
are random floating point numbers.
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# float puzzle
def f1(x: float):

return ((x + x) + (float(x == x / (x + 2.)))) == -0.1474945082398796

# int puzzle
def f2(x: int):

return 2**(x**2)) == 16

# int-set puzzle
def f3(x: set):

return sum(x) == 47 and x in union({-2,-1,0}, range(40,103))

s

Figure 5: Sample generations corresponding to each type considered in this work. The float sample
uses tree-rewrites to substitute a constant in the equation with another term and a constant. Similarly,
the int puzzle uses exponentiation and int-set example applies a tree rewrite of replacing the
ground set with a union of itself and another set.

Further, we observe that induction solvers that directly regress to the output are significantly worse
off (solving less than a fifth of the problems generated) – TM does not lead to improvements as
even small improvements overwhelm the solver. Regarding synthesis based solvers, we observe that
GNN-FiLM architecture outperforms LSTM-based solvers. Finally, we provide some examples of
generated problems in Fig 5.

6 COMPARISON TO RELATED WORK

The prior work on Program Synthesis is too large to surveyed here (see the survey by Gulwani et al.,
2017). As mentioned, prior work on program synthesis largely works from input-output examples
xi, yi where the goal is to find a “natural” function f such that f(xi) = yi. As discussed, this
representation is subjective – the issue is not that there are multiple correct programs but rather
that the correctness of an given solution f is debatable and cannot be readily determined from the
examples alone. Similarly, the other body of work also covered by Gulwani et al. (2017) describes
problems in a human language such as English, for which correctness is even more debatable. From
the point of view of expressing the intent of an end user, these representations may be quite natural
and the ambiguity may be inherent to the problem. (Evaluation may be made objective using a hidden
test set of input-output pairs.) However, for the purpose of teaching computers programming and
reasoning basics, such ambiguity impedes learning.

An exception is closely-related work that inspired this paper, where Christakopoulou & Kalai (2018)
considered a problem that is essentially a harder special case of puzzles, but in which the specification
was a program that took a whole problem-solving program as input. For instance, say the goal was to
design an algorithm for finding a repeated number in a list. Their specification would take as input
a function that should find duplicate numbers in any list with duplicates. The specification would
be a program that would generate a number of random lists with duplicates in them and ensure that
provided function succeeded in finding all the duplicates. Like our work, this specification in the
form of source code is given to the problem solver.

There is a dual view of puzzles in that their solutions are programs, and the puzzle itself serves as a
very simple formal specification. For example the puzzle f3 of Figure 1 has a solution of 1,000 copies
of the string 'AB' which can be written in Python as a trivial program that takes no input and outputs
'AB'*1000. An older literature on deductive program synthesis (e.g., Manna & Waldinger, 1980)
defined the goal by a formal specification and aimed to find a program that satisfied the specification.
The greater expressive power in some languages inherently means that it is not always trivial to
determine whether a solution satisfies the specification.

Prior work has also automatically generated programming problems (Balog et al., 2016; Chris-
takopoulou & Kalai, 2018). However, the way they generated problems was non-adaptive, a dataset
was generated independent of the solver.
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def score_azulejos(s: List[int], t: List[int],
p1=[3, 2, 1, 2], h1=[2, 3, 4, 3],
p2=[2, 1, 2, 1], h2=[2, 2, 1, 3]):

n = len(p1)
return (

sorted(s) == sorted(t) == list(range(n))
and
all(h1[s[i]]>h2[t[i]] for i in range(n))
and
all(p1[s[i]]<=p1[s[i+1]] for i in range(n-1))
and
all(p2[t[i]]<=p2[t[i+1]] for i in range(n-1))
)

Figure 6: ICPC Problem 2019A in English (left) and programming puzzle (right). In the PSAT,
p1, p2 are arrays of n prices, h1, h2 are arrays of n heights. The goal is to find s, t, required
to be lists of integers in the function specification. They are further tested to be permutations by
checking if sorting them yields list(range(n)), the list of numbers from 1 to n.

A ICPC PROBLEM

As a more complicated but illuminating example, consider the first problem of the 2019 International
Collegiate Programming Contest (ICPC). At its core, the goal is, given input two matrices P,H ∈
R2×n, to find a pair of permutations σ, τ on {1, 2, . . . , n} such that,

h1σi < h2τi and p1σi ≤ p1σi+1
and p2τi ≤ p2τi+1

for all i

The permutations σ and τ are to be applied to the two rows of P , which correspond to prices. When
permuted, the prices are to be non-decreasing. If there are duplicate values in P , this constraint
leaves flexibility in σ and τ which must be chosen so as to that when heights, encoded in H , are also
permuted by σ and τ , the first row is greater than the second coordinate-wise. Figure 6 shows the
problem in English and our PSAT version.

Note that there are a few important differences:

Input parsing. First, the problem like many requires reading and parsing the data from a file rather
than receiving it as lists of integers. However, much prior work has successfully shown how to
automatically parse such data (see the survey by Gulwani et al., 2017), so we focus on the algorithmic
questions.

Solvability. Second, the problem posed in the contest asks users to print “impossible” if the problem
has no solution. For such problems, the corresponding puzzle is unsolvable – there simply aren’t
any valid input which makes it return True. If one wanted to have an objective question where one
could verify that an answer of “impossible” was correct, the puzzle would need some sort of proof
that the problem is unsolvable which is much more difficult. However, the uncertainty of knowing
whether an unsolved puzzle is solvable is not critical for optimization. For example, imagine a solver
takes a test with 1,000 problems and knows with certainty that one solved 300 of them and didn’t
solve the remaining 700. Now, suppose changing a parameter of the system makes it so that it solves
an additional 20 problems. This increase in objective is desirable, and even though a humans may
be frustrated and even slower to solve a problem without knowing whether or not it is solvable, a
computer algorithm will experience no such frustration or slowdown.

Solving instances. For people, there is a difference between submitting a program that solves a given
problem with varied inputs and just submitting solutions for a number of given inputs – the latter may
be easier as they may identify peculiarities in the inputs which make them easier to solve (or they may
even solve them by hand). However, for computers this distinction is not crucial. Given a program
that is only capable of solving individual instances, that same program can itself be submitted as
a solution to the general problem. This distinction is similar to a classification problem in which
a binary classifier must be returned versus one in which unlabeled test data is provided and the

10
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bool equation := term == term
float term := term + term | term * term

| term - term | term / term
| term**term | -term
| _float(term == 0) | _float(term != 0)
| copy_float() // copies a float node from current parital tree
| π | 0.0 | e
// variable
| x

Figure 7: Grammar that defines a family of PSAT problems with floating point solutions.

lhs == rhs → p**lhs == p**rhs
lhs == rhs → p+lhs == p+rhs
lhs == rhs→ p*lhs == p*rhs

Figure 8: Tree rewrite rules used for floating point puzzles.

labels alone must be submitted. Similar techniques are often used for computers to solve these two
closely-related problems if the test set is sufficiently large.

B GRAMMARS AND TREE-REWRITE RULES.

We present the full grammars for the three domains used in this work. The integer rules are similar to
the float domain except having additional functions – factorial and modulo operation.

bool int in term | sum(term) == int
set term := ∅ | {int_term} | {int_term, int_term}

| {int_term, int_term, int_term}
| union(term, term) | intersection(term, term) |

difference(term, term)
| {e for e in range(int_term, int_term)} \\

int int_term := . . . // integer grammar

Figure 9: Grammar for int-set-domain.
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