
Under review as a conference paper at ICLR 2020

ADJUSTABLE REAL-TIME STYLE TRANSFER

Anonymous authors
Paper under double-blind review

ABSTRACT

Artistic style transfer is the problem of synthesizing an image with content sim-
ilar to a given image and style similar to another. Although recent feed-forward
neural networks can generate stylized images in real-time, these models produce
a single stylization given a pair of style/content images, and the user doesn’t have
control over the synthesized output. Moreover, the style transfer depends on the
hyper-parameters of the model with varying ”optimum” for different input im-
ages. Therefore, if the stylized output is not appealing to the user, she/he has to
try multiple models or retrain one with different hyper-parameters to get a favorite
stylization. In this paper, we address these issues by proposing a novel method
which allows adjustment of crucial hyper-parameters, after the training and in
real-time, through a set of manually adjustable parameters. These parameters en-
able the user to modify the synthesized outputs from the same pair of style/content
images, in search of a favorite stylized image. Our quantitative and qualitative ex-
periments indicate how adjusting these parameters is comparable to retraining the
model with different hyper-parameters. We also demonstrate how these parame-
ters can be randomized to generate results which are diverse but still very similar
in style and content.

1 INTRODUCTION

Style transfer is a long-standing problem in computer vision with the goal of synthesizing new
images by combining the content of one image with the style of another (Efros & Freeman, 2001;
Hertzmann, 1998; Ashikhmin, 2001). Recently, neural style transfer techniques (Gatys et al., 2015;
2016; Johnson et al., 2016; Ghiasi et al., 2017; Li et al., 2018; 2017b) showed that the correlation
between the features extracted from the trained deep neural networks is quite effective on capturing
the visual styles and content that can be used for generating images similar in style and content.
However, since the definition of similarity is inherently vague, the objective of style transfer is not
well defined (Dumoulin et al., 2017) and one can imagine multiple stylized images from the same
pair of content/style images.

Existing real-time style transfer methods generate only one stylization for a given content/style
pair and while the stylizations of different methods usually look distinct (Sanakoyeu et al., 2018;
Huang & Belongie, 2017), it is not possible to say that one stylization is better in all contexts since
people react differently to images based on their background and situation. Hence, to get favored
stylizations users must try different methods that is not satisfactory. It is more desirable to have a
single model which can generate diverse results, but still similar in style and content, in real-time,
by adjusting some input parameters.

One other issue with the current methods is their high sensitivity to the hyper-parameters. More
specifically, current real-time style transfer methods minimize a weighted sum of losses from dif-
ferent layers of a pre-trained image classification model (Johnson et al., 2016; Huang & Belongie,
2017) (check Sec 3 for details) and different weight sets can result into very different styles (Fig-
ure 6). However, one can only observe the effect of these weights in the final stylization by retraining
the model with the new set of weights. Considering the fact that the ”optimal” set of weights can
be different for any pair of style/content (Figure 4) and also the fact that this ”optimal” truly doesn’t
exist (since the goodness of the output is a personal choice) retraining the models over and over until
the desired result is generated is not practical.

1



Under review as a conference paper at ICLR 2020

Style

C
on
te
nt

(F
ix
ed
)

Figure 1: Adjusting the output of the synthesized styl-
ized images in real-time without retraining. Each col-
umn shows a different stylized image for the same con-
tent and style image. Note how each row still resembles
the same content and style while different in details.

The primary goal of this paper is to address
these issues by providing a novel mechanism
which allows for adjustment of the stylized im-
age, in real-time and after training. To achieve
this, we use an auxiliary network which accepts
additional parameters as inputs and changes the
style transfer process by adjusting the weights
between multiple losses. We show that chang-
ing these parameters at inference time results
to stylizations similar to the ones achievable
by retraining the model with different hyper-
parameters. We also show that a random se-
lection of these parameters at run-time can
generate a random stylization. These solu-
tions, enable the end user to be in full con-
trol of how the stylized image is being formed
as well as having the capability of generat-
ing multiple stochastic stylized images from a
fixed pair of style/content. The stochastic na-
ture of our proposed method is most appar-
ent when viewing the transition between ran-
dom generations. Therefore, we highly en-
courage the reader to check the project website
https://goo.gl/PVWQ9K.

