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ABSTRACT

For linear classifiers, the relationship between (normalized) output margin and
generalization is captured in a clear and simple bound – a large output margin
implies good generalization. Unfortunately, for deep models, this relationship is
less clear: existing analyses of the output margin give complicated bounds which
sometimes depend exponentially on depth. In this work, we propose to instead an-
alyze a new notion of margin, which we call the “all-layer margin.” Our analysis
reveals that the all-layer margin has a clear and direct relationship with generaliza-
tion for deep models. We present three concrete applications of the all-layer mar-
gin: 1) by analyzing the all-layer margin, we obtain tighter generalization bounds
for neural nets which depend on Jacobian and hidden layer norms and remove the
exponential dependency on depth 2) our neural net results easily translate to the
adversarially robust setting, giving the first direct analysis of robust test error for
deep networks, and 3) we present a theoretically inspired training algorithm for
increasing the all-layer margin and demonstrate that our algorithm improves test
performance over strong baselines in practice.

1 INTRODUCTION

The most popular classification objectives for deep learning, such as cross entropy loss, encourage a
larger output margin – the gap between predictions on the true label and and next most confident la-
bel. These objectives have been popular long before deep learning was prevalent, and there is a long
line of work showing they enjoy strong statistical guarantees for linear and kernel methods (Bartlett
& Mendelson, 2002; Koltchinskii et al., 2002; Hofmann et al., 2008; Kakade et al., 2009). These
guarantees have been used to explain the successes of popular algorithms such as SVM (Boser et al.,
1992; Cortes & Vapnik, 1995).

For linear classifiers, the relationship between output margin and generalization is simple and direct
– generalization error is controlled by the output margins normalized by the classifier norm. Con-
cretely, suppose we have n training data points each with norm 1, and let γi be the output margin on
the i-th example. With high probability, if the classifier perfectly fits the training data, we obtain1

Test classification error .
1

n

√√√√ n∑
i=1

(
classifier norm

γi

)2

+ low order terms (1.1)

For deeper models, the relationship between output margin and generalization is unfortunately less
clear and interpretable. Known bounds for deep nets normalize the output margin by a quantity that
either scales exponentially in depth or depends on complex properties of the network (Neyshabur
et al., 2015; Bartlett et al., 2017; Neyshabur et al., 2017b; Golowich et al., 2017; Nagarajan & Kolter,
2019; Wei & Ma, 2019). This is evidently more complicated than the linear case in (1.1). These
complications arise because for deep nets, it is unclear how to properly normalize the output margin.

1This is a stronger version of the classical textbook bound which involves the min margin on the training
examples. We present this stronger version because it motivates our work better. It can be derived from the
results of Srebro et al. (2010).

1



Under review as a conference paper at ICLR 2020

In this work, we remedy this issue by proposing a new notion of margin, called "all-layer margin",
which we use to obtain simple guarantees like (1.1) for deep models. Let mi be the all-layer margin
for the i-th example. We can simply normalize it by the sum of the complexities of the weights
(often measured by the norms or the covering number) and obtain a bound of the following form:

Test error .
1

n

√√√√ n∑
i=1

(
sum of the complexities of each layer

mi

)2

+ low order terms (1.2)

As the name suggests, the all-layer margin considers all layers of the network simultaneously, unlike
the output margin which only considers the last layer. We note that the definition of the all-layer
margin is the key insight for deriving (1.2) – given the definition, the rest of the proof follows
naturally with standard tools. (Please see equation (2.2) for a formal definition of the margin, and
Theorem 2.1 for a formal version of bound (1.2).) To further highlight the good statistical properties
of the all-layer margin, we present three of its concrete applications in this paper.

1. By relating all-layer margin to output margin and other quantities, we obtain improved
generalization bounds for neural nets. In Section 3, we derive an analytic lower bound on the
all-layer margin for neural nets with smooth activations which depends on the output margin nor-
malized by other data-dependent quantities. By substituting this lower bound into (1.2), we obtain a
generalization bound in Theorem 3.1 which avoids the exponential depth dependency and has tighter
data-dependent guarantees than (Nagarajan & Kolter, 2019; Wei & Ma, 2019) in several ways. First,
their bounds use the same normalizing quantity for each example, whereas our bounds are tighter
and more natural because we use a different normalizer for each training example – the local Lip-
schitzness for that particular example. Second, our bound depends on the empirical distribution of
some complexity measure computed for each training example. When these complexities are small
for each training example, we can obtain convergence rates faster than 1/

√
n. We provide a more

thorough comparison to prior work in Section 3.

Furthermore, for relu networks, we give a tighter generalization bound which removes the depen-
dency on inverse pre-activations suffered by (Nagarajan & Kolter, 2019), which they showed to be
large empirically (see Section B.1). The techniques of (Wei & Ma, 2019) could not remove this
dependency because they relied on smooth activations.

