
Under review as a conference paper at ICLR 2020

A CLOSER LOOK AT THE OPTIMIZATION LANDSCAPES
OF GENERATIVE ADVERSARIAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative adversarial networks have been very successful in generative modeling,
however they remain relatively challenging to train compared to standard deep
neural networks. In this paper, we propose new visualization techniques for the
optimization landscapes of GANs that enable us to study the game vector field
resulting from the concatenation of the gradient of both players. Using these
visualization techniques we try to bridge the gap between theory and practice
by showing empirically that the training of GANs exhibits significant rotations
around LSSP, similar to the one predicted by theory on toy examples. Moreover,
we provide empirical evidence that GAN training seems to converge to a stable
stationary point which is a saddle point for the generator loss, not a minimum,
while still achieving excellent performance.

1 INTRODUCTION

Deep neural networks have exhibited remarkable success in many applications (Krizhevsky et al.,
2012). This success has motivated many studies of their non-convex loss landscape (Choromanska
et al., 2015; Kawaguchi, 2016; Li et al., 2018b), which, in turn, has led to many improvements, such
as better initialization and optimization methods (Glorot and Bengio, 2010; Kingma and Ba, 2015).

While most of the work on studying non-convex loss landscapes has focused on single objective
minimization, some recent class of models require the joint minimization of several objectives,
making their optimization landscape intrinsically different. Among these models is the generative
adversarial network (GAN) (Goodfellow et al., 2014) which is based on a two-player game formula-
tion and has achieved state-of-the-art performance on some generative modeling tasks such as image
generation (Brock et al., 2019).

On the theoretical side, many papers studying multi-player games have argued that one main op-
timization issue that arises in this case is the rotation due to the adversarial component of the
game (Mescheder et al., 2018; Balduzzi et al., 2018; Gidel et al., 2019b). This has been extensively
studied on toy examples, in particular on the so-called bilinear example (Goodfellow, 2016) (a.k.a
Dirac GAN (Mescheder et al., 2018)). However, those toy examples are very far from the standard
realistic setting of image generation involving deep networks and challenging datasets. To our
knowledge it remains an open question if this rotation phenomenon actually occurs when training
GANs in more practical settings.

In this paper, we aim at closing this gap between theory and practice. Following Mescheder et al.
(2017) and Balduzzi et al. (2018), we argue that instead of studying the loss surface, we should
study the game vector field (i.e., the concatenation of each player’s gradient), which can provide
better insights to the problem. To this end, we propose a new visualization technique that we call
Path-angle which helps us observe the nature of the game vector field close to a stationary point for
high dimensional models, and carry on an empirical investigation of the properties of the optimization
landscape of GANs. The core questions we want to address may be summarized as the following:

Is rotation a phenomenon that occurs when training GANs on real world datasets, and do
existing training methods find local Nash equilibria?

To answer this question we conducted extensive experiments by training different GAN formulations
(NSGAN and WGAN-GP) with different optimizers (Adam and ExtraAdam) on three datasets (MoG,

1

Under review as a conference paper at ICLR 2020

MNIST and CIFAR10). Based on our experiments and using our visualization techniques we observe
that the landscape of GANs is fundamentally different from the standard loss surfaces of deep
networks. Furthermore, we provide evidence that existing GAN training methods do not converge to
a local Nash equilibrium.

Contributions More precisely, our contributions are the following: (i) We propose studying
empirically the game vector field (as opposed to studying the loss surfaces of each player) to
understand training dynamics in GANs using a novel visualization tool, which we call Path-angle and
that captures the rotational and attractive behaviors near local stationary points (ref. §4.2). (ii) We
observe experimentally on both a mixture of Gaussians, MNIST and CIFAR10 datasets that a variety
of GAN formulations have a significant rotational behavior around their locally stable stationary
points (ref. §5.1). (iii) We provide empirical evidence that existing training procedures find stable
stationary points that are saddle points, not minima, for the loss function of the generator (ref. § 5.2).

2 RELATED WORK

Improving the training of GANs has been an active research area in the past few years. Most efforts
in stabilizing GAN training have focused on formulating new objectives (Arjovsky et al., 2017), or
adding regularization terms (Gulrajani et al., 2017; Mescheder et al., 2017; 2018). In this work, we
try to characterize the difference in the landscapes induced by different GAN formulations and how it
relates to improving the training of GANs.

Recently, Nagarajan and Kolter (2017); Mescheder et al. (2018) show that a local analysis of the
eigenvalues of the Jacobian of the game can provide guarantees on local stability properties. However,
their theoretical analysis is based on some unrealistic assumptions such as the generator’s ability
to fully capture the real distribution. In this work, we assess experimentally to what extent these
theoretical stability results apply in practice.

Rotations in differentiable games has been mentioned and interpreted by (Mescheder et al., 2018;
Balduzzi et al., 2018) and Gidel et al. (2019b). While these papers address rotations in games from
a theoretical perspective, it was never shown that GANs, which are games with highly non-convex
losses, suffered from these rotations in practice. To our knowledge, trying to quantify that GANs
actually suffer from this rotational component in practice for real world dataset is novel.

The stable points of the gradient dynamics in general games have been studied independently
by Mazumdar and Ratliff (2018) and Adolphs et al. (2018). They notice that the locally stable
stationary point of some games are not local Nash equilibria. In order to reach a local Nash
equilibrium, Adolphs et al. (2018); Mazumdar et al. (2019) develop techniques based on second order
information. In this work, we argue that reaching local Nash equilibria may not be as important as
one may expect and that we do achieve good performance at a locally stable stationary point.

Several works have studied the loss landscape of deep neural networks. Goodfellow et al. (2015)
proposed to look at the linear path between two points in parameter space and show that neural
networks behave similarly to a convex loss function along this path. Draxler et al. (2018) proposed
an extension where they look at nonlinear paths between two points and show that local minima are
connected in deep neural networks. Another extension was proposed by (Li et al., 2018a) where they
use contour plots to look at the 2D loss surface defined by two directions chosen appropriately. In this
paper, we use a similar approach of following the linear path between two points to gain insight about
GAN optimization landscapes. However, in this context, looking at the loss of both players along that
path may be uninformative. We propose instead to look, along a linear path from initialization to best
solution, at the game vector field, particularly at its angle w.r.t. the linear path, the Path-angle.

Another way to gain insight into the landscape of deep neural networks is by looking at the Hessian
of the loss; this was done in the context of single objective minimization by (Dauphin et al., 2014;
Sagun et al., 2016; 2017; Alain et al., 2019). Compared to linear path visualizations which can give
global information (but only along one direction), the Hessian provides information about the loss
landscape in several directions but only locally. The full Hessian is expensive to compute and one
often has to resort to approximations such has computing only the top-k eigenvalues. While, the
Hessian is symmetric and thus has real eigenvalues, the Jacobian of a game vector field is significantly
different since it is in general not symmetric, which means that the eigenvalues belong to the complex

2

Under review as a conference paper at ICLR 2020

plane. In the context of GANs, Mescheder et al. (2017) introduced a gradient penalty and use the
eigenvalues of the Jacobian of the game vector field to show its benefits in terms of stability. In
our work, we compute these eigenvalues to assess that, on different GAN formulations and datasets,
existing training procedures find a locally stable stationary point that is a saddle point for the loss
function of the generator.