2 RELATED WORK

The strength of deep networks in style transfer was first demonstrated by Gatys et al. (Gatys et al.,
2016). While this method generates impressive results, it is too slow for real-time applications due
to its optimization loop. Follow up works speed up this process by training feed-forward networks
that can transfer style of a single style image (Johnson et al., 2016; Ulyanov et al., 2016) or mul-
tiple styles (Dumoulin et al., 2017). Other works introduced real-time methods to transfer style of
arbitrary style image to an arbitrary content image (Ghiasi et al., 2017; Huang & Belongie, 2017).
Although, these methods can generate stylization for the arbitrary inputs, they can only produce one
stylization for a single pair of content/style images. In the case that the user does not like the result,
it is not possible to get a different result without retraining the network for a different set of hyper-
parameters. Our goal in this paper is to train a single network that user can get different stylization
without retraining the network.

Generating diverse results have been studied in multiple domains such as colorizations (Desh-
pande et al., 2017; Cao et al., 2017), image synthesis (Chen & Koltun, 2017), video predic-
tion (Babaeizadeh et al., 2017; Lee et al., 2018), and domain transfer (Huang et al., 2018; Zhang,
2018). Domain transfer is the most similar problem to the style transfer. Although we can gen-
erate multiple outputs from a given input image (Huang et al., 2018; Zhu et al., 2017), we need a
collection of target or style images for training. Therefore we cannot use it when we do not have
a collection of similar styles. For instance, when we want to generate multiple stylizations for the
Stary Night painting, it is hard to find different similar paintings.

Style loss function is a crucial part of style transfer which affects the output stylization significantly.
The most common style loss is Gram matrix which computes the second-order statistics of the
feature activations (Gatys et al., 2016), however many alternative losses have been introduced to
measure distances between feature statistics of the style and stylized images such as correlation
alignment loss (Peng & Saenko, 2018), histogram loss (Risser et al., 2017), and MMD loss (Li
et al., 2017a). More recent work (Liu et al., 2017) has used depth similarity of style and stylized
images as a part of the loss. We demonstrate the success of our method using only Gram matrix;
however, our approach can be expanded to utilize other losses as well.

To the best of our knowledge, the only previous work which generates multiple stylizations
is (Ulyanov et al., 2017) which utilized Julesz ensemble to explicitly encourage diversity in styliza-
tions. However their results are quite similar in style and only differ in minor details. A qualitative
comparison in Figures ?? show that our proposed method is more effective in diverse stylization.

2



Under review as a conference paper at ICLR 2020

Figure 2: Architecture of the proposed model. The loss adjustment parameters αααc and αααs is passed
to the network Λ which will predict activation normalizers γααα and βααα that normalize activation
of main stylizing network T . The stylized image is passed to a trained image classifier where its
intermediate representation is used to calculate the style loss Ls and content loss Lc. Then the loss
from each layer is multiplied by the corresponding input adjustment parameter. Models Λ and T are
trained jointly by minimizing this weighted sum. At generation time, values for αααc and αααs can be
adjusted manually or sampled randomly.

3 BACKGROUND

3.1 STYLE TRANSFER USING DEEP NETWORKS

Style transfer can be formulated as generating a stylized image p which its content is similar to a
given content image c and its style is close to another given style image s. The similarity in style
can be vaguely defined as sharing the same spatial statistics in low-level features, while similarity
in content is roughly having a close Euclidean distance in high-level features (Ghiasi et al., 2017).
These features are typically extracted from a pre-trained image classification network, commonly
VGG-19 (Simonyan & Zisserman, 2014). The main idea here is that the features obtained by the im-
age classifier contain information about the content of the input image while the correlation between
these features represents its style.

