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ABSTRACT

Spherical CNNs are convolutional neural networks that can process signals on the
sphere, such as global climate and weather patterns or omnidirectional images.
Over the last few years, a number of spherical convolution methods have been
proposed, based on generalized spherical FFTs, graph convolutions, and other
ideas. However, none of these methods is simultaneously equivariant to 3D ro-
tations, able to detect anisotropic patterns, computationally efficient, agnostic to
the type of sample grid used, and able to deal with signals defined on only a part
of the sphere. To address these limitations, we introduce the Gauge Equivariant
Spherical CNN. Our method is based on the recently proposed theory of Gauge
Equivariant CNNs, which is in principle applicable to signals on any manifold,
and which can be computed on any set of local charts covering all of the manifold
or only part of it. In this paper we show how this method can be implemented
efficiently for the sphere, and show that the resulting method is fast, numerically
accurate, and achieves good results on the widely used benchmark problems of
climate pattern segmentation and omnidirectional semantic segmentation.

1 INTRODUCTION

In many disciplines of science and engineering, spherical signals emerge naturally. In the earth and
climate sciences, globally distributed sensor arrays collect measurements like temperature, pres-
sure, wind directions, and many other variables. Cosmologists are interested in identifying physical
model parameters from real and simulated cosmic microwave background measurements sampled
on spherical sky maps. In robotics, especially in applications like SLAM and visual odometry, om-
nidirectional and fish-eye cameras are widely used. Thus, it is clear that efficient CNNs that can
directly operate on spherical signals are necessary.

When designing Spherical CNNs for these applications, there are a number of practical consider-
ations that need to be taken into account. Firstly, whereas planar images are always sampled on a
square grid, there is a wide variety of spherical grids, and the choice of sampling grid is usually
dictated by hardware or task-dependent requirements. Secondly, several applications require the
analysis of very high resolution spherical maps. Most existing algorithms cannot handle this scale.
Thirdly, in some cases data is only available on a part of the sphere. Fourthly, whereas several
graph-based and spectral methods can only learn isotropic blob-like filters, some problems require
the detection of anisotropic patterns. Finally, in almost in all cases, equivariance to rotations is a
sought-after property since results should never depend on how we orient the sphere.

The method we propose in this paper is based on the recently proposed theory of Gauge CNNs (Co-
hen et al., 2019). This framework has several appealing properties: (i) it provides a principled way
to achieve spatial and rotational weight-sharing on the sphere, (ii) it naturally allows for processing
geometric features such as scalar, vector and tensor fields in an anisotropic and equivariant manner,
and (iii) it makes it possible in principle to process a signal on overlapping local charts, in case data
is not available for the whole sphere or when the whole signal does not fit in memory. To the best of
our knowledge, we present the first implementation of a Gauge CNNs on a manifold with non-trivial
curvature. We describe an efficient implementation which is, in principle, applicable to any grid on
the sphere. Experiments on spherical segmentation of climate patterns and omnidirectional images
demonstrate the effectiveness of our method. We show that our method is scalable and fast while
being as numerically accurate as the best existing Spherical CNNs.
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2 RELATED WORK

Conventional CNNs for Spherical Images. A line of prior work (Su & Grauman, 2017; Coors
et al., 2018) considers using planar CNNs on intrinsically spherical tasks such as omnidirectional
image segmentation. These approaches represent the spherical data on R2 via equirectangular pro-
jection which introduces position-dependent distortion rates due to curvature. In order to counteract
the varying distortion rates, Su & Grauman (2017) uses kernels with increasing support towards
the poles thus limiting parameter-sharing to only longitudes. Contrastingly, Coors et al. (2018) use
fixed-sized kernels sampled on the tangent plane of spherical signal for better parameter-sharing and
distortion invariance. Both methods assume a preferred orientation and are not SO(3) equivariant.

Spherical CNNs. Another line of work operates directly on S2 alleviating the issues related to
distortions caused by projection. Boomsma & Frellsen (2017) proposes spherical convolutions for
molecular modeling in both volumetric and mesh representations. Perraudin et al. (2018) proposes
a graph-based spherical convolution for cosmological model classification. A subset of this line
(Kondor et al., 2018; Cohen et al., 2018; Esteves et al., 2018) extends group equivariance (Cohen &
Welling (2016)) over SO(3). Esteves et al. (2018) uses spherical convolutions computed by spherical
FFTs. Similarly, Cohen et al. (2018) proposes a spherical correlation operation based on the SO(3)-
FFT. As a result both methods have inbuilt rotation equivariance property. However, the Generalized
FFT algorithms used only work on inhomogeneous grids that over-sample the poles, and in practice
the FFT-based methods are slow.

Recently, a number of spherical CNNs that parametrize the sphere with icosahedral tiling have been
proposed (Jiang et al., 2019; Zhang et al., 2019; Liu et al., 2019; Cohen et al., 2019). These methods
are tailored for the icosphere grid since this grid is quite regular and its charts can be easily mapped
on R2 allowing highly optimized convolution routines to be used. Out of these methods, Gauge
Equivariant Icosahedral CNN of Cohen et al. (2019) is the most similar to our method. However,
their model operates on the icosahedron, which is only an approximation of the sphere, while ours
operates on the sphere. Even though their method is fast and accurate, it is only equivariant to
discrete icosahedral symmetries, while our method is fully SO(3)-equivariant. In comparison to all
methods in this category, our method is agnostic to sampling grid used and better suited for larger
scale problems.

Geometric Deep Learning. There have been a number of attempts to generalize convolution oper-
ator to manifolds in the geometric deep learning field (Bronstein et al., 2017). The key issue with
manifold convolution is the lack of globally consistent reference frames attached to points over a
manifold. Therefore, unlike shifting a filter over a flat image grid with a clear sense of up/down and
left/right, it is not clear how to place the convolution kernel. To overcome this issue, Bruna et al.
(2014); Boscaini et al. (2015) have used isotropic filters at the expense of kernel expressivity. Masci
et al. (2015) have applied filters in fixed number of orientations and accumulated the responses
via max pooling, losing the orientation information. Recently proposed Gauge Equivariant CNNs
(Cohen et al., 2019) have shown that it is possible to have both expressive kernels and orientation in-
formation by allowing the network response change equivariantly with respect to arbitrarily chosen
local reference frames (i.e. gauges).