3 FORMULATIONS FOR GAN OPTIMIZATION AND THEIR PRACTICAL
IMPLICATIONS

3.1 THE STANDARD GAME THEORY FORMULATION

From a game theory point of view, GAN training may be seen as a game between two players: the
discriminator Dϕ and the generator Gθ, each of which is trying to minimize its loss LD and LG,
respectively. Using the same formulation as Mescheder et al. (2017), the GAN objective takes the
following form (for simplicity of presentation, we focus on the unconstrained formulation):

θ∗ ∈ arg min
θ∈Rp

LG(θ,ϕ∗) and ϕ∗ ∈ arg min
ϕ∈Rd

LD(θ∗,ϕ) . (1)

The solution (θ∗,ϕ∗) is called a Nash equilibrium (NE). In practice, the considered objectives are
non-convex and we typically cannot expect better than a local Nash equilibrium (LNE), i.e. a point at
which (1) is only locally true (see e.g. (Adolphs et al., 2018) for a formal definition). Ratliff et al.
(2016) derived some derivative-based necessary and sufficient conditions for being a LNE. They
show that, for being a local NE it is sufficient to be a differential Nash equilibrium:
Definition 1 (Differential NE). A point (θ∗,ϕ∗) is a differential Nash equilibrium (DNE) iff

‖∇θLG(θ∗,ϕ∗)‖ = ‖∇ϕLD(θ∗,ϕ∗)‖ = 0 , ∇2
θLG(θ∗,ϕ∗) � 0 and ∇2

ϕLD(θ∗,ϕ∗) � 0 (2)

where S � 0 if and only if S is definite positive.

Being a DNE is not necessary for being a LNE because a local Nash equilibrium may have Hessians
that are only semi-definite. NE are commonly used in GANs to describe the goal of the learning
procedure (Goodfellow et al., 2014): in this definition, θ∗ (resp. ϕ∗) is seen as a local minimizer of
LG(·,ϕ∗) (resp. LD(θ∗, ·)).

Under this view, however, the interaction between the two networks is not taken into account. This is
an important aspect of the game stability that is missed in the definition of DNE (and Nash equilibrum
in general). We illustrate this point in the following section, where we develop an example of a game
for which gradient methods converge to a point which is a saddle point for the generator’s loss and
thus not a DNE for the game.

3.2 AN ALTERNATIVE FORMULATION BASED ON THE GAME VECTOR FIELD

In practice, GANs are trained using first order methods that compute the gradients of the losses of
each player. Following Gidel et al. (2019a), an alternative point of view on optimizing GANs is to
jointly consider the players’ parameters θ and ϕ as a joint state ω := (θ,ϕ), and to study the vector
field associated with these gradients,1 which we call the game vector field

v(ω) :=
[
∇θLG(ω)> ∇ϕLD(ω)>

]>
where ω := (θ,ϕ) . (3)

With this perspective, the notion of DNE is replaced by the notion of locally stable stationary point
(LSSP). Verhulst (1989, Theorem 7.1) defines a LSSP ω∗ using the eigenvalues of the Jacobian of
the game vector field∇v(ω∗) at that point.
Definition 2 (LSSP). A point ω∗ is a locally stable stationary point (LSSP) iff

v(ω∗) = 0 and <(λ) > 0 , ∀λ ∈ Sp(∇v(ω∗)) . (4)

where < denote the real part of the eigenvalue λ belonging to the spectrum of∇v(ω∗).

1Note that, in practice, the joint vector field (3) is not a gradient vector field, i.e., it cannot be rewritten as the
gradient of a single function.

3

Under review as a conference paper at ICLR 2020

Zero-sum game Non-zero-sum game

NE⇒ LSSE (Mescheder et al., 2018) NE 6⇒ LSSE (Example 2, §A.2)
NE 6⇐ LSSE (Adolphs et al., 2018) NE 6⇐ LSSE (Example 1)

Table 1: Summary of the implications between Differentiable Nash Equilibrium (DNE) and a locally stable
stationnary point (LSSP): in general, being a DNE is neither necessary or sufficient for being a LSSP.

This definition is not easy to interpret but one can intuitively understand a LSSP as a stationary point
(a point ω∗ where v(ω∗) = 0) to which all neighbouring points are attracted. We will formalize this
intuition of attraction in Proposition 1. In our two-player game setting, the Jacobian of the game
vector field around the LSSP has the following block-matrices form:

∇v(ω∗) =

[
∇2
θLG(ω∗) ∇ϕ∇θLG(ω∗)

∇θ∇ϕLD(ω∗) ∇2
ϕLD(ω∗)

]
=

[
S1 B
A S2

]
. (5)

WhenB = −A>, being a DNE is a sufficient condition for being of LSSP (Mazumdar and Ratliff,
2018). However, some LSSP may not be DNE (Adolphs et al., 2018), meaning that the optimal
generator θ∗ could be a saddle point of LG(·,ϕ∗), while the optimal joint state (θ∗,ϕ∗) may be
a LSSP of the game. We summarize these properties in Table 1. In order to illustrate the intuition
behind this counter-intuitive fact, we study a simple example where the generator is 2D and the
discriminator is 1D.
Example 1. Let us consider LG as a hyperbolic paraboloid (a.k.a., saddle point function) centered
in (1, 1) where (1, ϕ) is the principal descent direction and (−ϕ, 1) is the principal ascent direction,
while LD is a simple bilinear objective.

LG(θ1, θ2, ϕ) = (θ2 − ϕθ1 − 1)2 − 1
2 (θ1 + ϕθ2 − 1)2 , LD(θ1, θ2, ϕ) = ϕ(5θ1 + 4θ2 − 9)

We plot LG in Fig. 1b. Note that the discriminator ϕ controls the principal descent direction of LG.

We show (see § A.2) that (θ∗1 , θ
∗
2 , ϕ
∗) = (1, 1, 0) is a locally stable stationary point but is not a DNE:

the generator loss at the optimum (θ1, θ2) 7→ LG(θ1, θ2, ϕ
∗) = θ2

2 − 1
2θ

2
1 is not at a DNE because

it has a clear descent direction, (1, 0). However, if the generator follows this descent direction, the
dynamics will remain stable because the discriminator will update its parameter, rotating the saddle
and making (1, 0) an ascent direction. We call this phenomenon dynamic stability: the loss LG(·, ϕ∗)
is unstable for a fixed ϕ∗ but becomes stable when ϕ dynamically interacts with the generator around
ϕ∗.

A mechanical analogy for this dynamic stability phenomenon is a ball in a rotating saddle—even
though the gravity pushes the ball to escape the saddle, a quick enough rotation of the saddle would
trap the ball at the center (see (Thompson et al., 2002) for more details). This analogy has been used
to explain Paul’s trap (Paul, 1990): a counter-intuitive way to trap ions using a dynamic electric field.
In Example 1, the parameter ϕ explicitly controls the rotation of the saddle.