In order to increase the similarity between two images, Gatys et al. (Gatys et al., 2016) minimize the
following distances between their extracted features:

Llc(p) =
∣∣∣∣φl(p)− φl(s)

∣∣∣∣2
2
, Lls(p) =

∣∣∣∣G(φl(p))−G(φl(s))
∣∣∣∣2
F

(1)
where φl(x) is activation of a pre-trained classification network at layer l given the input image x,
while Llc(p) and Lls(p) are content and style loss at layer l respectively. G(φl(p)) denotes the Gram
matrix associated with φl(p).

The total loss is calculated as the weighted sum of losses across a set of content layers C and style
layers S :

Lc(p) =
∑
l∈C

wlcLlc(p), Ls(p) =
∑
l∈S

wlsLls(p) (2)

where wlc, w
l
s are hyper-parameters to adjust the contribution of each layer to the loss. Layers can be

shared between C and S . These hyper-parameters have to be manually fine tuned through try and
error and usually vary for different style images (Figure 4). Finally, the objective of style transfer
can be defined as:

min
p

(
Lc(p) + Ls(p)

)
(3)

This objective can be minimized by iterative gradient-based optimization methods starting from an
initial p which usually is random noise or the content image itself.

3.2 REAL-TIME STYLE TRANSFER

Solving the objective in Equation 3 using an iterative method can be very slow and has to be repeated
for any given pair of style/content image. A much faster method is to directly train a deep network
T which maps a given content image c to a stylized image p (Johnson et al., 2016). T is usually a
feed-forward convolutional network (parameterized by θ) with residual connections between down-

3



Under review as a conference paper at ICLR 2020

Content

1.00.0

Style

conv2_
3

conv3_
3

conv4_
3

Figure 3: Effect of adjusting the input parameters αααs on stylization. Each row shows the stylized
output when a single αls increased gradually from zero to one while other αααs are fixed to zero.
Notice how the details of each stylization is different specially at the last column where the value is
maximum. Also note how deeper layers use bigger features of style image to stylize the content.

sampling and up-sampling layers (Ruder et al., 2018) and is trained on many content images using
Equation 3 as the loss function:

min
θ

(
Lc(T (c)) + Ls(T (c))

)
(4)

The style image is assumed to be fixed and therefore a different network should be trained per
style image. However, for a fixed style image, this method can generate stylized images in real-
time (Johnson et al., 2016). Recent methods (Dumoulin et al., 2017; Ghiasi et al., 2017; Huang &
Belongie, 2017) introduced real-time style transfer methods for multiple styles. But, these methods
still generate only one stylization for a pair of style and content images.

4 PROPOSED METHOD

1e-2 1e-3 1e-4Style

Figure 4: Effect of adjusting the style weight in
style transfer network from (Johnson et al., 2016).
Each column demonstrates the result of a separate
training with allwls set to the printed value. As can
be seen, the ”optimal” weight is different from one
style image to another and there can be multiple
”good” stylizations depending on ones’ personal
choice. Check supplementary materials for more
examples.

This paper addresses the following issues in
real-time feed-forward style transfer methods:
1. The output of these models is sensitive to
the hyper-parameters wlc and wls and different
weights significantly affect the generated styl-
ized image as demonstrated in Figure 6. More-
over, the ”optimal” weights vary from one style
image to another (Figure 4) and finding a good
set of weights should be repeated for each style
image. Note that for each set of wlc and wls the
model has to be retrained that limits the practi-
cality of style transfer models.
2. Current methods generate a single stylized
image given a content/style pair. While the styl-
izations of different methods usually look very
distinct (Sanakoyeu et al., 2018), it is not pos-
sible to say which stylization is better for every
context since it is a matter of personal taste. To
get a favored stylization, users may need to try
different methods or train a network with differ-
ent hyper-parameters which is not satisfactory
and, ideally, the user should have the capability
of getting different stylizations in real-time.

We address these issues by conditioning the generated stylized image on additional input parameters
where each parameter controls the share of the loss from a corresponding layer. This solves the
problem (1) since one can adjust the contribution of each layer to adjust the final stylized result after
the training and in real-time. Secondly, we address the problem (2) by randomizing these parameters
which result in different stylizations.