3 CONTINUOUS THEORY OF GAUGE CNNS

In this section we will review the mathematical theory of gauge CNNs on general manifolds, as
presented in Cohen et al. (2019). Specifically, we will define a mathematical model of feature
spaces as fields, and show how one can define a convolution-like operation that only makes use of
the intrinsic structure of the manifold.

3.1 GEOMETRICAL FEATURES & GAUGE TRANSFORMATIONS

The feature spaces in Gauge CNNs are modelled as fields f over a manifold M . For example, the
input data could be a vector field of wind directions on earth, or a scalar field of intensity values on
the plane (a grayscale image), or a field of diffusion tensors on R3. We will refer to such quantities
(scalars, vectors, tensors, and others) as geometrical features and speak of a field of geometrical
features or geometrical feature field. Even if the input data consists only of scalars, one might
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want to use other kinds of fields for the internal representation learned by the network, so we will
describe Gauge CNNs for general fields. Because we are primarily interested in the 2-sphere S2, we
will specialize to the case of d = 2 dimensional Riemannian manifolds.

In computer science it is common to think of a vector or tensor as a list or array of num-
bers, but from a physical or mathematical perspective these are geometrical quantities that ex-
ist independent of a coordinatization / choice of basis. To represent a geometrical feature nu-
merically however, we need to choose a frame for the tangent space TpM at each position
p ∈ M . A smooth choice of frame is also known as a gauge. Mathematically, a gauge can
be defined as a smoothly parameterized set of linear maps wp : Rd → TpM (see Fig. 1).

Figure 1: The exponential map and the gauge
wp : R2 → TpM . The exponential map
takes a tangent vector V ∈ TpM and follows
the geodesic starting at p with speed ‖V ‖ for
one unit of time, to arrive at qv = expp V ∈
M . Figure courtesy of Cohen et al. (2019).

Since the choice of gauge is arbitrary, we should
consider what happens to the coefficients of geomet-
ric features if we change it (i.e. apply a gauge trans-
formation). Consider first the coefficients f(p) = v
of a tangent vector V in the tangent space TpM at
p ∈M , expressed as a pair of numbers v = (v1, v2)
relative to an orthogonal frame (wp(e1), wp(e2)) at
p. If we rotate the frame at p by r ∈ SO(2), i.e.
wp 7→ wp ◦ r, then the coefficient vector trans-
forms as v 7→ r−1v. The vector itself is an abstract
geometrical quantity, invariant to gauge transforma-
tions: V = (wpr)r

−1v = wpv.

Note that we are free to change the gauge not just at one point, but at all positions simultaneously in
an arbitrary (smooth) way. However, since we will only want to work with right-handed orthogonal
frames, we only need to consider rotations of the frames. Thus, for our purposes we can define a
gauge transformation as a smoothly varying choice of rotation rp ∈ SO(2).

Beyond scalars (which are invariant to gauge transformations) and vectors (which transform like
f(p) 7→ r−1

p f(p)), we will want to consider more general kinds of geometrical features. A (2, 0)-
tensor, for instance, is (a linear combination of) tensor products V ⊗W of vectors V,W ∈ TpM .
Given a frame, such a tensor is represented as a d × d matrix. Under a change of frame, a matrix
f(p) will transform like f(p) 7→ rpf(p)r

−1
p . We can also flatten the matrix into a d2-dimensional

coordinate vector f(p), and write the transformation as f(p) 7→ (rp⊗ rp)f(p), where rp⊗ rp is the
Kronecker product.

The tensor product ρ(r) = r ⊗ r is an example of a group representation. This is a map ρ : G →
GL(C,R) taking each element r of G (the rotation group SO(2) in our case) to an invertible matrix
ρ(r) that acts on an C-dimensional feature vector. To be called a representation, it has to satisfy
ρ(rr′) = ρ(r)ρ(r′), which is easily checked for the tensor / Kronecker product.

Thus, we can generalize to geometric feature fields that transform like f(p) 7→ ρ(r−1
p )f(p) under

gauge transformations, for any group representation ρ of SO(2). We will refer to such fields as
a ρ-field or a field of type ρ. In a gauge equivariant CNN, one chooses for each feature space
of the network such a representation ρ that determines the kind of features learned by that layer.
The network is constructed such that a gauge transformation applied to the input will result in a
corresponding gauge transformation in each feature space. The dimension C of ρ is equal to what
is normally called the number of channels in the feature space. Typically, one would choose ρ to be
block-diagonal, containing for instance a number of scalar fields (1×1 blocks ρi(r) = 1), a number
of vector fields, etc. The number of copies of each type of feature is called its multiplicity.

3.2 GAUGE EQUIVARIANT CONVOLUTION

For each layer of the network, we want to interpret both the input and output as fields of geometrical
features. If we apply a gauge transformation, the input coefficients change (f(p) 7→ ρ(r−1

p )f(p)),
and we want the same to happen to the output (gauge equivariance), so that we may interpret it
as the coefficients of a geometrical quantity relative to a gauge. In this section we will define a
convolution-like operation that has this property.
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The classical convolution operation involves summing or integrating the product of a filter and the
input signal over a local region. If we want to generalize this to fields on a manifold, we run into
a difficulty: the geometric feature f(p) and f(q) at different points p and q in M live in a different
vector space, and so we cannot directly compare them or add them up. For instance, if we have two
tangent vectors V ∈ TpM and W ∈ TqM , how can we say that they are “the same” or add them
up? Having chosen a frame for TpM and TqM we could add the coordinate vectors v ∈ R2 and
w ∈ R2, but because we can change the gauge of both tangent spaces independently, the result is
not the coefficient vector of any invariant geometrical quantity.