This example illustrates the fact that the DNE corresponds to a notion of static stability: it is the
stability of one player’s loss given the other player is fixed. Conversely, LSSP captures a notion of
dynamic stability that considers both players jointly.

By looking at the game vector field we capture these interactions. Fig. 1b only captures a snapshot of
the generator’s loss surface for a fixed ϕ and indicates static instability (the generator is at a saddle
point of its loss). In Fig. 1a, however, one can see that, starting from any point, we will rotate around
the stationary point (ϕ∗, θ∗1) = (0, 1) and eventually converge to it.

The visualization of the game vector field reveals an interesting behavior that does not occur in
single objective minimization: close to a LSSP, the parameters rotate around it. Understanding this
phenomenon is key to grasp the optimization difficulties arising in games. In the next section, we
formally characterize the notion of rotation around a LSSP and in §4 we develop tools to visualize it
in high dimensions. Note that gradient methods may converge to saddle points in single objective
minimization, but these are not stable stationary points, unlike in our game example.

3.3 ROTATION AND ATTRACTION AROUND LOCALLY STABLE STATIONARY POINTS IN GAMES

In this section, we formalize the notions of rotation and attraction around LSSP in games, which we
believe may explain some difficulties in GAN training. The local stability of a LSSP is characterized

4

Under review as a conference paper at ICLR 2020

0.5 1.0 1.5
θ1

−0.5

0.0

0.5
ϕ

(a) 2D projection of the vector field. (b) Landscape of the generator loss.

Figure 1: Visualizations of Example 1. Left: projection of the game vector field on the plane θ2 = 1. Right:
Generator loss. The descent direction is (1, ϕ) (in grey). As the generator follows this descent direction, the
discriminator changes the value of ϕ, making the saddle rotate, as indicated by the circular black arrow.

by the eigenvalues of the Jacobian∇v(ω∗) because we can linearize v(ω) around ω∗:

v(ω) ≈ ∇v(ω∗)(ω − ω∗). (6)

If we assume that (6) is an equality, we have the following theorem.

Proposition 1. Let us assume that (6) is an equality and that∇v(ω∗) is diagonalizable, then there
exists a basis P such that the coordinates ω̃j(t) := [P (ω(t)−ω∗)]j where ω(t) is a solution of (6)
have the following behavior: for λj ∈ Sp∇v(ω∗) we have,

1. If λj ∈ R, we observe pure attraction: ω̃j(t) = e−λjtω̃j(0) .

2. If <(λj) = 0, we observe pure rotation:
[
ω̃j(t)
ω̃j+1(t)

]
=

[
cos |λjt| sin |λjt|
− sin |λjt| cos |λjt|

] [
ω̃j(0)
ω̃j+1(0)

]
.

3. Otherwise, we observe both:
[
ω̃j(t)
ω̃j+1(t)

]
= e−Re(λj)t

[
cos Im(λjt) sin Im(λjt)
− sin Im(λjt) cos Im(λjt)

] [
ω̃j(0)
ω̃j+1(0)

]
.

Note that we re-ordered the eigenvalues such that the complex conjugate eigenvalues form pairs: if
λj /∈ R then λj+1 = λ̄j .

Matrices in 2. and 3. are rotations matrices. They induce a rotational behavior illustrated in Fig 1a.

This proposition shows that the dynamics of ω(t) can be decomposed in a particular basis into
attractions and rotations over components that do not interact between each other. Rotation does
not appear in single objective minimization around a local minimum, because the eigenvalues of the
Hessian of the objective are always real. Mescheder et al. (2017) discussed that difficulties in training
GANs may be a result of the imaginary part of the eigenvalues of the Jacobian of the game vector
field and Gidel et al. (2019b) mentioned that games have a natural oscillatory behavior. This cyclic
behavior has been explained in (Balduzzi et al., 2018) by a non-zero Hamiltonian component in the
Helmholtz decomposition of the Jacobian of the game vector field. All these explanations are related
to the spectral properties of this Jacobian. The goal of Proposition 1 is to provide a formal definition
to the notions of rotation and attraction we are dealing with in this paper.

In the following section, we introduce a new tool in order to assess the magnitude of the rotation
around a LSSP compared to the attraction to this point.

4 VISUALIZATION FOR THE VECTOR FIELD LANDSCAPE

Neural networks are parametrized by a large number of variables and visualizations are only possible
using low dimensional plots (1D or 2D). We first present a standard visualization tool for deep neural
network loss surfaces that we will exploit in §4.2.

5

Under review as a conference paper at ICLR 2020

4.1 STANDARD VISUALIZATIONS FOR THE LOSS SURFACE

One way to visualize a neural network’s loss landscape is to follow a parametrized path ω(α) that
connects two parameters ω,ω′ (often one is chosen early in learning and another one is chosen
late in learning, close to a solution). A path is a continuous function ω(·) such that ω(0) = ω and
ω(1) = ω′. Goodfellow et al. (2015) considered a linear path ω(α) = αω + (1 − α)ω′. More
complex paths can be considered to assess whether different minima are connected (Draxler et al.,
2018).

4.2 PROPOSED VISUALIZATION: PATH-ANGLE

We propose to study the linear path between parameters early in learning and parameters late in
learning. We illustrate the extreme cases for the game vector field along this path in simple examples
in Figure 2(a-c): pure attraction occurs when the vector field perfectly points to the optimum (Fig. 2a)
and pure rotation when the vector field is orthogonal to the direction to the optimum (Fig. 2b). In
practice, we expect the vector field to be in between these two extreme cases (Fig. 2c). In order to
determine in which case we are, around a LSSP, in practice, we propose the following tools.

Path-norm. We first ensure that we are in a neighborhood of a stationary point by computing
the norm of the vector field. Note that considering independently the norm of each player may be
misleading: even though the gradient of one player may be close to zero, it does not mean that we are
at a stationary point since the other player might still be updating its parameters.

Path-angle. Once we are close to a final point ω′, i.e., in a neighborhood of a LSSP, we propose
to look at the angle between the vector field (3) and the linear path from ω to ω′. Specifically, we
monitor the cosine of this angle, a quantity we call Path-angle:

c(α) := 〈ω′−ω,vα〉
‖ω′−ω‖‖vα‖ where vα := v(αω′ + (1− α)ω) , α ∈ [a, b] . (7)

Usually [a, b] = [0, 1], but since we are interested in the landscape around a LSSP, it might be more
informative to also consider further extrapolated points around ω′ with b > 1.

Eigenvalues of the Jacobian. Another important tool to gain insights on the behavior close to a
LSSP, as discussed in §3.2, is to look at the eigenvalues of ∇v(ω∗). We propose to compute the
top-k eigenvalues of this Jacobian. When all the eigenvalues have positive real parts, we conclude
that we have reached a LSSP, and if some eigenvalues have large imaginary parts, then the game has
a strong rotational behavior (Thm. 1). Similarly, we can also compute the top-k eigenvalues of the
diagonal blocks of the Jacobian, which correspond to the Hessian of each player. These eigenvalues
can inform us on whether we have converged to a LSSP that is not a LNE.