4



Under review as a conference paper at ICLR 2020

Ra
nd

om
iz

ed
 

Pa
ra

m
et

er
s

Ra
nd

om
iz

ed
 

C
on

te
nt

 N
oi

se
Bo

th

Figure 5: Effect of randomizing ααα and additive Gaussian noise on stylization. Top: randomizing ααα
results to different stylizations while the style features appear in the same spatial position (e.g., look
at the swirl effect on the left eye). Middle: the effect of adding random noise to the content image
in moving these features with fixed ααα. Bottom: combination of this two randomization techniques
can generate highly versatile outputs. Notice how each image in this row differs in both style and
the spatial position of style elements.

4.1 STYLE TRANSFER WITH ADJUSTABLE LOSS

We enable the users to adjust wlc,w
l
s without retraining the model by replacing them with input

parameters and conditioning the generated style images on these parameters:
p = Ψ(c, s,αααc,αααs)

αααc and αααs are vectors of parameters where each element corresponds to a different layer in content
layers C and style layers S respectively. αlc and αls replace the hyper-parameters wlc and wls in the
objective Equation 2:

Lc(p) =
∑
l∈C

αlcLlc(p) Ls(p) =
∑
l∈S

αlsLls(p) (5)

To learn the effect of αααc and αααs on the objective, we use a technique called conditional instance
normalization (Ulyanov et al.). This method transforms the activations of a layer x in the feed-
forward network T to a normalized activation z conditioned on extra inputs ααα = [αααc,αααs]:

z = γααα
(x− µ

σ

)
+ βααα (6)

where µ and σ are mean and standard deviation of activations at layer x across spatial axes (Ghiasi
et al., 2017) and γααα, βααα are the learned mean and standard deviation of this transformation. These
parameters can be approximated using a second neural network which will be trained end-to-end
with T :

γααα, βααα = Λ(αααc,αααs) (7)
Since Ll can be very different in scale, one loss term may dominate the others which will fail the
training. To balance the losses, we normalize them using their exponential moving average as a
normalizing factor, i.e. each Ll will be normalized to:

Ll(p) =

∑
i∈C∪S Li(p)

Ll(p)
∗ Ll(p) (8)

where Ll(p) is the exponential moving average of Ll(p).

5 EXPERIMENTS

In this section, first we study the effect of adjusting the input parameters in our method. Then we
demonstrate that we can use our method to generate random stylizations and finally, we compare
our method with a few baselines in terms of generating random stylizations.

5



Under review as a conference paper at ICLR 2020

conv4_3 conv3_3 conv2_3
conv4_3
conv3_3

conv4_3
conv2_3

conv3_3
conv2_3

conv4_3
conv3_3
conv2_3

Style

Style

Content
base

ours
base

ours

Figure 6: Qualitative comparison between the base model from (Johnson et al., 2016) with our
proposed method. For the base model, each column has been retrained with all the weights set to
zero except for the mentioned layers which has been set to 1e−3. For our model, the respective
parameters αls has been adjusted. Note how close the stylizations are and how the combination of
layers stays the same in both models.

5.1 IMPLEMENTATION DETAILS

We implemented Λ as a multilayer fully connected neural network. We used the same architecture
as (Johnson et al., 2016; Dumoulin et al., 2017; Ghiasi et al., 2017) for T and only increased number
of residual blocks by 3 (look at supplementary materials for details) which improved stylization
results. We trained T and Λ jointly by sampling random values for ααα from U(0, 1). We trained
our model on ImageNet (Deng et al., 2009) as content images while using paintings from Kaggle
Painter by Numbers (Kaggle) and textures from Descibable Texture Dataset (Cimpoi et al., 2014)
as style images. We selected random images form ImageNet test set, MS-COCO (Lin et al., 2014)
and faces from CelebA dataset (Liu et al., 2018) as our content test images. Similar to (Ghiasi et al.,
2017; Dumoulin et al., 2017), we used the last feature set of conv3 as content layer C . We used last
feature set of conv2, conv3 and conv4 layers from VGG-19 network as style layers S . Since there
is only one content layer, we fix αααc = 1. Our implementation can process 47.5 fps on a NVIDIA
GeForce 1080, compared to 52.0 for the base model without Λ.