The solution is to apply parallel transport to the feature vectors before adding them up. Given a
curve from q to p, we can transport a vectorW ∈ TqM to TpM by applying a rotation rp←q ∈ SO(2)
to its coefficient vectorw. Since we can interpret rp←qw as a vector in TpM , the quantity v+rp←qw
is well-defined. In general, for other kinds of geometrical features, parallel transport acts via ρ, i.e.
we can add v + ρ(rp←q)w. We will use this in the definition of the gauge equivariant convolution.

Following Masci et al. (2015), we parameterize a local neighborhood around p ∈M by the tangent
plane TpM ' R2 via exponential map (see Fig. 1). That is, we index nearby points q by tangent
vectors using the exponential map, by defining qv = expp wpv for v ∈ R2 (“Riemannian normal
coordinates”). The convolution is then defined by transporting for each nearby point qv the feature
vector f(qv) to p by computing ρ(rp←qv )f(qv), transforming the resulting features at p using a
learned kernel K : R2 → RCout×Cin , and integrating the result over the support of K in R2:

ψ ? f(p) =

∫
R2

K(v)ρin(rp←qv )f(qv)dv. (1)

As shown by Cohen et al. (2019), this operation is gauge equivariant if and only if K(v) satisfies

K(r−1v) = ρout(r
−1)K(v)ρin(r). (2)

In section 4.4 we show how we can parameterize such a kernel via rotational weight-sharing.

3.3 EQUIVARIANCE TO SO(3)

In addition to gauge equivariance, SO(3) equivariance is a desirable property for a Spherical CNN
(Cohen et al., 2018). This means that if we apply a 3D rotation to the input of the network, the
output is also rotated. In this section we show that the gauge equivariant convolution as defined is
also equivariant to SO(3).

Consider a local patch on the sphere (e.g. the support of the kernel), and the signal defined there.
When we rotate the sphere, the patch is moved to another place, and it may change its orientation.
Moving the patch is not a problem: at the new position we apply the same kernel K, so one expects
that the convolution result at the new position equals the convolution result of the original signal at
the old position. However, since the orientation of the kernel is determined by the gauge (which is
arbitrary but fixed) and because we can arbitrarily change the orientation of the patch by rotating
around its center, the kernel and the patch may be matched in a different relative orientation after
applying the rotation. Fortunately, because the kernel satisfies Eq. 2, the result will be equivalent up
to a gauge transformation acting by ρout, and so we have SO(3) equivariance.

Thus, in the continuous theory, the gauge equivariant convolution is also SO(3) equivariant. How-
ever, as we will see, making sure that this holds in a discrete implementation is not entirely trivial.

4 DISCRETE IMPLEMENTATION OF SPHERICAL GAUGE CNNS

The theory covered so far tells us how, mathematically, we can define a convolution-like operation
that is gauge equivariant. However, it does not tell us exactly how to implement it on a computer, in
order to process discretely sampled signals on a manifold. How we do this exactly can have a large
effect on the efficiency and numerical accuracy of the method.

A signal is represented as a list of values fi = f(pi) associated with a finite number of points
pi ∈ V ⊂ S2 (see Sec. 4.1). We assume that the kernel K(v) has local support, so K(v) = 0
whenever ‖v‖ > R for some radius R. Equivalently, we can say that q ∈ S2 only contributes to the
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convolution result at p ∈ S2 if the geodesic distance between p and q is smaller thanR. Accordingly,
we define the set of neighbors N (p) of p as the set of points q within radius R from p.

A simple way of discretizing the gauge convolution (Eq. 1) is to replace the integral over R2 (iden-
tified with TpM ) by a sum over neighbors of p. Each neighbor can be associated with a tangent
vector via the logarithmic map: vpq = logp q. This yields the following approximation:

ψ ? f(p) =
∑

q∈N (p)

K(vpq)ρin(rp←q)f(q) (3)

At this point it is worth comparing Eq. 3 to the simplest form of message-passing based graph
convolution (Kipf & Welling, 2017; Gilmer et al., 2017). In both cases, the result of convolution
is computed as a sum of messages comming from neighbors. In the case of graph CNNs, these
messages are computed as Af(q), where A is a weight matrix that is shared by all neighbors. So
graph convolutions use isotropic filters that cannot distinguish where the message comes from.

The gauge convolution sums messages of the form K(vpq)ρin(rp←q)f(q). Thus, the feature vectors
f(q) of neighbors q are transformed in a way that depends i) on the intrinsic geometry of the man-
ifold via rp←q and vpq , and ii) by a non-isotropic (but gauge-equivariant) learnable kernel K(vpq).
We can thus think of gauge convolutions (implemented in this way) as a more powerful version of
graph convolution that leverages the additional topological and metric structure of a Riemannian
manifold to process geometrical data in a more flexible manner.

The discrete gauge convolution is computed in a few steps, some of which are done during pre-
computation and some during the forward pass: i) the logarithmic map vpq = logp q, ii) the parallel
transporter rp←q , iii) the construction / parameterization of the kernel K(v), iv) the linear contrac-
tion of the kernel and the signal. We will discuss each of these in the following sections.

4.1 THE ICOSPHERE GRID

The sphere does not admit perfectly symmetrical and homogeneous high resolution grids. A grid
that is fairly homogeneous and has been used successfully in Spherical CNNs before is what we call
the icosphere grid (Jiang et al., 2019; Liu et al., 2019; Cohen et al., 2019). The icosphere grid can
be computed at different levels of resolution. The lowest resolution s = 0 has as points pi the 12
corners of the icosahedron. Higher resolutions are obtained by repeated subdivision of the triangular
faces of the icosahedron into 4 sub-triangles, followed by a projection of all points to the sphere.
The result is a grid Hs with 5 × 22s+1 + 2 points at subdivision level s. We emphasize that our
method is not in any way tailored to this grid, and other options such as HEALPix (Górski et al.,
2005) could easily be substituted.