2. We extend our tools to give generalization bounds for adversarially robust classification
error which are analogous to our bounds in the standard setting. In Section 4, we provide a
natural extension of our all-layer margin to adversarially robust classification. This allows us to
translate our neural net generalization bound, Theorem 3.1, directly to adversarially robust classi-
fication (see Theorem 4.1). The resulting bound takes a very similar form as our generalization
bound for clean accuracy – it simply replaces the data-dependent quantities in Theorem 3.1 with
their worst-case values in the adversarial neighborhood of the training example. As a result, it also
avoids exponential dependencies on depth. As our bound is the first direct analysis of the robust test
error, it presents a marked improvement over existing work which analyze loose relaxations of the
adversarial error (Khim & Loh, 2018; Yin et al., 2018). Finally, our analysis of generalization for
the clean setting translates directly to the adversarial setting with almost no additional steps. This is
an additional advantage of our all-layer margin definition.

3. We design a training algorithm that encourages a larger all-layer margin and demonstrate
that it improves empirical performance over strong baselines. In Section 5, we apply our reg-
ularizer to WideResNet models (Zagoruyko & Komodakis, 2016) trained on the CIFAR datasets
and demonstrate improved generalization performance for a variety of settings. We hope that these
promising empirical results can inspire researchers to develop new methods for optimizing the all-
layer margin and related quantities.

1.1 ADDITIONAL RELATED WORK

Zhang et al. (2016); Neyshabur et al. (2017a) note that deep learning often exhibits statistical prop-
erties that are counterintuitive to conventional wisdom. This has prompted a variety of new perspec-
tives for studying generalization in deep learning, such as implicit or algorithmic regularization (Gu-
nasekar et al., 2017; Li et al., 2017; Soudry et al., 2018; Gunasekar et al., 2018), new analyses of
interpolating classifiers (Belkin et al., 2018; Liang & Rakhlin, 2018; Hastie et al., 2019; Bartlett
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et al., 2019), and the noise and stability of SGD (Hardt et al., 2015; Keskar et al., 2016; Chaudhari
et al., 2016). In this work, we adopt a different perspective for analyzing generalization by studying
a novel definition of margin for deep models which differs from the well-studied notion of output
margin. We hope that our generalization bounds can inspire the design of new regularizers tailored
towards deep learning.

Classical results have bounded generalization error in terms of the model’s output margin and the
complexity of its prediction (Bartlett & Mendelson, 2002; Koltchinskii et al., 2002), but for deep
models this complexity grows exponentially in depth (Neyshabur et al., 2015; Bartlett et al., 2017;
Neyshabur et al., 2017b; Golowich et al., 2017). Recently, Nagarajan & Kolter (2019); Wei & Ma
(2019) derived complexity measures in terms of hidden layer and Jacobian norms which avoid the
exponential dependence on depth, but their proofs require complicated techniques for controlling
the complexity of the output margin. Neyshabur et al. (2017a); Arora et al. (2018) also provide
complexity measures related to the data-dependent stability of the network, but the resulting bounds
only apply to a randomized or compressed version of the original classifier. We provide a simple
framework which derives such bounds for the original classifier. Novak et al. (2018); Javadi et al.
(2019) study stability-related complexity measures empirically.

A recent line of work establishes rigorous equivalences between logistic loss and output margin
maximization. Soudry et al. (2018); Ji & Telgarsky (2018) show that gradient descent implicitly
maximizes the margin for linearly separable data, and Lyu & Li (2019) prove gradient descent con-
verges to a stationary point of the max-margin formulation for deep homogeneous networks. Other
works show global minimizers of regularized logistic loss are equivalent to margin maximizers, in
linear cases (Rosset et al., 2004) and for deep networks (Wei et al., 2018; Nacson et al., 2019). A
number of empirical works also suggest alternatives to the logistic loss which optimize variants of
the output margin (Sun et al., 2014; Wen et al., 2016; Liu; Liang et al., 2017; Cao et al., 2019).

The neural net margin at intermediate and input layers has also been studied. Elsayed et al.
(2018) design an algorithm to maximize a notion of margin at intermediate layers of the network,
and Jiang et al. (2018) demonstrate that the generalization gap of popular architectures can empiri-
cally be predicted using statistics of intermediate margin distributions. Verma et al. (2018) propose a
regularization technique which they empirically show improves the structure of the decision bound-
ary at intermediate layers. Sokolić et al. (2017) provide generalization bounds based on the input
margin of the neural net, but these bounds depend exponentially on the dimension of the data mani-
fold. These papers study margins defined for individual network layers, whereas our all-layer margin
simultaneously considers all layers. This distinction is crucial for deriving our statistical guarantees.