An important advantage of the Path-angle relative to the computation of the eigenvalues of∇v(ω∗) is
that it only requires computing gradients (and not second order derivatives, which may be prohibitively
expensive for deep networks). Also, it provides information along a whole path between two points
and thus, more global information than the Jacobian computed at a single point. In the following
section, we use the Path-angle to study the archetypal behaviors presented in Thm 1.

4.3 ARCHETYPAL BEHAVIORS OF THE PATH-ANGLE AROUND A LSSP

Around a LSSP, we have seen in (6) that the behavior of the vector field is mainly dictated by the
Jacobian matrix ∇v(ω∗). This motivates the study of the behavior of the Path-angle c(α) where the
Jacobian is a constant matrix:

v(ω) =

[
S1 B
A S2

]
(ω − ω∗) and thus ∇v(ω) =

[
S1 B
A S2

]
∀ω . (8)

Depending on the choice of S1,S2,A andB, we cover the following cases:

• S1,S2 � 0,A = B = 0: eigenvalues are real. Thm. 1 ensures that we only have attraction.
Far from ω∗, the gradient points to ω∗ (See Fig. 2a) and thus c(α) = 1 for α � 1 and
c(α) = −1 for α � 1. Since ω′ is not exactly ω∗, we observe a quick sign switch of the

6

Under review as a conference paper at ICLR 2020

θ

φ

θ

φ

θ

φ

0.50 0.75 1.00 1.25
α

10−1

N
or

m
of

th
e

gr
ad

ie
nt

−1.0

−0.5

0.0

0.5

1.0

(a) Attraction only

0.50 0.75 1.00 1.25
α

10−1

0.00

0.25

0.50

0.75

1.00

(b) Rotation only

0.50 0.75 1.00 1.25
α

101

102

−0.05

0.00

0.05

Pa
th

-a
ng

le

(c) Rotation and attraction

Figure 2: Above: game vector field (in grey) for different archetypal behaviors. The equilibrium
of the game is at (0, 0). Black arrows correspond to the directions of the vector field at different
linear interpolations between two points: • and ?. Below: path-angle c(α) for different archetypal
behaviors (right y-axis, in blue). The left y-axis in orange correspond to the norm of the gradients.
Notice the ”bump” in path-angle (close to α = 1), characteristic of rotational dynamics.

Path-angle around α = 1. We plotted the average Path-angle over different approximate
optima in Fig. 2a (see appendix for details).
• S1,S2 = 0,A = −B>: eigenvalues are pure imaginary. Thm. 1 ensures that we only have

rotations. Far from the optimum the gradient is orthogonal to the direction that points to ω
(See Fig. 2b). Thus, c(α) vanishes for α � 1 and α � 1. Because ω′ is not exactly ω∗,
around α = 1, the gradient is tangent to the circles induced by the rotational dynamics and
thus c(α) = ±1. That is why in Fig. 2b we observe a bump in c(α) when α is close to 1.
• General high dimensional LSSP (4). The dynamics display both attraction and rotation.

We observe a combination of the sign switch due to the attraction and the bump due to the
rotation. The higher the bump, the closer we are to pure rotations. Since we are performing a
low dimensional visualization, we actually project the gradient onto our direction of interest.
That is why the Path-angle is significantly smaller than 1 in Fig. 2c.

5 NUMERICAL RESULTS ON GANS

Losses. We focus on two common GAN loss formulations: we consider both the original non-
saturating GAN (NSGAN) formulation proposed in Goodfellow et al. (2014) and the WGAN-GP
objective described in Gulrajani et al. (2017).

Datasets. We first propose to train a GAN on a toy task composed of a 1D mixture of 2 Gaussians
(MoG) with 10,000 samples. For this task both the generator and discriminator are neural networks
with 1 hidden layer and ReLU activations. We also train a GAN on MNIST, where we use the
DCGAN architecture (Radford et al., 2016) with spectral normalization(see §C.2 for details). Finally
we also look at the optimization landscape of a state of the art ResNet on CIFAR10 (Krizhevsky and
Hinton, 2009).

Optimization methods. For the mixture of Gaussian (MoG) dataset, we used the full-batch extragra-
dient method (Korpelevich, 1976; Gidel et al., 2019a). We also tried to use standard batch gradient
descent, but this led to unstable results indicating that gradient descent might indeed be unable to con-
verge to stable stationary points due to the rotations (see §C.4). On MNIST and CIFAR10, we tested
both Adam (Kingma and Ba, 2015) and ExtraAdam (Gidel et al., 2019a). The observations made on
models trained with both methods are very similar. ExtraAdam gives slightly better performance in
terms of inception score (Salimans et al., 2016) and FID (Heusel et al., 2017), and Adam sometimes
converge to unstable points, thus we decided to only include the observations on ExtraAdam, for

7

Under review as a conference paper at ICLR 2020

NSGAN

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Linear Path

10 4

10 3

10 2

10 1

100

Gr
ad

ie
nt

 N
or

m

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

Pa
th

 A
ng

le

(a) MoG

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Linear Path

102

103

104

Gr
ad

ie
nt

 N
or

m

0.002

0.001

0.000

0.001

0.002

0.003

0.004

0.005

Pa
th

 A
ng

le

(b) MNIST, IS = 8.97

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Linear Path

102

103

Gr
ad

ie
nt

 N
or

m

0.003

0.002

0.001

0.000

0.001

0.002

0.003

Pa
th

 A
ng

le

(c) CIFAR10, FID = 27.67

WGAN-GP

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Linear Path

10 2

10 1

100

101

Gr
ad

ie
nt

 N
or

m

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Pa
th

 A
ng

le

(d) MoG

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Linear Path

102

103

104

Gr
ad

ie
nt

 N
or

m

0.015

0.010

0.005

0.000

0.005

0.010

0.015

Pa
th

 A
ng

le

(e) MNIST, IS = 9.46

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Linear Path

104

105

106

Gr
ad

ie
nt

 N
or

m

0.0002

0.0001

0.0000

0.0001

0.0002

0.0003

0.0004

Pa
th

 A
ng

le

(f) CIFAR10, IS = 7.65

Figure 3: Path-angle for NSGAN (top row) and WGAN-GP (bottom row) trained on the different
datasets, see Appendix C.3 for details on how the path-angle is computed. For MoG the ending point
is a generator which has learned the distribution. For MNIST and CIFAR10 we indicate the Inception
score (IS) or the Fréchet inception distance (FID) at the ending point of the interpolation. Notice the
“bump” in path-angle (close to α = 1.0), characteristic of games rotational dynamics, and absent in
the minimization problem (d). Details on error bars in §C.3.