4.2 PARALLEL TRANSPORTERS

Computing the logarithmic map and parallel transporters on a general manifold or mesh can be
somewhat involved, but fortunately they can be easily computed in closed form for the sphere.
Moreover, since we know the actual geometry of M = S2 (not just a discrete approximation), the
accuracy of the log-maps and transporters we compute is not affected by the grid type or resolution
as it would be if we only had e.g. a mesh approximating the sphere.

Note that since rp←q is a planar rotation, it is determined by where it sends a single (non-zero)
vector. We take the first basis vector bq1 = wq((1, 0)) and express it in 3D Euclidean coordinates.
We then rotate this vector by the angle ∠(p, q) = arccos 〈p, q〉 between p and q around the axis p×q
which is orthogonal to the pq plane. The resulting vector lies in the tangent plane at p. Then rp←q

is determined as the angle between this vector and the first basis vector bp1 = wp((1, 0)) in TpS2.

We precompute the transport angles for every point p in the grid V and every q ∈ N (p). This results
in an array of angles of size num_v × num_neigh where num_v = |V| and num_neigh =
maxp∈V |N (p)| is the maximum neighborhood size. For nodes with a non-maximal number of
neighbors, we pad with zeros.
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4.3 LOGARITHMIC MAPS

For each p ∈ V and q ∈ N (p) we need to compute vpq = logp q, which is the vector in TpS2 that
points in the direction of q and has length equal to the geodesic distance between p and q. One way
to compute the log map is to project the 3D Euclidean difference vector q − p to the tangent plane
at p. This produces a vector ṽ which has the right direction. Then one can scale the length of ṽ so
that it matches the geodesic distance d(p, q) (the arclength):

logp q = d(p, q)
q − 〈p, q〉p
‖q − 〈p, q〉p‖

(4)

We express the result vpq = logp q in polar coordinates. This gives two arrays log_map_r (the
length / radial coordinate of v) and log_map_angle (the angular part of v, relative to the gauge
at p). Both are shaped num_v × num_neigh as before. Since the geometry and grid are fixed,
these arrays are computed only once before training.

4.4 PARAMETERIZATION OF THE KERNEL

The kernel K(v) is defined as a continuous matrix-valued function of R2 that satisfies the kernel
constraint (Eq. 2). In a classical CNN, where we are dealing with a homogeneous grid of pixels
in R2, we can define a small (e.g. 3 × 3) set of neighboring pixels N (p) = {p + v(i)}i so that
we only ever need to evaluate the kernel at a small number (e.g. 9) of points v(i). This results in a
parameterization of K as an array with Cout × Cin × 3× 3 learnable coefficients.

On the sphere there are no perfectly homogeneous grids, so depending on the point p ∈ V where
we are evaluating the convolution ψ ? f , the neighborhood structureN (p) may look quite different.
Hence, the points vpq ∈ R2 where we need to evaluate K will differ as well. For this reason, we
parameterize K as a linear combination of analytically determined continuous basis kernels. The
linear coefficients will be learned.

We assume that ρin and ρout are block-diagonal with irreducible representations (irreps) as blocks
(any SO(2) representation can be brought to this form by a change of basis). In this case the kernel
takes on a block structure as well, with each block corresponding to a particular input/output irrep
(Cohen & Welling, 2017), with irreps labelled by integer frequency n ≥ 0 (Worrall et al., 2017) (see
Appendix C). So we will focus on the case where both input and output representation consist of a
single irrep, and construct the full kernel block-wise as described in Appendix A.

As derived in Appendix C, the analytical solutions to Eq. 2 can be split in a independent radial part
and angular part. The solutions for the angular part K(θ) are shown in Table 1, while the radial part
is unconstrained. So if a set of radial functions {Ra(r)} are chosen, and {Kb(θ)} is the complete
set of angular solutions, the parameterized kernel is: K(r, θ) =

∑
ab wabRl(a)Kb(θ) for weights

w. Hereafter, we denote one such solution as Ki, so that the parameterized kernel is
∑

i wiKi. The
number of basis-kernels is called num_basis.

ρin → ρout Linearly independent solutions for K(θ)

ρ0 → ρ0 1
ρn → ρ0 (cosnθ sinnθ) , (sinnθ − cosnθ)

ρ0 → ρm

(
cosmθ
sinmθ

)
,

(
sinmθ
− cosmθ

)
ρn → ρm

(
c− −s−
s− c−

)
,
(
s− c−
−c− s−

)
,
(
c+ s+

s+ −c+

)
,
(
−s+ c+
c+ s+

)
Table 1: Solutions to the angular kernel constraint for kernels that map from ρn to ρm. We denote
c± = cos(m± n)θ, s± = sin(m± n)θ.

Since the geometry and grid are fixed, we can precompute the basis kernels evaluated at all required
points. That is, for each p ∈ V and q ∈ N (p) we evaluate each basis kernel contracted with the
input representation Ki(vpq)ρin(rp←q) where rp←q and vpq are as computed in Section 4.2 and 4.3.
The result of this precomputation is an array of shape num_basis × num_v × num_neigh ×
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c_out×c_in, where c_in and c_out are the dimensionality of ρin and ρout and also the number
of channels of the input and output signals.

4.5 COMPUTING THE CONVOLUTION

Having computed the basis kernels at each vpq , we can compute the discretized gauge convolution
(Eq. 3) as a linear contraction. This is done in two steps. Initially, we expand the signal f(p), which
has shape num_v× c_in, to f̂ of shape num_v× num_neigh× c_in. This is done so that f̂pq
is the value of the signal at the q-th neighbor of p.

Subsequently, we contract the signal f̂ with basis kernelsKi(vpq)ρin(rp←q) and weightswi to obtain
the convolution result ψ ? f of shape num_v× c_out. Since a basis-kernel Ki only acts on one
in/out irrep pair, it is mostly zero. In Appendix A, we detail how this block-sparsity can get exploited
for computational efficiency. We note that ψ ? f can easily be computed for a subset V ⊂ V .