5.2 EFFECT OF ADJUSTING THE INPUT PARAMETERS

The primary goal of introducing the adjustable parametersααα was to modify the loss of each separate
layer manually. Qualitatively, this is demonstrable by increasing one of the input parameters from
zero to one while fixing the rest of them to zero. Figure 3 shows one example of such transition.
Each row in this figure is corresponding to a different style layer, and therefore the stylizations at
each row would be different. Notice how deeper layers stylize the image with bigger stylization
elements from the style image but all of them still apply the coloring. We also visualize the effect of
increasing two of the input parameters at the same time in Figure 9. However, these transitions are
best demonstrated interactively which is accessible at the project website https://goo.gl/PVWQ9K.

To quantitatively demonstrate the change in losses with adjustment of the input parameters, we
rerun the same experiment of assigning a fixed value to all of the input parameters while gradually
increasing one of them from zero to one, this time across 100 different content images. Then we
calculate the median loss at each style loss layer S . As can be seen in Figure 7-(top), increasing

6



Under review as a conference paper at ICLR 2020

0.2 0.4 0.6 0.8 1.0
Input parameter value

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 s
ty

le
 lo

ss

0.2 0.4 0.6 0.8 1.0
Input parameter value

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
 s

ty
le

 lo
ss

Other parameters are fixed at 0.0

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Other parameters are fixed at 1.0

Loss at conv2_3 Loss at conv3_3 Loss at conv4_3

Figure 7: Effect of adjusting the input parame-
ters αααs on style loss from different layers across
single style image of Figure 3 (top) or 25 different
style images (bottom). In each curve, one of the
input parameters αl

s has been increased from zero
to one while others are fixed at to zero (left) and
to one (right). Then the style loss has been cal-
culated across 100 different content images. As
can be seen, increasing αl

s decreases the loss of
the corresponding layer. Note that the losses is
normalized in each layer for better visualization.

Train+Run-tim
e N

oise
StyleN

et
O

urs

Content

Style

Run-tim
e N

oise

Figure 8: Diversity comparison of our method
and baselines. First row shows results for a base-
line that adds random noises to the style param-
eters at run-time. While we get diverse styliza-
tions, the results are not similar to the input style
image. Second row contains results for a base-
line that adds random noises to the style param-
eters at both training time and run-time. Model
is robust to the noise and it does not generate di-
verse results. Third row shows stylization results
of StyleNet (Ulyanov et al., 2017). Our method
generates diverse stylizations while StyleNet re-
sults mostly differ in minor details. More exam-
ples can be seen at Figure 14.

αls decreases the measured loss corresponding to that parameter. To show the generalization of our
method across style images, we trained 25 models with different style images and then measured
median of the loss at any of the S layers for 100 different content images (Figure 7)-(bottom). The
similarly exhibited trends show that the model can generate stylizations conditioned on the input
parameters.

Finally, we verify that modifying the input parameters αααs generates visually similar stylizations to
the retrained base model with different loss weights wls. To do so, we train the base model (Johnson
et al., 2016) multiple times with different wls and compare the generated results with the output of
our model when ∀l ∈ S , αls = wls (Figure 6). Note how the proposed stylizations in test time and
without retraining match the output of the base model.

5.3 GENERATING RANDOMIZED STYLIZATIONS

One application of our proposed method is to generate multiple stylizations given a fixed pair of
content/style image. To do so, we randomize ααα to generate randomized stylization (top row of
Figure 5). Changing values of ααα usually do not randomize the position of the ”elements” of the
style. We can enforce this kind of randomness by adding some noise with the small magnitude to
the content image. For this purpose, we multiply the content image with a mask which is computed
by applying an inverse Gaussian filter on a white image with a handful (< 10) random zeros. This
masking can shadow sensitive parts of the image which will change the spatial locations of the
”elements” of style. Middle row in Figure 5 demonstrates the effect of this randomization. Finally,
we combine these two randomizations to maximizes the diversity of the output which is shown
in the bottom row of Figure 5. More randomized stylizations can be seen in Figure 10 and at
https://goo.gl/PVWQ9K.