NSGAN

0 5 10 15 20
Real Part

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Im
ag

in
ar

y
Pa

rt

end
init

(a) MoG

0 5000 10000 15000 20000 25000 30000
Real Part

150

100

50

0

50

100

150

Im
ag

in
ar

y
Pa

rt

end
init

(b) MNIST, IS = 8.97

0 100 200 300 400 500 600 700
Real Part

1000

500

0

500

1000

Im
ag

in
ar

y
Pa

rt

end
init

(c) CIFAR10, FID = 27.67

WGAN-GP

1.0 0.5 0.0 0.5 1.0
Real Part

30

20

10

0

10

20

30

Im
ag

in
ar

y
Pa

rt

end
init

(d) MoG

75 50 25 0 25 50 75 100
Real Part

150

100

50

0

50

100

150

Im
ag

in
ar

y
Pa

rt

end
init

(e) MNIST, IS = 9.46

0 100000 200000 300000 400000 500000
Real Part

600

400

200

0

200

400

600

Im
ag

in
ar

y
Pa

rt

end
init

(f) CIFAR10, IS = 7.65

Figure 4: Eigenvalues of the Jacobian of the game for NSGAN (top row) and WGAN-GP (bottom
row) trained on the different datasets. Large imaginary eigenvalues are characteristic of rotational
behavior. Notice that NSGAN and WGAN-GP objectives lead to very different landscapes (see how
the eigenvalues of WGAN-GP are shifted to the right of the imaginary axis). This could explain the
difference in performance between NSGAN and WGAN-GP.

more details on the observations on Adam (see §C.5). As recommended by Heusel et al. (2017), we
chose different learning rates for the discriminator and the generator. All the hyper-parameters and
precise details about the experiments can be found in §C.1.

5.1 EVIDENCE OF ROTATION AROUND LOCALLY STABLE STATIONARY POINTS IN GANS

We first look, for all the different models and datasets, at the path-angles between a random initial-
ization (initial point) and the set of parameters during training achieving the best performance (end
point) (Fig. 3), and at the eigenvalues of the Jacobian of the game vector field for the same end point
(Fig. 4). We’re mostly interested in looking at the optimization landscape around LSSPs, so we first
check if we are actually close to one. To do so we look at the gradient norm around the end point,

8

Under review as a conference paper at ICLR 2020

this is shown by the orange curves in Fig.3, we can see that the norm of the gradient is quite small
for all the models meaning that we are close to a stationary point. We also need to check that the
point is stable, to do so we look at the eigenvalues of the Game in Fig. 4, if all the eigenvalues have
positive real parts then the point is also stable. We observe that most of the time, the model has
reached a LSSP. However we can see that this is not always the case, for example in Fig. 4d some of
the eigenvalues have a negative real part. We still include those results since although the point is
unstable it gives similar performance to a LSSP.

Our first observation is that all the GAN objectives on both datasets have a non zero rotational
component. This can be seen by looking at the Path-angle in Fig. 3, where we always observe a
bump, and this is also confirmed by the large imaginary part in the eigenvalues of the Jacobian in
Fig. 4. The rotational component is clearly visible in Fig. 3d, where we see no sign switch and a
clear bump similar to Fig. 2b. On MNIST and CIFAR10, with NSGAN and WGAN-GP (see Fig. 3),
we observe a combination of a bump and a sign switch similar to Fig. 2c. Also Fig. 4 clearly shows
the existence of imaginary eigenvalues with large magnitude. Fig. 4c and 4e. We can see that while
almost all models exhibit rotations, the distribution of the eigenvalues are very different. In particular
the complex eigenvalues for NSGAN seems to be much more concentrated on the imaginary axis
while WGAN-GP tends to spread the eigenvalues towards the right of the imaginary axis Fig. 4e.
This shows that different GAN objectives can lead to very different landscapes, and has implications
in terms of optimization, in particular that might explain why WGAN-GP performs slightly better
than NSGAN.

Generator

0 15 30 45 60 75 90
Top-100 Eigenvalues

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

M
ag

ni
tu

de

init
end

0 2 4 6 8 10 12 14 16 18 20
Top-20 Eigenvalues

0

20

40

60

M
ag

ni
tu

de

init
end

0 2 4 6 8 10 12 14 16 18 20
Top-20 Eigenvalues

200

0

200

400

600

800

M
ag

ni
tu

de

init
end

Discriminator

0 15 30 45 60 75 90
Top-100 Eigenvalues

0

5

10

15

20

M
ag

ni
tu

de

init
end

(a) MoG

0 2 4 6 8 10 12 14 16 18 20
Top-20 Eigenvalues

0

5000

10000

15000

20000

25000

30000

M
ag

ni
tu

de

init
end

(b) MNIST, IS = 8.97

0 2 4 6 8 10 12 14 16 18 20
Top-20 Eigenvalues

40

30

20

10

0

10

20

30

40
M

ag
ni

tu
de

init
end

(c) CIFAR10, FID = 27.67

Figure 5: NSGAN. Top k-Eigenvalues of the Hessian of each player (in terms of magnitude) in
descending order. Top Eigenvalues indicate that the Generator does not reach a local minimum but a
saddle point (for CIFAR10 actually both the generator and discriminator are at saddle points). Thus
the training algorithms converge to LSSPs which are not Nash equilibria.

5.2 THE LOCALLY STABLE STATIONARY POINTS OF GANS ARE NOT LOCAL NASH EQUILIBRIA

As mentioned at the beginning of §5.1, the points we are considering are most of the times LSSP.
To check if these points are also local Nash equilibria (LNE) we compute the eigenvalues of the
Hessian of each player independently. If all the eigenvalues of each player are positive, it means that
we have reached a DNE. Since the computation of the full spectrum of the Hessians is expensive,
we restrict ourselves to the top-k eigenvalues with largest magnitude: exhibiting one significant
negative eigenvalue is enough to indicate that the point considered is not in the neighborhood of a
LNE. Results are shown in Fig. 5 and Fig. 6, from which we make several observations. First, we see
that the generator never reaches a local minimum but instead finds a saddle point. This means that
the algorithm converges to a LSSP which is not a LNE, while achieving good results with respect to
our evaluation metrics. This raises the question whether convergence to a LNE is actually needed
or if converging to a LSSP is sufficient to reach a good solution. We also observe a large difference
in the eigenvalues of the discriminator when using the WGAN-GP v.s. the NSGAN objective. In
particular, we find that the discriminator in NSGAN converges to a solution with very large positive

9

Under review as a conference paper at ICLR 2020

Generator

0 15 30 45 60 75 90
Top-100 Eigenvalues

0.3

0.2

0.1

0.0

0.1

0.2

0.3

M
ag

ni
tu

de

init
end

0 2 4 6 8 10 12 14 16 18 20
Top-20 Eigenvalues

20

10

0

10

20

M
ag

ni
tu

de

init
end

0 2 4 6 8 10 12 14 16 18 20
Top-20 Eigenvalues

200

0

200

400

600

800

M
ag

ni
tu

de

init
end

Discriminator

0 15 30 45 60 75 90
Top-100 Eigenvalues

1.0

0.5

0.0

0.5

1.0
M

ag
ni

tu
de

init
end

(a) MoG

0 2 4 6 8 10 12 14 16 18 20
Top-20 Eigenvalues

100

50

0

50

100

150

M
ag

ni
tu

de

init
end

(b) MNIST, IS = 9.46

0 2 4 6 8 10 12 14 16 18 20
Top-20 Eigenvalues

0

100000

200000

300000

400000

500000

M
ag

ni
tu

de

init
end

(c) CIFAR10, IS = 7.65

Figure 6: WGAN-GP. Top k-Eigenvalues of the Hessian of each player (in terms of magnitude) in
descending order. Top Eigenvalues indicate that the Generator does not reach a local minimum but a
saddle point. Thus the training algorithms converge to LSSPs which are not Nash equilibria.

eigenvalues compared to WGAN-GP. This shows that the discriminator in NSGAN converges to a
much sharper minimum. This is consistent with the fact that the gradient penalty acts as a regularizer
on the discriminator and prevents it from becoming too sharp.