A number of recent works provide negative results for adversarial generalization (Tsipras et al.,
2018; Montasser et al., 2019; Yin et al., 2018; Raghunathan et al., 2019). We provide positive results
stating that adversarial test accuracy can be good if the adversarial all-layer margin is large on the
training data. Schmidt et al. (2018) demonstrate that more data may be required for generalization on
adversarial inputs than on clean data. Montasser et al. (2019) provide impossiblity results for robust
PAC learning with proper learning rules, even for finite VC dimension hypothesis classes. Zhang
et al. (2019) consider the trade-off between the robust error and clean error. Yin et al. (2018); Khim
& Loh (2018) give adversarially robust generalization bounds by upper bounding the robust loss via
a transformed/relaxed loss function, and the bounds depend on the product of weight matrix norms.
Yin et al. (2018) also show that the product of norms is inevitable if we go through the standard tools
of Rademacher complexity and the output margin. Our adversarial all-layer margin circumvents this
lower bound because it considers all layers of the network rather than just the output.

1.2 NOTATION

We use the notation {ai}ki=1 to refer to a sequence of k elements ai indexed by i. We will use
◦ to denote function composition: f ◦ g(x) = f(g(x)). Now for function classes F ,G, define
F ◦ G , {f ◦ g : f ∈ F , g ∈ G}. We use Dh to denote the partial derivative operator with
respect to variable h, and thus for a function f(h1, h2), we use Dhi

f(h1, h2) to denote the partial
derivative of f with respect to hi evaluated at (h1, h2). We will use ‖ · ‖ to denote some norm.
For a function f mapping between normed spaces DI ,DO with norms ‖ · ‖I , ‖ · ‖O, respectively,
define ‖f‖op , supx∈DI

‖f(x)‖O
‖x‖I , which generalizes the operator norm for linear operators. Let

‖M‖fro, ‖M‖1,1 denote the Frobenius norms and the sum of the absolute values of the entries of M ,
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respectively. For some set S (often a class of functions), we let N‖·‖(ε,S) the covering number of
S in the metric induced by norm ‖ · ‖ with resolution ε. For a function class F , letN∞(ε,F) denote
the covering number of F in the metric d∞(f, f̂) = supx ‖f(x) − f̂(x)‖. For a function f and
distribution P , we use the notation ‖f‖Lq(P ) , (Ex∼P [|f(x)|q])1/q .

We bound generalization for a test distribution P given a set of n training samples, Pn ,
{(xi, yi)}ni=1 where x ∈ D0 denotes inputs and y ∈ [l] is an integer label. We will also use Pn
to denote the uniform distribution on these training samples. For a classifier F : D0 → Rl, we use
the convention that maxy′∈[l] F (x)y′ is its predicted label on input x. Define the 0-1 prediction loss
`0-1(F (x), y) to output 1 when F incorrectly classifies x and 0 otherwise.

2 WARMUP: SIMPLIFIED ALL-LAYER MARGIN AND ITS GENERALIZATION
GUARANTEES

Popular loss functions for classification, such as logistic and hinge loss, attempt to increase the
output margin of a classifier by penalizing predictions that are too close to the decision boundary.
Formally, consider the multi-class classification setting with a classifier F : D0 → Rl, where l
denotes the number of labels. We define the output margin on example (x, y) by γ(F (x), y) ,
max {0, F (x)y −maxy′ 6=y F (x)y′}.
For shallow models such as linear and kernel methods, the output margin maximization objective
enjoys good statistical guarantees (Kakade et al., 2009; Hofmann et al., 2008). For deep networks,
the statistical properties of this objective are less clear: until recently, statistical guarantees depend-
ing on the output margin also suffered an exponential dependency on depth (Bartlett et al., 2017;
Neyshabur et al., 2017b). Recent work removed these dependencies but require technically involved
proofs and result in complicated bounds depending on numerous properties of the training data (Na-
garajan & Kolter, 2019; Wei & Ma, 2019).

In this section, we introduce a new objective with better statistical guarantees for deep models (The-
orem 2.1) and outline the steps for proving these guarantees. Our objective is based on maximizing
a notion of margin which measures the stability of a classifier to simultaneous perturbations at all
layers. Suppose that the classifier F (x) = fk ◦ · · · ◦ f1(x) is computed by composing k functions
fk, . . . , f1, and let δk, . . . , δ1 denote perturbations intended to be applied at each hidden layer. We
recursively define the perturbed network output F (x, δ1, . . . , δk) by

h1(x, δ) = f1(x) + δ1‖x‖2
hi(x, δ) = fi(hi−1(x, δ)) + δi‖hi−1(x, δ)‖2
F (x, δ) = hk(x, δ)

(2.1)

The all-layer margin will now be defined as the minimum norm of δ required to make the classifier
misclassify the input. Formally, for classifier F , input x, and label y, we define

mF (x, y) ,
min

δ1,...,δk

√√√√min

k∑
i=1

‖δi‖22

subject to max
y′

F (x, δ1, . . . , δk)y′ 6= y

(2.2)

Note that the constraint that F (x, δ) misclassifies x is equivalent to enforcing γ(F (x), y) ≤ 0.
Furthermore, mF is strictly positive if and only if the unperturbed prediction F (x) is correct. Here
multiplying δi by the previous layer norm ‖hi−1(x, δ)‖2 is important and intuitively balances the
relative scale of the perturbations at each layer. We note that the definition above is simplified to
convey the main intuition behind our results – to obtain the tightest possible bounds, in Sections 3
and 4, we use the slightly more general mF defined in Section A.