7



Under review as a conference paper at ICLR 2020

5.4 COMPARISON WITH OTHER METHODS

To the best of our knowledge, generating diverse stylizations at real-time is only have been studied
at (Ulyanov et al., 2017) before. In this section, we qualitatively compare our method with this
baseline. Also, we compare our method with a simple baseline where we add noise to the style
parameters.

The simplest baseline for getting diverse stylizations is to add noises to some parameters or the inputs
of the style-transfer network. In the last section, we demonstrate that we can move the locations of
elements of style by adding noise to the content input image. To answer the question that if we
can get different stylizations by adding noise to the style input of the network, we train (Dumoulin
et al., 2017) which uses conditional instance normalization for transferring style. We train this
model with only one style image and to get different stylizations, we add random noise to the style
parameters (γααα and βααα parameters of equation 6) at run-time. The stylization results for this baseline
are shown on the top row of Figure 8. While we get different stylizations by adding random noises,
the stylizations are no longer similar to the input style image.

To enforce similar stylizations, we trained the same baseline while adding random noises at the
training phase. As it can be seen in the second row of Figure 8, adding noise at the training time
makes the model robust to the noise and the stylization results are similar. This indicates that a loss
term that encourages diversity is necessary.

We also compare the results of our model with StyleNet (Ulyanov et al., 2017). As visible in
Figures 8, although StyleNet’s stylizations are different, they vary in minor details and all carry the
same level of stylization elements. In contrast, our model synthesizes stylized images with varying
levels of stylization and more randomization.

6 CONCLUSION

Our main contribution in this paper is a novel method which allows adjustment of each loss layer’s
contribution in feed-forward style transfer networks, in real-time and after training. This capability
allows the users to adjust the stylized output to find the favorite stylization by changing input param-
eters and without retraining the stylization model. We also show how randomizing these parameters
plus some noise added to the content image can result in very different stylizations from the same
pair of style/content image.

Our method can be expanded in numerous ways e.g. applying it to multi-style transfer methods
such as (Dumoulin et al., 2017; Ghiasi et al., 2017), applying the same parametrization technique
to randomize the correlation loss between the features of each layer and finally using different loss
functions and pre-trained networks for computing the loss to randomize the outputs even further.
One other interesting future direction is to apply the same ”loss adjustment after training” technique
for other classic computer vision and deep learning tasks. Style transfer is not the only task in
which modifying the hyper-parameters can greatly affect the predicted results and it would be rather
interesting to try this method for adjusting the hyper-parameters in similar problems.

REFERENCES

Michael Ashikhmin. Synthesizing natural textures. In Proceedings of the 2001 symposium on Interactive 3D
graphics, pp. 217–226. ACM, 2001.

Mohammad Babaeizadeh, Chelsea Finn, Dumitru Erhan, Roy H Campbell, and Sergey Levine. Stochastic
variational video prediction. arXiv preprint arXiv:1710.11252, 2017.

Yun Cao, Zhiming Zhou, Weinan Zhang, and Yong Yu. Unsupervised diverse colorization via generative
adversarial networks. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, 2017.

Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refinement networks. In ICCV,
2017.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild. In Proceedings
of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

8



Under review as a conference paper at ICLR 2020

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp.
248–255. Ieee, 2009.

Aditya Deshpande, Jiajun Lu, Mao-Chuang Yeh, Min Jin Chong, and David A Forsyth. Learning diverse image
colorization. In CVPR, 2017.

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representation for artistic style. Proc.
of ICLR, 2017.

Alexei A Efros and William T Freeman. Image quilting for texture synthesis and transfer. In Proceedings of
the 28th annual conference on Computer graphics and interactive techniques, pp. 341–346. ACM, 2001.

Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis using convolutional neural networks.
In Advances in Neural Information Processing Systems, pp. 262–270, 2015.

Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolutional neural
networks. In CVPR, pp. 2414–2423, 2016.

Golnaz Ghiasi, Honglak Lee, Manjunath Kudlur, Vincent Dumoulin, and Jonathon Shlens. Exploring the
structure of a real-time, arbitrary neural artistic stylization network. arXiv preprint arXiv:1705.06830, 2017.

Aaron Hertzmann. Painterly rendering with curved brush strokes of multiple sizes. In Proceedings of the 25th
annual conference on Computer graphics and interactive techniques, pp. 453–460. ACM, 1998.

Xun Huang and Serge J Belongie. Arbitrary style transfer in real-time with adaptive instance normalization. In
ICCV, 2017.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-image transla-
tion. arXiv preprint arXiv:1804.04732, 2018.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer and super-
resolution. In European Conference on Computer Vision, pp. 694–711. Springer, 2016.

Kaggle. Kaggle Painter by numbers kernel description. www.kaggle.com/c/painter-by-numbers.
2016.

Alex X Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey Levine. Stochastic
adversarial video prediction. arXiv preprint arXiv:1804.01523, 2018.

Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi Hou. Demystifying neural style transfer. arXiv preprint
arXiv:1701.01036, 2017a.

Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang. Universal style transfer via
feature transforms. In Advances in Neural Information Processing Systems, pp. 386–396, 2017b.

Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and Jan Kautz. A closed-form solution to photorealistic
image stylization. arXiv preprint arXiv:1802.06474, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects in context. In European conference on computer
vision, pp. 740–755. Springer, 2014.

Xiao-Chang Liu, Ming-Ming Cheng, Yu-Kun Lai, and Paul L Rosin. Depth-aware neural style transfer. In
Proceedings of the Symposium on Non-Photorealistic Animation and Rendering, 2017.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Large-scale celebfaces attributes (celeba) dataset.
Retrieved August, 15:2018, 2018.

Xingchao Peng and Kate Saenko. Synthetic to real adaptation with generative correlation alignment networks.
In WACV, 2018.

Eric Risser, Pierre Wilmot, and Connelly Barnes. Stable and controllable neural texture synthesis and style
transfer using histogram losses. arXiv preprint arXiv:1701.08893, 2017.

Manuel Ruder, Alexey Dosovitskiy, and Thomas Brox. Artistic style transfer for videos and spherical images.
International Journal of Computer Vision, pp. 1–21, 2018.

Artsiom Sanakoyeu, Dmytro Kotovenko, Sabine Lang, and Björn Ommer. A style-aware content loss for real-
time hd style transfer. arXiv preprint arXiv:1807.10201, 2018.

9

www.kaggle.com/c/painter-by-numbers


Under review as a conference paper at ICLR 2020

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

D Ulyanov, A Vedaldi, and VS Lempitsky. Instance normalization: the missing ingredient for fast stylization.
corr abs/1607.0 (2016).

Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor S Lempitsky. Texture networks: Feed-forward
synthesis of textures and stylized images. In ICML, pp. 1349–1357, 2016.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S Lempitsky. Improved texture networks: Maximizing quality
and diversity in feed-forward stylization and texture synthesis. In CVPR, 2017.

Yongqi Zhang. Xogan: One-to-many unsupervised image-to-image translation. arXiv preprint
arXiv:1805.07277, 2018.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer
vision, pp. 2223–2232, 2017.

10



Under review as a conference paper at ICLR 2020

0.0
1.0

1.0

conv4_3

co
nv
3_
3

0.0
1.0

1.0

conv4_3

co
nv
3_
3

0.0
1.0

1.0

conv4_3

co
nv
3_
3

0.0
1.0

1.0

conv4_3

co
nv
3_
3

Figure 9: More results for adjusting the input parameters in real-time and after training. In each
block the style/content pair is fixed while the parameters corresponding to conv3 and conv4 in-
creases vertically and horizontally from zero to one. Notice how the details are different from one
layer to another and how the combination of layers may result to more favored stylizations. For an
interactive presentation please visit https://goo.gl/PVWQ9K.