6 DISCUSSION

Across different GAN formulations, standard optimization methods and datasets, we consistently
observed that GANs do not converge to local Nash equilibria. Instead the generator often ends up
being at a saddle point of the generator loss function. However, in practice, these LSSP achieve really
good generator performance metrics, which leads us to question whether we need a Nash equilibrium
to get a generator with good performance in GANs and whether such DNE with good performance
does actually exist. Moreover, we have provided evidence that the optimization landscapes of GANs
typically have rotational components specific to games. We argue that these rotational components are
part of the reason why GANs are challenging to train, in particular that the instabilities observed during
training may come from such rotations close to LSSP. It shows that simple low dimensional examples,
such as for instance Dirac GAN, does capture some of the arising challenges for training large scale
GANs, thus, motivating the practical use of method able to handle strong rotational components, such
as extragradient (Gidel et al., 2019a), averaging (Yazıcı et al., 2019), optimism (Daskalakis et al.,
2018) or gradient penalty based methods (Mescheder et al., 2017; Gulrajani et al., 2017).

REFERENCES

L. Adolphs, H. Daneshmand, A. Lucchi, and T. Hofmann. Local saddle point optimization: A
curvature exploitation approach. arXiv, 2018.

G. Alain, N. Le Roux, and P.-A. Manzagol. Negative eigenvalues of the hessian in deep neural
networks. arXiv, 2019.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In ICML,
2017.

D. Balduzzi, S. Racaniere, J. Martens, J. Foerster, K. Tuyls, and T. Graepel. The mechanics of
n-player differentiable games. In ICML, 2018.

A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural image
synthesis. In ICLR, 2019.

A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss surfaces of multilayer
networks. In Artificial Intelligence and Statistics, 2015.

10

Under review as a conference paper at ICLR 2020

C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng. Training GANs with optimism. In ICLR, 2018.

Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identifying and attacking
the saddle point problem in high-dimensional non-convex optimization. In NeurIPS, 2014.

F. Draxler, K. Veschgini, M. Salmhofer, and F. Hamprecht. Essentially no barriers in neural network
energy landscape. In ICML, 2018.

G. Gidel, H. Berard, P. Vincent, and S. Lacoste-Julien. A variational inequality perspective on
generative adversarial nets. ICLR, 2019a.

G. Gidel, R. A. Hemmat, M. Pezeshki, G. Huang, R. Lepriol, S. Lacoste-Julien, and I. Mitliagkas.
Negative momentum for improved game dynamics. In AISTATS, 2019b.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks.
In AISTATS, 2010.

I. Goodfellow. Neurips 2016 tutorial: Generative adversarial networks. arXiv:1701.00160, 2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In NeurIPS, 2014.

I. J. Goodfellow, O. Vinyals, and A. M. Saxe. Qualitatively characterizing neural network optimization
problems. In ICLR, 2015.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of
wasserstein GANs. In NeurIPS, 2017.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two
time-scale update rule converge to a local nash equilibrium. In NeurIPS, 2017.

K. Kawaguchi. Deep learning without poor local minima. In NeurIPS, 2016.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

G. Korpelevich. The extragradient method for finding saddle points and other problems. Matecon,
1976.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. In NeurIPS, 2012.

Y. LeCun, C. Cortes, and C. Burges. MNIST handwritten digit database. AT&T Labs [Online].
Available: http://yann. lecun. com/exdb/mnist, 2010.

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural nets. In
NeurIPS, 2018a.

J. Li, A. Madry, J. Peebles, and L. Schmidt. On the limitations of first order approximation in gan
dynamics. In ICML, 2018b.

E. Mazumdar and L. J. Ratliff. On the convergence of gradient-based learning in continuous games.
ArXiv, 2018.

E. V. Mazumdar, M. I. Jordan, and S. S. Sastry. On finding local nash equilibria (and only local nash
equilibria) in zero-sum games. arXiv, 2019.

L. Mescheder, S. Nowozin, and A. Geiger. The numerics of GANs. In NeurIPS, 2017.

L. Mescheder, A. Geiger, and S. Nowozin. Which Training Methods for GANs do actually Converge?
In ICML, 2018.

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative adversarial
networks. In ICLR, 2018.

11

Under review as a conference paper at ICLR 2020

V. Nagarajan and J. Z. Kolter. Gradient descent GAN optimization is locally stable. In NeurIPS,
2017.

W. Paul. Electromagnetic traps for charged and neutral particles. Reviews of modern physics, 1990.

B. A. Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 1994.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. In ICLR, 2016.

L. J. Ratliff, S. A. Burden, and S. S. Sastry. On the characterization of local nash equilibria in
continuous games. In IEEE Transactions on Automatic Control, 2016.

L. Sagun, L. Bottou, and Y. LeCun. Eigenvalues of the hessian in deep learning: Singularity and
beyond. arXiv, 2016.

L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou. Empirical analysis of the hessian of
over-parametrized neural networks. arXiv, 2017.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques
for training GANs. In NeurIPS, 2016.

R. Thompson, T. Harmon, and M. Ball. The rotating-saddle trap: A mechanical analogy to rf-electric-
quadrupole ion trapping? Canadian journal of physics, 2002.

F. Verhulst. Nonlinear differential equations and dynamical systems. Springer Science & Business
Media, 1989.

Y. Yazıcı, C.-S. Foo, S. Winkler, K.-H. Yap, G. Piliouras, and V. Chandrasekhar. The unusual
effectiveness of averaging in GAN training. In ICLR, 2019.

12

Under review as a conference paper at ICLR 2020

A PROOF OF THEOREMS AND PROPOSITIONS

A.1 PROOF OF THEOREM 1

Let us recall the theorem of interest:
Proposition’ 1. Let us assume that (6) is an equality and that ∇v(ω∗) is diagonalizable, then there
exists a basis P such that the coordinates ω̃(t) := P (ω(t)− ω∗) have the following behavior,

1. For λj ∈ Sp∇v(ω∗), λj ∈ R, we observe pure attraction: ω̃j(t) = e−λjt[ω̃j(0) .

2. For λj ∈ Sp∇v(ω∗), <(λj) = 0, we observe pure rotation:
[
ω̃j(t)
ω̃j+1(t)

]
= R|λj |t

[
ω̃j(0)
ω̃j+1(0)

]
.