Prior works have studied, both empirically and theoretically, the margin of a network with respect
to single perturbations at an intermediate or input layer (Sokolić et al., 2017; Novak et al., 2018;
Elsayed et al., 2018; Jiang et al., 2018). Our all-layer margin is better tailored towards handling
the compositionality of deep networks because it considers simultaneous perturbations to all layers,
which is crucial for achieving its statistical guarantees.
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Formally, let F , {fk ◦ · · · ◦ f1 : fi ∈ Fi} be the class of compositions of functions from
function classes F1, . . . ,Fk. We bound the population classification error for F ∈ F based on
the distribution of mF on the training data and the sum of the complexities of each layer, mea-
sured via covering numbers. For simplicity, we assume the covering number of each layer scales as
logN‖·‖op(ε,Fi) ≤ bC2

i /ε
2c for some complexity Ci, which is common for many function classes.

Theorem 2.1 (Simplified version of Theorem A.1). In the above setting, with probability 1− δ over
the draw of the training data, all classifiers F ∈ F which achieve training error 0 satisfy

EP [`0-1(F (x), y)] .

∑
i Ci√
n

√
E(x,y)∼Pn

[
1

mF (x, y)2

]
log2 n+ ξ

where ζ , O
(

log(1/δ)+logn
n

)
is a low-order term.

In other words, generalization is controlled by the sum of the complexities of the layers and the
quadratic mean of 1/mF on the training set. Theorem A.1 generalizes this statement to provide
bounds which depend on the q-th moment of 1/mF and converge at rates faster than 1/

√
n. For

neural nets, Ci scales with weight matrix norms and 1/mF can be upper bounded by a polynomial
in the Jacobian and hidden layer norms and output margin, allowing us to avoid an exponential
dependency on depth.

We will break down the proof of Theorem 2.1 into two simple parts. The first part hinges on showing
thatmF has low complexity which scales with the sum of the complexities at each layer. The second
part relates mF to the 0-1 loss using the simple fact that mF (x, y) is nonzero if and only if F
correctly classifies x.
Lemma 2.1 (Complexity Decomposition Lemma). Let m ◦ F = {mF : F ∈ F} denote the family
of all-layer margins of function compositions in F . Then

logN∞

√∑
i

ε2i ,mF

 ≤∑
i

logN‖·‖op(εi,Fi) (2.3)

The covering number of an individual layer commonly scales as logN‖·‖op(εi,Fi) ≤ bC2
i /ε

2
i c. In

this case, for all ε > 0, we obtain logN∞ (ε,m ◦ F) ≤
⌊

(
∑

i Ci)
2

ε2

⌋
.

Lemma 2.1 shows that the complexity of mF scales linearly in depth for any choice of layers Fi.
In sharp contrast, lower bounds show that the complexity of the output margin scales exponentially
in depth via a product of Lipschitz constants of all the layers (Bartlett et al., 2017; Golowich et al.,
2017). Our proof only relies on basic properties of mF , indicating that mF is naturally better-
equipped to handle the compositionality of F . In particular, we prove Lemma 2.1 by leveraging a
uniform Lipschitz property of mF . This uniform Lipschitz property does not hold for prior defi-
nitions of margin and reflects the key insight in our definition – it arises only because our margin
depends on simultaneous perturbations to all layers.

Claim 2.1. For any two compositions F = fk ◦ · · · ◦ f1 and F̂ = f̂k ◦ · · · ◦ f̂1 and any (x, y), we

have |mF (x, y)−mF̂ (x, y)| ≤
√∑k

i=1 ‖fi − f̂i‖2op.

Proof sketch. Let δ? be the optimal choice of δ in the definition of mF (x, y). We will construct δ̂

such that ‖δ̂‖2 ≤ ‖δ‖2 +
√∑

i ‖fi − f̂i‖2op and γ(F̂ (x, δ̂), y) = 0 as follows: define δ̂i , δ?i + ∆i

for ∆i ,
fi(hi−1(x,δ))−f̂i(hi−1(x,δ))

‖hi−1(x,δ)‖2 , where h is defined as in (2.1) with respect to the classifier F .