4.6 NONLINEARITIES

For the network to be gauge equivariant, every layer should be gauge equivariant, including non-
linearities. Irrep features do not commute with pointwise nonlinearities (Worrall et al., 2017;
Thomas et al., 2018; Weiler et al., 2018; Kondor et al., 2018). However, we can perform a basis
transformation to a basis in which pointwise non linearities are approximately gauge equivariant.
Afterwards, we transform the basis back to the irreps.

For simplicity, we assume that the representation isU copies of ρ0⊕ρ1⊕...⊕ρM . One such copy can
be treated as the discrete Fourier modes of a circular signal with band limit M . An inverse Discrete
Fourier Transform (DFT) matrix can map these modes to N spatial samples. Under a gauge trans-
formation of a multiple of 2π/N , the samples are cyclically shifted. The resulting representation
can thus be called a regular representation and hence our procedure a RegularNonlinearity.
Non linearities that act pointwise on these samples, such as the ReLU, commute with such gauge
transformations. The procedure is however only approximately gauge equivariant under gauge trans-
formations of angles that are not multiples of 2π/N . Nevertheless, it can be shown that in the limit
N →∞, exact equivariance is restored.

5 QUADRATURE INTEGRATION

The implementation described in the previous section satisfies gauge equivariance exactly. In ad-
dition to gauge symmetry, the sphere has global rotational / SO(3) symmetry, and like previous
methods we would like our method to be equivariant to 3D rotations as well. In the continuous
case, gauge equivariance implies SO(3) equivariance, but the scheme above is not exactly SO(3)
equivariant due to discretization (see Figure 2a). In this section we describe a numerical method that
improves SO(3) equivariance at no additional computational cost during training.

Our general approach for computing ψ ? f(p) will be to interpolate the sample values at N (p)
to obtain a continuous function on R2, and then use quadrature integration to get a more precise
value for the integral. Quadrature is a general numerical technique for approximating integrals with
finite sums. For some region A and function g, the integral

∫
A
g(x)dx can be approximated by∑

x∈I ωxg(x), where I ⊂ A is some finite set of quadrature points, each with a weight ωx. The
goal is selecting I and ωx such that the approximation is accurate (or even exact), for functions g
satisfying some regularity assumptions (e.g. being band-limited). In our case, the region A is a disk
with as radius the support radius R of the kernel. The quadrature rule is described in Appendix B.

The signal at c ∈ I is inferred from the signals at N (p) by interpolation:

f̃p(c) =
1

Z(p, c)

∑
q∈N (p)

k(c, q)ρin(gp←q)f(q) (5)

where k(c, q) = exp (−||c− logp(q)||2/σ2) is a Gaussian kernel with scale σ, measuring distance
between c and q in the tangent space, and Z(p, c) =

∑
q∈N (p) k(c, q) is a normalizing constant.
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(a) Any spherical grid is irregular. For example, when the
the sphere is rotated, point p, with 5 nearby neighbors, can
be mapped to a grid point p′, which has 6 neighbors. As a
result, the naive method may fail to be rotation equivariant.
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q2
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(b) For each quadrature point c ∈ I
(green), the signal interpolated from the
neighbors N (p) (red). The convolu-
tion is equal to the sum over quadrature
points, but we only sum over neighbors
during the forward pass.

Figure 2: Quadrature Integration

We can now compute the integral over R2 by quadrature integration:

ψ ? f(p) =
∑
c∈I

ωcK(c)f̃p(c) (6)

The convolution Eq. 6 sums over a homogenized neighborhood and is thus more equivariant to
rotations of the sphere. See Figure 2b for an illustration. Equivariance improves if a large number of
quadrature points are used, which increases the computational cost. Luckily, since the composition
of linear operations is linear, we simplify:

ψ ? f(p) =
∑
c∈Ip

ωcK(c)f̃p(c) (7)

=
∑

q∈N (p)

∑
c∈Ip

ωck(c, q)

Z(p, c)
K(c)ρin(gp←q)f(q) (8)

=
∑

q∈N (p)

K̂(p, q)f(q) (9)

for a new kernel K̂(p, q) =
∑

c∈Ip
ωck(c,q)
Z(p,c) K(c)ρin(gp←q). The new kernel K̂ can be pre-computed

once, so that the convolution during run-time involves only a sum over the neighbors, just as in the
naive convolution (Eq. 3). The interpolation thus does not affect computational cost.

6 EXPERIMENTS

In this section, we present experimental results on three benchmark problems. Throughout this sec-
tion, we will refer to the gauge equivariant convolutions described in 4.5 as IrrepConvolution
and similarly refer to tailored batch normalization and nonlinearities as IrrepBatchNorm (nor-
malizing irreps instead of channels) and RegularNonlinearity as we name in our implementa-
tion. An IrrepConvolution and other operations are defined by specifying the number of input
and output multiplicities for each irrep order, in analogy to number of channels in regular CNNs. In
addition, we need to specify the types of irreps by their angular frequency. We do that by max freq
argument which determines the cutoff frequency. We will describe ρ by a parameter max freq and
multiplicity, and include each frequency 0, . . . ,max freq with the same multiplicity.

6.1 SPHERICAL MNIST

We perform a series of experiments on a toy dataset to validate the equivariance and generaliza-
tion properties of our gauge-equivariant spherical CNN. Specifically, we compare our method with
different filter sizes (1-ring, 2-ring) with and without interpolation, to previous methods.

8
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We follow a setup similar to that of Cohen et al. (2019) and generate Spherical MNIST in randomly
Rotated (R) and Non-rotated (N) conditions. For all experiments, we represent the signals on an
icospherical grid at level s = 4. For network architecture and training procedure, see Appendix D.