3. Otherwise, we observe both:
[
ω̃j(t)
ω̃j+1(t)

]
= e−Re(λj)tRIm(λj)t

[
ω̃j(0)
ω̃j+1(0)

]
.

The matrix Rϕ corresponds to a rotation of angle ϕ. Note that, we re-ordered the eigenvalues such
that the complex conjugate eigenvalues form pairs: if λj /∈ R then λj+1 = λ̄j .

Proof. The ODE we consider is,

dω(t)

dt
= ∇v(ω∗)(ω(t)− ω∗) (9)

The solution of this ODE is

ω(t) = e−(t−t0)∇v(ω∗)(ω(t0)− ω∗) + ω∗ (10)

Let us now consider λ an eigenvalue of Sp(∇v(ω∗)) such that Re(λ) > 0 and Im(λ) 6= 0. Since
∇v(ω∗) is a real matrix and Im(λ) 6= 0 we know that the complex conjugate λ̄ of λ belongs to
Sp(∇v(ω∗)). Let u0 be a complex eigenvector of λ, then we have that,

∇v(ω∗)u0 = λu0 ⇒ ∇v(ω∗)ū0 = λ̄ū0 (11)

and thus ū0 is a eigenvector of λ̄. Now if we set u1 := u0 + ū0 and iu2 := u0 − ū0, we have that

e−t∇v(ω∗)u1 = e−tλu0 + e−tλ̄ū0 = Re(e−tλ)u1 + Im(e−tλ)u2 (12)

e−t∇v(ω∗)iu2 = e−tλu0 − e−tλ̄ū0 = i(Re(e−tλ)u2 − Im(e−tλ)u1) (13)

Thus if we consider the basis that diagonalizes ∇v(ω∗) and modify the complex conjugate eigenval-
ues in the way we described right after 11 we get the expected diagonal form in a real basis. Thus
there exists P such that

∇v(ω∗) = PDP−1 (14)
whereD is the block diagonal matrix with the block described in Theorem 1.

A.2 BEING A DNE IS NEITHER NECESSARY OR SUFFICIENT FOR BEING A LSSP

Let us first recall Example 1.
Example’ 1. Let us consider LG as a hyperbolic paraboloid (a.k.a., saddle point function) centered
in (1, 1) where (1, ϕ) is the principal descent direction and (−ϕ, 1) is the principal ascent direction,
while LD is a simple bilinear objective.

LG(θ1, θ2, ϕ) = (θ2 − ϕθ1 − 1)2 − 1
2 (θ1 + ϕθ2 − 1)2 , LD(θ1, θ2, ϕ) = ϕ(5θ1 + 4θ2 − 9)

We want to show that (1, 1, 0) is a locally stable stationary point.

Proof. The game vector field has the following form,

v(θ1, θ2, ϕ) =

(2ϕ2 − 1)θ1 − 3ϕθ2 + 2ϕ+ 1
(2− ϕ2)θ2 − 3ϕθ1 − 2 + ϕ

5θ1 + 4θ2 − 9

 (15)

13

Under review as a conference paper at ICLR 2020

Thus, (θ∗1 , θ
∗
2 , ϕ
∗) := (1, 1, 0) is a stationary point (i.e., v(θ∗1 , θ

∗
2 , ϕ
∗) = 0). The Jacobian of the

game vector field is

∇v(θ1, θ2, ϕ) =

2ϕ2 − 1 −3ϕ 2− 3θ2

−3ϕ 2− ϕ2 1− 3θ1

5 4 0

 , (16)

and thus,

∇v(θ∗1 , θ
∗
2 , ϕ
∗) =

(−1 0 −1
0 2 −2
5 4 0

)
. (17)

We can verify that the eigenvalues of this matrix have a positive real part with any solver (the
eigenvalues of a 3× 3 always have a closed form) . For completeness we provide a proof without
using the closed form of the eigenvalues. The eigenvalues∇v(θ∗1 , θ

∗
2 , ϕ
∗) are given by the roots of

its characteristic polynomial,

χ(X) :=

∣∣∣∣∣X + 1 0 1
0 X − 2 2
−5 −4 0

∣∣∣∣∣ = X3 −X2 + 11X − 2 . (18)

This polynomial has a real root in (0, 1) because χ(0) = −2 < 0 < 9 = χ(1). Thus we know that,
there exists α ∈ (0, 1) such that,

X3 −X2 + 11X − 2 = (X − α)(X − λ1)(X − λ2) . (19)

Then we have the equalities,

αλ1λ2 = 2 (20)
α+ λ1 + λ2 = 1 . (21)

Thus, since 0 < α < 1, we have that,

• If λ1 and λ2 are real, they have the same sign λ1λ2 = 2/α > 0) and thus are positive
(λ1 + λ2 = 1− α > 0).

• If λ1 is complex then λ2 = λ̄1 and thus, 2<(λ1) = λ1 + λ2 = 1− α > 0.

Example 1 showed that LSSP did not imply DNE. Let us construct an example where a game have a
DNE which is not locally stable.

Example 2. Consider the non-zero-sum game with the following respective losses for each player,

L1(θ, φ) = 4θ2 + (1
2φ

2 − 1) · θ and L2(θ, φ) = (4θ − 1)φ+ 1
6θ

3 (22)

This game has two stationary points for θ = 0 and φ = ±1. The Jacobian of the dynamics at these
two points are

∇v(0, 1) =

(
1 1/2
2 1/2

)
and ∇v(0,−1) =

(
1 −1/2
2 −1/2

)
(23)

Thus,

• The stationary point (0, 1) is a DNE but Sp(∇v(0, 1)) = { 3±
√

17
4 } contains an eigenvalue

with negative real part and so is not a LSSP.

• The statioanry point (0,−1) is not a DNE but Sp(∇v(0, 1)) = { 1±i
√

7
4 } contains only

eigenvalue with positive real part and so is a LSSP.

14

Under review as a conference paper at ICLR 2020

B COMPUTATION OF THE TOP-K EIGENVALUES OF THE JACOBIAN

Neural networks usually have a large number of parameters, this usually makes the storing of the full
Jacobian matrix impossible. However the Jacobian vector product can be efficiently computed by
using the trick from (Pearlmutter, 1994). Indeed it’s easy to show that∇v(ω)u = ∇(v(ω)Tu).

To compute the eigenvalues of the Jacobian of the Game, we first compute the gradient v(ω) over
a subset of the dataset. We then define a function that computes the Jacobian vector product using
automatic differentiation. We can then use this function to compute the top-k eigenvalues of the
Jacobian using the sparse.linalg.eigs functions of the Scipy library.