Note that by our definition of ‖ · ‖op, we have ‖∆i‖2 ≤ ‖fi − f̂i‖op. Now it is possible to check
inductively that F̂ (x, δ̂) = F (x, δ?). In particular, δ̂ is satisfies the misclassification constraint in
the all-layer margin objective for F̂ . Thus, it follows that

mF̂ (x, y) ≤ ‖δ̂‖2 ≤ ‖δ?‖2 + ‖∆‖2 ≤ mF (x, y) +

√∑
i

‖fi − f̂i‖2op
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where the last inequality followed from ‖∆i‖2 ≤ ‖fi − f̂i‖op. With the same reasoning,we obtain

mF (x, y) ≤ mF̂ (x, y) +
√∑

i ‖fi − f̂i‖2op, so |mF (x, y)−mF̂ (x, y)| ≤
√∑

i ‖fi − f̂i‖2op.

Given Claim 2.1, Lemma 2.1 follows simply by composing εi-covers of Fi. We prove a more
general version in Section A (see Lemmas A.1 and A.3.)

The second part of the proof of Theorem 2.1 is to upper bound the 0-1 test error by the test error
of some smooth surrogate loss ` ◦mF . A result by Srebro et al. (2010) shows that generic smooth
losses ` enjoy faster O(n−1) covergence rates if the empirical loss is low. We straightforwardly
combine Lemma 2.1 with their results to obtain the following generalization bound for ` ◦mF :

Lemma 2.2. Suppose that ` is a β-smooth loss function taking values in [0, 1]. Then in the setting
of Theorem 2.1, we have with probability 1− δ for all F ∈ F:

EP [`(mF (x, y))] ≤ 3

2
EPn [`(mF (x, y))] + c

(
β(
∑
i Ci)2 log2 n

n
+

log(1/δ) + log log n

n

)
(2.4)

for some universal constant c > 0.

To complete the proof of Theorem 2.1, we will choose ` ◦ mF which upper bounds the 0-1 loss
such that the right hand side of (2.4) gives the desired bound. In Section A, we formalize the proof
plan presented here and also define a slightly more general version of mF used to derive the bounds
presented in the following Sections 3 and 4.

2.1 CONNECTION TO (NORMALIZED) OUTPUT MARGIN

Finally, we check that when F is a linear classifier, mF recovers the standard output margin. Thus,
we can view the all-layer margin as an extension of the output margin to deeper classifiers.

Example 2.1. In the binary classification setting with a linear classifier F (x) = w>x where the
data x has norm 1, we have mF (x, y) = max{0, yw>x} = γ(F (x), y).

For deeper models, the all-layer margin can be roughly bounded by a quantity which normalizes the
output margin by Jacobian and hidden layer norms. We formalize this in Lemma 3.1 and use this to
prove our main generalization bound for neural nets, Theorem 3.1.

3 GENERALIZATION GUARANTEES FOR NEURAL NETWORKS

In this section, we derive generalization bounds for neural nets with smooth activations. We rely on
the proof techniques outlined in Section 2 to avoid exponential dependencies on depth and obtain
tighter dependencies on data dependent properties than prior work (Nagarajan & Kolter, 2019; Wei
& Ma, 2019). The results in this section are essentially derived by substituting an analytic lower
bound on the all-layer margin into Theorem 2.1.

The neural net classifier F will be parameterized by r weight matrices {W(i)} and compute F (x) =
W(r)φ(· · ·φ(W(1)x) · · · ) for smooth activation φ. Let d be the largest layer dimension. We model
this neural net by a composition of k = 2r−1 layers alternating between matrix multiplications and
applications of φ and use the subscript in parenthesis (i) to emphasize the different indexing system
between weight matrices and all the layers. We will let s(i)(x) denote the ‖ · ‖2 norm of the layer
preceding the i-th matrix multiplication evaluated on input x, and κj←i(x) will denote the ‖ · ‖op
norm of the Jacobian of the j-th layer with respect to the i− 1-th layer evaluated on x.

The following theorem bounds the generalization error of the network and is derived by lower bound-
ing the all-layer margin in terms the quantities s(i)(x), κj←i(x), γ(F (x), y).

Theorem 3.1. Assume that the activation φ is has a κ′φ-Lipschitz derivative. Fix reference matrices
{A(i), B(i)}ki=1 and any integer q > 0. With probability 1− δ over the draw of the training sample
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Pn, all neural nets F which achieve training error 0 satisfy

EP [`0-1 ◦ F ] ≤ O


(∑

i ‖κNN
(i) ‖

2/3
Lq(Pn)a

2/3
(i)

)3q/(q+2)

q log2 n

nq/(q+2)

+ ζ (3.1)

where κNN
(i) captures a local Lipschitz constant of perturbations at layer i and is defined by

κNN
(i) (x, y) ,

s(i−1)(x)κ2r−1←2i(x)