We present our results in Table 2 on three configurations of the Spherical MNIST dataset: N/N, N/R
and R/R, where X/Y means we train on X and test on Y. In addition, we run an ablation study to test
the effect of quadrature integration on equivariance. Whether interpolation is on or not, our method
performs similarly to two relevant spherical CNN baselines in terms of classification score on N/N.
We observe that our method automatically generalizes to 3D rotations without data augmentation
and thus compares favorably against IcoCNN in the N/R condition. However, in the ablation study,
we observe that our method’s generalization capability against 3D rotations drops in the absence of
interpolation, particularly when smaller (1-ring) filters are used. This result shows the usefulness of
quadrature integration when using small filters. As a final note, our results confirm the theoretical
result that gauge equivariance implies SO(3)-equivariance (Sec. 3.3).

Method N/N N/R R/R Time / epoch Complexity

S2CNN (Cohen et al., 2018) 99.38 99.38 99.12 380s O(N logN)
IcoCNN (Cohen et al., 2019) 99.43 69.99 99.31 72s O(N)

Ours (1-ring, interpolation) 99.47 97.65 99.24 94s O(N)
Ours (2-ring, interpolation) 99.51 99.32 99.43 284s O(N)
Ours (1-ring, no interpolation) 99.30 91.60 99.17 94s O(N)
Ours (2-ring, no interpolation) 99.45 98.48 99.28 284s O(N)

Table 2: We benchmark our spherical model against FFT-based S2CNN and the gauge-equivariant
Icosahedral CNN (IcoCNN) on Spherical MNIST.

6.2 CLIMATE PATTERN SEGMENTATION

We put our model to the test on a climate pattern segmentation dataset proposed by Mudigonda et al.
(2017). The dataset is collection of simulated climate variables over 20 years from the Community
Atmosphere Model CAM-5.0 (Neale et al., 2010). The task is to segment out regions of Atmospheric
Rivers (AR) and Tropical Cyclones (TC) from background (BG). We use the preprocessed data
released by Jiang et al. (2019) as is. The data consist of 16 channels sampled on an icospherical grid
at level s = 5 (i.e. 10242 vertices).

For this experiment, we use a residual U-Net architecture. Our residual blocks contain two blocks
of [IrrepConvolution, IrrepBatchNorm, RegularNonlinearity] and a skip connec-
tion. We set the multiplicity to 2 at the input resolution s = 5 and fix max freq = 2 throughout.
The rest of the encoder stream progressively reduces the grid resolution down to s = 0 while dou-
bling the multiplicities (and thus the number of channels) every time the resolution is decreased,
resulting in 196 channels. The decoder stream is mirror-symmetrical to the encoder, replacing
downsampling layers with upsampling layers. We use 2 residual blocks at each resolution level.
The network is trained for 60 epochs with an initial learning rate of 0.01 which is reduced by a
factor of 0.4 every 30 epochs. Batch size is 64. We use a weighted cross-entropy loss, due to class
imbalance following the setup of Jiang et al. (2019), with Adam optimizer (Kingma & Ba, 2015).

In Table 3, we present our results. Our model compares favorably against the two spherical CNNs
that have reported results on this dataset (Jiang et al., 2019; Zhang et al., 2019). Both methods
operate on the same icospherical grid as our method. Our method is on par with the Icosahedral
CNN of Cohen et al. (2019) on accuracy while significantly outperforming on the more relevant
mAP metric. We attribute this gain to the fact that our model reflects the geometry of the signal
more faithfully than IcoCNN which operates on an approximated sphere, namely, icosahedron.

6.3 OMNIDIRECTIONAL SEMANTIC SEGMENTATION

Next, we run our model in omnidirectional semantic segmentation task. For this experiment, we
use Stanford 2D3DS dataset which consists of 1413 omnidirectional RGBD images acquired in 6
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Method BG TC AR Average (%) mAP (%)

Jiang et al. (2019) 97.0 94.0 93.0 94.7 N/A
Zhang et al. (2019) 97.3 96.3 97.5 97.0 55.5
Cohen et al. (2019) 97.4 97.9 97.3 97.7 75.9

Ours 97.0 96.7 97.6 97.1 80.6

Table 3: Results on the Climate Pattern Segmentation task.

different locations with labels of 13 semantic categories. We are following the experimental setups
in (Jiang et al., 2019; Cohen et al., 2019) and report averages over 3 cross-validation splits.

We use a residual U-Net similar to what is described in 6.2. The only difference is that we use
4 residual blocks per resolution instead of 2. We train the network using weighted cross-entropy
loss and Adam optimizer for 100 epochs. We set batch size to 16 and initial learning rate to 0.01.
Learning rate is reduced by a factor of 0.7 every 20 epochs.

We report our results in Table 4. We observe that our rotation equivariant network performs similar
to the orientation-aware network of Zhang et al. (2019) while outperforming IcoCNN which is only
equivariant up to discrete subgroup, A5 (i.e. icosahedral group), of SO(3). We note that 2D3DS
is acquired with a preferred camera orientation rendering an additional challenge to our equivariant
model which assumes no preferred orientation. Yet, the comparison against orientation-aware model
of Zhang et al. (2019) reflects the expressive capability of ours despite the disadvantage.

Method Mean Accuracy (%) Mean IoU (%)

Jiang et al. (2019) 54.7 38.3
Cohen et al. (2019) 55.9 39.4
Zhang et al. (2019) 58.6 43.3
Ours 58.2 39.7

Table 4: Results on 2D3DS. Our model performs similarly to the orientation-aware Spherical CNN
of Zhang et al. (2019) while outperforming others including icosahedral CNN. Cohen et al. (2019).

7 CONCLUSION

We have introduced the gauge equivariant spherical CNN, which is simultaneously efficient, numer-
ically accurate, flexible with respect to the pixel grid used, and which can in principle be applied to
data that is defined on local parts of the sphere only. Additionally, it is the first implementation of
the theory of gauge CNNs for a manifold that is not locally flat. Our experimental results show that
the method is accurate and achieves strong performance on various benchmark problems. Moreover,
our method can be adapted to work on meshes, and we plan to work on this in the future.
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Taco Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In ICLR, 2018.

Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant convolu-
tional networks and the icosahedral cnn. In ICML, 2019.

Taco S Cohen and Max Welling. Steerable CNNs. In ICLR, 2017.

Benjamin Coors, Alexandru Condurache, and Andreas Geiger. Spherenet: Learning spherical rep-
resentations for detection and classification in omnidirectional images. In ECCV, 2018.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning so(3)
equivariant representations with spherical cnns. In ECCV, 2018.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
Message Passing for Quantum Chemistry. In ICML, 2017.
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A IMPLEMENTATION OUTLINE

This section outlines how the Gauge equivariant convolution is implemented. PyTorch notation is
used and some details are omitted. During pre-computation, the kernel tensor is constructed, which
is used during runtime to perform the convolution.

A naive implementation would construct for each basis kernel a large matrix mapping from all input
channels to all output channels. The parametrized kernel is then obtained from contracting these
with a weight vector, which has a weight for each basis kernel. However, this stack of basis kernels
would be very large for two reasons. Firstly, since the grid is irregular, a separate copy needs to be
stored for each point on the sphere. Secondly, it is common to use irreps of low orders, but use many
copies of those (so with a multiplicity larger than one), each having the same set of basis kernels.

We prevent creation of this large stack of basis kernels by exploiting the fact that each basis kernel
is a very sparse linear transformation, as it only has one irrep as input and one as output, making it
block-sparse. This allows us to group the basis kernels mapping from and to the same irrep. So we
can exploit the block-sparsity and also prevent allocating a kernel basis for each multiplicity.

The kernels between two irreps can be constructed as follows. Arguments are the orders of the input
and output irreps, a set of radial activation functions, and for each point p and neighbor q, the radius
and angle of the log map from p to q in the gauge at p, the parallel transport angle.

def build_kernel(order_in, order_out, radial_functions, log_map_r,
log_map_angle, transport, mask):

"""Last four arguments are [num_v, num_neigh].
Return [num_basis, num_v, num_neigh, dim_out, dim_in]."""
a_in = order_in * (log_map_angle - transport)
a_out = order_out * log_map_angle
cos_min = np.cos(a_out-a_in)
cos_plus = np.cos(a_out+a_in)
sin_min = np.sin(a_out-a_in)
sin_plus = np.sin(a_out+a_in)
if order_in == 0 or order_out == 0:

...
else:

angular_part = np.array([
[[cos_min, -sin_min], [sin_min, cos_min]],
[[sin_min, cos_min], [-cos_min, sin_min]],
[[cos_plus, sin_plus], [sin_plus, -cos_plus]],
[[-sin_plus, cos_plus], [cos_plus, sin_plus]],

])
radial_part = np.array([f(log_map_r) for f in radial_functions])
kernel = np.einsum(

'rpq,pq,bijpq->brpqij', radial_part, mask, angular_part)
return kernel.reshape((-1, *kernel.shape[2:]))

Given such kernels for all irrep orders, we subsequently can define the gauge equivariant convolu-
tion.

Basically, we iterate over each irrep in the in dimension and each irrep in the out dimension. For each
block, we havemin∗dim(orderin) input dimensions andmout∗dim(orderout) output dimensions.

1 x = ... # [num_batch, num_v, c_in]
2 # The layout of the channels is:
3 # cat(flatten((irrep order, irrep multiplicity, irrep dimension)))
4 neighbors = ... # [num_v, num_neigh]
5 reps_in = [(0, 4), (1, 4)] # 4 irreps of order 0, 4 of order 1
6 reps_out = [(0, 4), (1, 3)] # 4 irreps of order 0, 3 of order 1
7 kernels = ...
8 # {(order_out, order_in): [num_basis, num_v, num_neigh, d_out, d_in]}
9
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10 # One weight for each:
11 # in/out irrep * number of basis kernels * multiplicities in/out
12 weights = torch.randn(sum(
13 len(kernels[(order_out, order_in)]) * m_out * m_in
14 for order_out, m_out in reps_out
15 for order_in, m_in in reps_in))
16

17 # Neighborhood expansion
18 x_e = x[:, neighbors]
19 num_batch, num_v, num_neigh, c_in = x_e.shape
20

21 # Dimension of representation of order l
22 dim = lambda order: 1 if order == 0 else 2
23

24 c_out = sum(dim(l) * m for l, m in reps_out)
25 y = torch.zeros(num_batch, num_v, c_out)
26 y_idx = 0
27 w_idx = 0
28 # Iterate over in/out irreps. Concatenate over out irreps
29 for order_out, m_out in reps_out:
30 x_idx = 0
31 for order_in, m_in in reps_in: # Sum over in irreps
32 k = kernels[(order_out, order_in)]
33 x_rep = x_e[:, :, :, x_idx:x_idx + m_in * dim(order_in)] \
34 .view(num_batch, num_v, num_neigh, m_in, dim(order_in))
35 w_rep = weights[w_idx:w_idx + len(k) * m_out * m_in] \
36 .view(len(k), m_out, m_in)
37 y[:, :, y_idx:y_idx + dim(order_out) * m_out] += torch.einsum(
38 'uvb,bpqij,npqvj->npui', w_rep, k, x_rep)
39 x_idx += m_in * dim(order_in)
40 w_idx += len(k) * m_out * m_in
41 y_idx += dim(order_out) * m_out
42 return y

B QUADRATURE

The goal of selecting the quadrature points and weights is to approximate an integral
∫
D
g(x)dx,

where D ⊂ R2 is the unit disk, with a finite sum
∑

x∈I wxg(x), for a set of points I ⊂ D and each
with weight wx. We use a simple method of selecting I and wx. We desire a rotational symmetry,
so the points lie on NR radial rings, each with NΘ points.