C EXPERIMENTAL DETAILS

C.1 MIXTURE OF GAUSSIAN EXPERIMENT

Dataset. The Mixture of Gaussian dataset is composed of 10,000 points sampled independently from
the following distribution pD(x) = 1

2N (2, 0.5) + 1
2N (−2, 1) where N (µ, σ2) is the probability

density function of a 1D-Gaussian distribution with mean µ and variance σ2. The latent variables
z ∈ Rd are sampled from a standard Normal distributionN (0, Id). Because we want to use full-batch
methods, we sample 10,000 points that we re-use for each iteration during training.

Neural Networks Architecture. Both the generator and discriminator are one hidden layer neural
networks with 100 hidden units and ReLU activations.

WGAN Clipping. Because of the clipping of the discriminator parameters some components of the
gradient of the discriminator’s gradient should no be taken into account. In order to compute the
relevant path angle we apply the following filter to the gradient:

1 {(|ϕ| = c) and (sign∇ϕLD(ω) = −signϕ)} (24)

where ϕ is clipped between −c and c. If this condition holds for a coordinate of the gradient then it
mean that after a gradient step followed by a clipping the value of the coordinate will not change.

Hyperparameters for WGAN-GP on MoG
Batch size = 10, 000 (Full-Batch)
Number of iterations = 30, 000
Learning rate for generator = 1× 10−2

Learning rate for discriminator = 1× 10−1

Gradient Penalty coefficient = 1× 10−3

Hyperparameters for NSGAN on MoG
Batch size = 10, 000 (Full-Batch)
Number of iterations = 30, 000
Learning rate for generator = 1× 10−1

Learning rate for discriminator = 1× 10−1

C.2 MNIST EXPERIMENT

Dataset We use the training part of MNIST dataset LeCun et al. (2010) (50K examples) for training
our models, and scale each image to the range [−1, 1].

Architecture We use the DCGAN architecture Radford et al. (2016) for our generator and discrimi-
nator, with both the NSGAN and WGAN-GP objectives. The only change we make is that we replace
the Batch-norm layer in the discriminator with a Spectral-norm layer Miyato et al. (2018), which we
find to stabilize training.

Training Details

15

Under review as a conference paper at ICLR 2020

Hyperparameters for NSGAN with Adam
Batch size = 100
Number of iterations = 100, 000
Learning rate for generator = 2× 10−4

Learning rate for discriminator = 5× 10−5

β1 = 0.5

Hyperparameters for NSGAN with ExtraAdam
Batch size = 100
Number of iterations = 100, 000
Learning rate for generator = 2× 10−4

Learning rate for discriminator = 5× 10−5

β1 = 0.9

Hyperparameters for WGAN-GP with Adam
Batch size = 100
Number of iterations = 200, 000
Learning rate for generator = 8.6× 10−5

Learning rate for discriminator = 8.6× 10−5

β1 = 0.5
Gradient penalty λ = 10
Critic per Gen. iterations λ = 5

Hyperparameters for WGAN-GP with ExtraAdam
Batch size = 100
Number of iterations = 200, 000
Learning rate for generator = 8.6× 10−5

Learning rate for discriminator = 8.6× 10−5

β1 = 0.9
Gradient penalty λ = 10
Critic per Gen. iterations λ = 5

Computing Inception Score on MNIST We compute the inception score (IS) for our models
using a LeNet classifier pretrained on MNIST. The average IS score of real MNIST data is 9.9.

C.3 PATH-ANGLE PLOT

We use the path-angle plot to illustrate the dynamics close to a LSSP. To compute this plot, we
need to choose an initial point ω and an end point ω′. We choose the ω to be the parameters at
initialization, but ω′ can more subtle to choose. In practice, when we use stochastic gradient methods
we typically reach a neighborhood of a LSSP where the norm of the gradient is small. However, due
to the stochastic noise, we keep moving around the LSSP. In order to be robust to the choice of the
end point ω′, we take multiple close-by points during training that have good performance (e.g., high
IS in MNIST). In all of figures, we compute the path-angle (and path-norm) for all these end points
(with the same start point), and we plot the median path-angle (middle line) and interquartile range
(shaded area).

C.4 INSTABILITY OF GRADIENT DESCENT

For the MoG dataset we tried both the extragradient method (Korpelevich, 1976; Gidel et al., 2019a)
and the standard gradient descent. We observed that gradient descent leads to unstable results. In

16

Under review as a conference paper at ICLR 2020

particular the norm of the gradient has very large variance compared to extragradient this is shown in
Fig. 7.

0.0 0.5 1.0 1.5 2.0 2.5
Nb of iterations 1e4

10 4

10 3

10 2

Gr
ad

ie
nt

 N
or

m

Gradien Descent
Extragradient

Figure 7: The norm of gradient during training for the standard GAN objective. We observe that
while extra-gradient reaches low norm which indicates that it has converged, the gradient descent on
the contrary doesn’t seem to converge.

C.5 ADDITIONAL RESULTS WITH ADAM

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Linear Path

103

104

Gr
ad

ie
nt

 N
or

m

0.003
0.002
0.001

0.000
0.001
0.002
0.003
0.004
0.005

Pa
th

 A
ng

le

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Linear Path

102

103

104

Gr
ad

ie
nt

 N
or

m

0.015

0.010

0.005

0.000

0.005

0.010

0.015

Pa
th

 A
ng

le

0 500 1000 1500 2000
Real Part

30

20

10

0

10

20

30

Im
ag

in
ar

y
Pa

rt

end
init

(a) NSGAN on MNIST, IS: 8.95

75 50 25 0 25 50 75
Real Part

200

150

100

50

0

50

100

150

200

Im
ag

in
ar

y
Pa

rt

end
init

(b) WGAN-GP on MNIST, IS: 9.30

Figure 8: Path-angle and Eigenvalues computed on MNIST with Adam.

17

Under review as a conference paper at ICLR 2020

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Linear Path

102

103

104

Gr
ad

ie
nt

 N
or

m

0.002

0.001

0.000

0.001

0.002

0.003

Pa
th

 A
ng

le

200 100 0 100 200
Real Part

1000

500

0

500

1000

Im
ag

in
ar

y
Pa

rt

end
init

Figure 9: Path-angle and Eigenvalues for NSGAN on CIFAR10 computed on CIFAR10 with Adam. We can see
that the model has eigenvalues with negative real part, this means that we’ve actually reached an unstable point.

18

	Introduction
	Related work
	Formulations for GAN optimization and their practical implications
	The standard game theory formulation
	An alternative formulation based on the game vector field
	Rotation and attraction around locally stable stationary points in games

	Visualization for the vector field landscape
	Standard visualizations for the loss surface
	Proposed visualization: Path-angle
	Archetypal behaviors of the Path-angle around a LSSP

	Numerical results on GANs
	Evidence of rotation around locally stable stationary points in GANs
	The locally stable stationary points of GANs are not local Nash equilibria

	Discussion
	Proof of theorems and propositions
	Proof of Theorem 1
	Being a DNE is neither necessary or sufficient for being a LSSP

	Computation of the top-k Eigenvalues of the Jacobian
	Experimental Details
	Mixture of Gaussian Experiment
	MNIST Experiment
	Path-Angle Plot
	Instability of Gradient Descent
	Additional Results with Adam