γ(F (x), y)
+ ψ(i)(x, y) (3.2)

for a secondary term ψ(i)(x, y) given by

ψ(i)(x, y) ,
r−1∑
j=i

s(i−1)(x)κ2j←2i(x)

s(j)(x)
+

∑
1≤j≤2i−1≤j′≤2r−1

κj′←2i(x)κ2i−2←j(x)

κj′←j(x)

+
∑

1≤j≤j′≤2r−1

j′∑
j′′={2i,j},j′′even

κ′φκj′←j′′+1(x)κj′′−1←2i(x)κj′′−1←j(x)s(i−1)(x)

κj′←j(x)

We define a(i) by a(i) , min{
√
d‖W(i) − A(i)‖fro, ‖W(i) − B(i)‖1,1}

√
log d + poly(n−1) and

ζ .
r logn+log(1/δ)+

∑
i log(a(i)+1)

n is a low-order term.

For example, when q = 2, from (3.1) we obtain the following bound which depends on the second
moment of κNN

(i) and features the familiar 1/
√
n convergence rate in the training set size.

EP [`0-1 ◦ F ] .

(∑
i EPn

[
(κNN

(i) )2
]1/3

(a(i))
2/3
)3/2

log2 n
√
n

+ ξ

For larger q, we obtain a faster convergence rate in n, but the dependency on κNN
(i) gets larger.

We will outline a proof sketch which obtains a variant of Theorem 3.1 with a slightly worse poly-
nomial dependency on κNN

(i) and a(i). For simplicity we defer the proof of the full Theorem 3.1 to
Sections B and C. First, we need to slightly redefine mF so that perturbations are only applied at
linear layers (formally, fix δ2i = 0 for the even-indexed activation layers, and let δ(i) , δ2i−1 in-
dex perturbations to the i-th linear layer). It is possible to check that Lemma 2.1 still holds since
activation layers correspond to a singleton function class {φ} with log covering number 0. Thus,
the conclusion of Theorem 2.1 also applies for this definition of mF . Now the following lemma
relates this all-layer margin to the output margin and Jacobian and hidden layer norms, showing that
mF (x, y) can be lower bounded in terms of {κNN

(i) (x, y)}.

Lemma 3.1. In the setting above, we have the lower bound mF (x, y) ≥ 1
‖{κNN

(i)
(x,y)}ri=1‖2

.

Directly plugging the above lower bound into Theorem 2.1 and choosing C2i = 0, C2i−1 = a(i)

would give a variant of Theorem 3.1 that obtains a different polynomial in κNN
(i) , a(i).

Heuristic derivation of Lemma 3.1 We compute the derivative of F (x, δ) with respect to δ(i):

Dδ(i)F (x, δ) = Dh2i−1(x,δ)F (x, δ)‖h2i−2(x, δ)‖2
where we abuse notation to let Dh2i−1(x,δ)F (x, δ) denote the derivative of F with respect to the
2i− 1-th perturbed layer evaluated on input (x, δ). By definitions of κj←i, s(i) and the fact that the
output margin is 1-Lipschitz, we obtain

‖Dδ(i)γ(F (x, δ), y)|δ=0‖2 ≤ ‖Dh2i−1(x,δ)F (x, 0)‖op‖h2i−2(x, 0)‖2 = κ2r−1←2i(x)s(i−1)(x)

With the first order approximation γ(F (x, δ), y) ≈ γ(F (x), y)+
∑
iDδ(i)γ(F (x, δ), y)|δ=0δ(i), we

now obtain

γ(F (x, δ), y) ≥ γ(F (x), y)−
∑
i

κ2r−1←2i(x)s(i−1)(x)‖δ(i)‖2

7
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The right hand side is nonnegative whenever ‖δ‖2 ≤ γ(F (x),y)
‖{κ2r−1←2i(x)s(i−1)(x)}ri=1‖2

, which would

imply that mF (x, y) ≥ γ(F (x),y)
‖{κ2r−1←2i(x)s(i−1)(x)}ri=1‖2

.

However, this conclusion is imprecise and non-rigorous because of the first order approximation – to
make the argument rigorous, we also control the smoothness of the network around x in terms of the
interlayer Jacobians, ultimately resulting in the bound of Lemma 3.1. We remark that the quantities
κNN

(i) are not the only expressions with which we could lower bound mF (x, y). Rather, the role of

κNN
(i) is to emphasize the key term s(i−1)(x)κ2r−1←2i(x)

γ(F (x),y) , which measures the first order stability of the
network to perturbation δ(i) and relates the all-layer margin to the output margin. As highlighted
above, a smaller value of this term will result in larger mF so long as the network is sufficiently
smooth around (x, y), as captured by the term ψ(i)(x, y).