11



Under review as a conference paper at ICLR 2020

Figure 10: More results of stochastic stylization from the same pair of content/style. Each block
represents randomized stylized outputs given the fix style/content image demonstrated at the top.
Notice how stylized images vary in style granularity, the spatial position of style elements while
maintaining similarity to the original style and content image. For more results please visit
https://goo.gl/PVWQ9K.

12



Under review as a conference paper at ICLR 2020

1.00.0

conv2_
3

conv3_
3

conv4_
3

1.00.0

conv2_
3

conv3_
3

conv4_
3

1.00.0

conv2_
3

conv3_
3

conv4_
3

1.00.0

conv2_
3

conv3_
3

conv4_
3

Content

Style

Content

Style

Content

Style

Content

Style

Figure 11: More examples for effect of adjusting the input parameters αααs in real-time. Each row
shows the stylized output when a single αls increased gradually from zero to one while other αααs
are fixed to zero. Notice how the details of each stylization is different specially at the last column
where the weight is maximum. Also how deeper layers use bigger features of style image to stylize
the content.

13



Under review as a conference paper at ICLR 2020

3e-2 1e-2 3e-3 1e-3 3e-4 1e-4Style

Figure 12: More examples for effect of adjusting the style weight in style transfer network
from (Johnson et al., 2016). Each column demonstrates the result of a separate training. As can
be seen, the ”optimal” weight is different from one style image to another and there can be more
than one ”good” stylization depending on ones personal choice.

14



Under review as a conference paper at ICLR 2020

conv2_3 conv3_3 conv4_3
conv2_3
conv3_3

conv2_3
conv4_3

conv3_3
conv4_3

Figure 13: Results of combining losses from different layers at generation time by adjusting their
corresponding parameters. The first column is the style image which is fixed for each row. The
content image is the same for all of the outputs. The corresponding parameter for each one of the
losses is zero except for the one(s) mentioned in the title of each column. Notice how each layer
enforces a different type of stylization and how the combinations vary as well. Also note how a
single combination of layers cannot be the ”optimal” stylization for any style image and one may
prefer the results from another column.

15



Under review as a conference paper at ICLR 2020

Ou
rs

Ou
rs

St
yl

eN
et

St
yl

eN
et

Ou
rs

Ou
rs

St
yl

eN
et

St
yl

eN
et

Ou
rs

St
yl

eN
et

Figure 14: Diversity comparison of our method with StyleNet (Ulyanov et al., 2017). Our method
generates diverse stylizations while StyleNet results mostly differ in minor details.

16



Under review as a conference paper at ICLR 2020

Operation input dimensions output dimensions

input parameters ααα 3 1000
10×Dense 1000 1000

Dense 1000 2(γααα, βααα)

Optimizer Adam (α = 0.001, β1 = 0.9, β2 = 0.999)
Training iterations 200K

Batch size 8
Weight initialization Isotropic gaussian (µ = 0, σ = 0.01)

Table 1: Network architecture and hyper-parameters of Λ.

Operation Kernel size Stride Feature maps Padding Nonlinearity

Network – 256× 256× 3 input
Convolution 9 1 32 SAME ReLU
Convolution 3 2 64 SAME ReLU
Convolution 3 2 128 SAME ReLU

Residual block 128
Residual block 128
Residual block 128
Residual block 128
Residual block 128
Residual block 128
Residual block 128

Upsampling 64
Upsampling 32
Convolution 9 1 3 SAME Sigmoid

Residual block – C feature maps
Convolution 3 1 C SAME ReLU
Convolution 3 1 C SAME Linear

Add the input and the output
Upsampling – C feature maps

Nearest-neighbor interpolation, factor 2
Convolution 3 1 C SAME ReLU

Normalization Conditional instance normalization after every convolution
Optimizer Adam (α = 0.001, β1 = 0.9, β2 = 0.999)

Training iterations 200K
Batch size 8

Weight initialization Isotropic gaussian (µ = 0, σ = 0.01)

Table 2: Network architecture and hyper-parameters of T .

17