First, we use Gauss-Legendre quadrature [CITE] to obtain NR quadrature points u with weights wu

over the interval [−1, 1]. We map this to radial weights and points by r =
√

(u+ 1)/2, wr = wu/2.
For the angular component, we take a uniform grid of NΘ points on (−π, π]. The integration points
on the disk are then x = (r, θ) with weights wx = wr/NΘ.

This gives accurate integration, because points (u + 1)/2 and weights wu/2 create a quadrature
scheme on [0, 1]. The square root creates a uniform polar grid, as the integration measure for the
disk is rdrdθ = dudθ/2.

C SOLVING THE SO(2) KERNEL CONSTRAINT

Consider a kernel K a function on the tangent space TpM , such that for all v ∈ TpM , K(v) is a
linear map from features in representation ρout to features in a representation ρout. This kernel is
equivariant if ∀v ∈ TpM and ∀g ∈ SO(2) the following kernel constraint is satisfied:

K(g−1v) = ρout(g
−1)K(v)ρin(g). ∀v ∈ TpM, g ∈ SO(2) (10)
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We immediately see that this constraint is independent for each radius, so we can solve the constraint
independently for each radial ring, giving rise to the angular constraint on each ring:

K(θ − g) = ρout(−g)K(θ)ρin(g). ∀θ ∈ S1, g ∈ SO(2) (11)

where we note that the circle equals SO(2) and the action of SO(2) on itself is simply an addition
of angles. Any representation ρ can be written as equivalent to a direct sum of the irreducible
representations (irreps) of SO(2), which are the following, indexed by their order n ∈ N:

ρ0(g) = 1, ρn(g) =

(
cosng − sinng
sinng cosng

)
, n ∈ N>0

This means that for any representation ρ, we can always find an invertible matrix A such: ∀g :
ρ(g) = A−1 block diag(ρn1

, ...ρnN
)A, where {n1, ..., nN} indicate the orders of the constituent

irreps. Hence, we can solve the angular kernel constraint (Eq. 11) for two irreps, ρin = ρn and
ρout = ρm, and construct the solution for general representations ρin and ρout from the obtained
solutions. Noting that all irreps are orthogonal in our chosen basis are orthogonal, so that ρn(g)T =
ρ(−g), we see that, introducing explicit indices:

K(θ − g)ij = ρm(−g)ilK(θ)lkρn(g)kj

= ρm(−g)ilρn(−g)jkK(θ)lk

= (ρm ⊗ ρn)(−g)(ij),(lk)K(θ)lk

As this equation is ought to be satisfied for any g ∈ SO(2) and SO(2) is a one-dimensional Lie
group, we can equivalently require it to be satisfied by an infinitesimal element of SO(2) close to
the identity, creating an ordinary differential equation:

K̇(θ) =d(ρm ⊗ ρn)K(θ),

where d(ρm ⊗ ρn) :=
(
∂

∂g
(ρm ⊗ ρn)(g)

)
|g=0,

For variousm,n, we can construct (ρm⊗ρn)(g), take the derivative with respect to g and set g to 0 to
obtain the matrix d(ρm ⊗ ρn). Subsequently, any computer algebra system can solve the ODE. The
solutions can be found in Table 5. Now, for a general ρin(g) = A−1 block diag(ρn1 , ...ρnN

)(g)A,
ρout(g) = B−1 block diag(ρm1

, ...ρmM
)(g)B, a general solution has the form:

K(θ) = B−1

Km1,n1(θ) · · · Km1,nN
(θ)

...
. . .

...
KmM ,n1

(θ) · · · KmM ,nN
(θ)

A

where Km,n(θ) is a solution from Table 5 mapping from irrep ρn to ρm. For each in/out irrep pair,
we get a linear solution space of 1, 2 or 4 dimensions. For general ρin, ρout, the solution space is
the product of the solution spaces of each in/out irrep pair. A parameterized kernel can thus be
constructed by assigning a weight to each independent solution of each in/out irrep pair.

D MNIST EXPERIMENT DETAILS

For the MNIST experiments, we disambiguate two variants, both used with interpolation and with-
out. The first variant uses only the 1-ring of 7 nearest neighbors and representations ρ0 ⊕ ρ1. This
version uses three radial functions: one that covers the self-interaction and one that covers the other
neighbors.

The second variant uses the 2-ring of 19 nearest neighbors and representations ρ0 ⊕ ρ1 ⊕ ρ2. This
version uses three radial functions: one for the self-interaction, one for the neighbors on the 1-ring
and one for the neighbors on the 2-ring.
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m,n d(ρm ⊗ ρn) Linearly independent solutions for K(θ)

0, 0 0 1

0, n
(
0 −n
n 0

)
(cosnθ sinnθ) , (sinnθ − cosnθ)

m, 0

(
0 −m
m 0

) (
cosmθ
sinmθ

)
,

(
sinmθ
− cosmθ

)

m,n

 0 −n −m 0
n 0 0 −m
m 0 0 −n
0 m n 0

 (
c− −s−
s− c−

)
,
(
s− c−
−c− s−

)
,
(
c+ s+

s+ −c+

)
,
(
−s+ c+
c+ s+

)

Table 5: Solutions to the kernel constraint for kernels that map from ρn to ρm. We denote
c± = cos(m± n)θ, s± = sin(m± n)θ.

For either variant, we build a network consisting of 8 convolutional layers, with stride after each 2
layers. A stride layer selects the vertices that are present in the IcoSphere with one fewer subdivision,
and divides the number of vertices by roughly 4. The input is a scalar feature. After convolution,
the irrep features with multiplicity after each layer: [16, 16, 32, 32, 64, 64, 64, 64]. The last
convolution layer maps to a scalar feature of multiplicity 64. Then the signal is averaged over the
vertices, creating a gauge invariant network. This is then processed by 2 layer of MLP mapping to
multiplicity 50 and then to the 10 classification logits.

Nonlinearities are ReLU for scalar features and the RegularNonlinearity for all other fea-
tures. Batchnorm is used, as well as dropout with drop probability 10%.
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