Comparison to existing bounds We can informally compare Theorem 3.1 to the existing
bounds of (Nagarajan & Kolter, 2019; Wei & Ma, 2019) as follows. First, the leading term
s(i−1)(x)κ2r−1←2i(x)

γ(F (x),y) of κNN,(i) depends on three quantities all evaluated on the same training ex-
ample, whereas the analogous quantity in the bounds of (Nagarajan & Kolter, 2019; Wei & Ma,
2019) appears as maxPn

1
γ(F (x),y) ·maxPn s(i−1)(x) ·maxPn κ2r−1←2i(x), where each maximum

is taken over the entire training set. We additionally have

‖κNN,(i)‖Lq(Pn) ≤ max
Pn

κNN,(i)(x, y) ≈ max
Pn

s(i−1)(x)κ2r−1←2i(x)

γ(F (x), y)

< max
Pn

1

γ(F (x), y)
·max
Pn

s(i−1)(x) ·max
Pn

κ2r−1←2i(x)

Thus, the term ‖κNN
(i) ‖Lq(Pn) in our bound can be much smaller than its counterpart in the bounds

of (Nagarajan & Kolter, 2019; Wei & Ma, 2019). An interpretation of the parameter q is that we
obtain fast (close to n−1) convergence rates if the model fits every training example perfectly with
large all-layer margin, or we could have slower convergence rates with better dependence on the all-
layer margin distribution. It is unclear whether the techniques in other papers can achieve this same
tradeoff in q because their proofs require the simultaneous convergence of multiple data-dependent
quantities, whereas we bound everything using the single quantity mF .

Additionally, we compare the dependence on the weight matrix norms relative to n (as the degree
of n in our bound can vary). For simplicitly, assume that the reference matrices A(i) are set to
0. Our dependence on the weight matrix norms relative to the training set size is, up to logarithmic

factors,
(

min{
√
d‖W(i)‖fro,‖W(i)‖1,1}√

n

)2q/(q+2)

, which always matches or improves on the dependency
obtained by PAC-Bayes methods such as (Neyshabur et al., 2017b; Nagarajan & Kolter, 2019). Wei

& Ma (2019) obtain the dependency ‖W(i)
>‖2,1√
n

, where ‖W(i)
>‖2,1 is the sum of the ‖ · ‖2 norms of

the rows of W(i). This dependency on W(i) is always smaller than ours.

Finally, we note that Theorem 2.1 already gives tighter (but harder to compute) generalization guar-
antees for relu networks directly in terms of mF . Existing work contains a term which depends on
inverse pre-activations shown to be large in practice (Nagarajan & Kolter, 2019), whereasmF avoids
this dependency and is potentially much smaller. We explicitly state the bound in Section B.1.

4 GENERALIZATION GUARANTEES FOR ROBUST CLASSIFICATION

In this section, we apply our tools to obtain generalization bounds for adversarially robust classifi-
cation. Prior works rely on relaxations of the adversarial loss to bound adversarially robust gener-
alization for neural nets (Khim & Loh, 2018; Yin et al., 2018). These relaxations are not tight and
in the case of (Yin et al., 2018), only hold for neural nets with one hidden layer. To the best of our
knowledge, our work is the first to directly bound generalization of the robust classification error for
any network. Our bounds are formulated in terms of data-dependent properties in the adversarial
neighborhood of the training data and avoid exponential dependencies in depth.

Let Badv(x) denote the set of possible perturbations to the point x. We would like to
bound generalization of the adversarial classification loss `adv

0-1 defined by `adv
0-1 (F (x), y) ,

8
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maxx′∈Badv(x) `0-1(F (x′), y). Typically, Badv(x) will be some norm ball around x, but our analy-
sis holds for more general sets. We prove the following bound which essentially replaces all data-
dependent quantities in Theorem 3.1 with their adversarial counterparts.
Theorem 4.1. Assume that the activation φ has a κ′φ-Lipschitz derivative. Fix reference matrices
{A(i), B(i)}ki=1 and any integer q > 0. With probability 1− δ over the draw of the training sample
Pn, all neural nets F which achieve robust training error 0 satisfy

EP [`adv
0-1 ◦ F ] ≤ O

q log2 n
(∑

i ‖κadv
(i) ‖

2/3
Lq(Pn)a

2/3
(i)

)3q/(q+2)

nq/(q+2)

+ ζ

where κadv
(i) is defined by κadv

(i) (x, y) , maxx′∈Badv(x) κ
NN
(i) (x′, y) for κNN

(i) in (3.2), and a(i), ζ are
defined the same as in Theorem 3.1.

Designing regularizers for robust classification based on the bound in Theorem 4.1 is a promising
direction for future work. To prove Theorem 4.1, we simply define a natural extension to our all-
layer margin, and the remaining steps follow in direct analogy to the clean classification setting. We
define the adversarial all-layer margin as the smallest all-layer margin on the perturbed inputs:

madv
F (x, y) , min

x′∈Badv(x)
mF (x, y)

We note that madv
F (x, y) is nonzero if and only if F correctly classifies all adversarial perturbations

of x. Furthermore, the adversarial all-layer margin satisfies the same uniform Lipschitz property as
described in Claim 2.1. Thus, the remainder of the proof of Theorem 4.1 follows the same steps laid
out in Section 2. As before, we note that Theorem 4.1 requires mF to be the more general all-layer
margin defined in Section A. We provide the full proofs in Section E.

5 EMPIRICAL APPLICATION OF THE ALL-LAYER MARGIN

Inspired by the good statistical properties of the all-layer margin, we design an algorithm which
encourages a larger all-layer margin during training. Letting ` denote the standard cross entropy
loss used in training and Θ the parameters of the network, consider the following objective:

G(δ,Θ;x, y) , `(FΘ(x, δ), y)− λ‖δ‖22 (5.1)

This objective can be interpreted as applying the Lagrange multiplier method to a softmax relaxation
of the constraint maxy′ F (x, δ1, . . . , δk)y′ 6= y in the objective for all-layer margin.2 IfG(δ,Θ;x, y)
is large, this signifies the existence of some δ with small norm for which FΘ(x, δ) suffers large loss,
indicating that mFΘ is likely small. This motivates the following training objective over Θ:

L(Θ) , EPn
[max
δ
G(δ,Θ;x, y)]

Define δ?Θ,x,y ∈ arg maxδ G(δ,Θ;x, y). From Danskin’s Theorem, if G(δ,Θ;x, y) is continuously
differentiable, then we have that the quantity

−EPn
[∇ΘG(δ?Θ,x,y,Θ;x, y)]

will be a descent direction in Θ for the objective L(Θ) (see Corollary A.2 of (Madry et al., 2017) for
the derivation of a similar statement). Although the exact value δ?Θ,x,y is hard to obtain, we can use
a substitute δ̃Θ,x,y found via several gradient descent steps in δ. This inspires the following all-layer
margin optimization (AMO) algorithm: we find perturbations δ̃ for each example in the batch via
gradient descent steps on G(δ,Θ;x, y). For each example in the batch, we then compute the per-
turbed loss `(FΘ(x, δ̃Θ,x,y)) and update Θ with its negative gradient with respect to these perturbed
losses. This method is formally outlined in the PERTURBEDUPDATE procedure of Algorithm 1.3

2Technically the λ multiplier should go to the ` term, but (5.1) is equivalent to this up to a scaling.
3We note a slight difference with our theory: in the FORWARDPERTURB function, we perform the update

fj←1(x, δ) = fj(fj−1←1(x, δ)) + ‖fj(fj−1←1(x, δ))‖δj , rather than scaling δ by the previous layer norm –
this allows the perturbation to also account for the scaling of layer j.

9
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Algorithm 1 All-layer Margin Optimization (AMO)

procedure PERTURBEDUPDATE(minibatch B = {(xi, yi)}bi=1, current parameters Θ)
Initialize δi = 0 for i = 1, . . . , b.
for s = 1, . . . , t do

for all (xi, yi) ∈ B: do
Update δi ← (1− ηperturbλ)δi + ηperturb∇δ `(FORWARDPERTURB(xi, δi, Θ), yi)

Set update g = ∇Θ

[
1
b

∑
i `( FORWARDPERTURB(xi, δi, Θ), yi)

]
.

Update Θ← Θ− η(g +∇ΘR(Θ)). . R is a regularizer, i.e. weight decay.

function FORWARDPERTURB(x, δ, Θ) . The net has layers f1(·; Θ), . . . , fr(·; Θ),
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaawith intended perturbations δ(1), . . . , δ(r).

Initialize h← x.
for j = 1, . . . , r do

Update h← fj(h; Θ).
Update h← h+ ‖h‖δ(j).

return h

Table 1: Validation error on CIFAR-10 and CIFAR-100 for standard the standard training algorithm
vs. AMO (Algorithm 1).

Dataset Arch. Setting Standard SGD AMO

CIFAR-10

WRN16-10
Baseline 4.15% 3.42%

No data augmentation 9.59% 6.74%
20% random labels 9.43% 6.72%

WRN28-10
Baseline 3.82% 3.00%

No data augmentation 8.28% 6.47%
20% random labels 8.17% 6.01%

CIFAR-100
WRN16-10 Baseline 20.12% 19.14%

No data augmentation 31.94% 26.09%

WRN28-10 Baseline 18.85% 17.78%
No data augmentation 30.04% 24.67%

We use Algorithm 1 to train a WideResNet architecture (Zagoruyko & Komodakis, 2016) on
CIFAR10 and CIFAR100 in a variety of settings. For all of our experiments we use t = 1,
ηperturb = 0.01, and we apply perturbations following conv layers in the WideResNet basic blocks.
Although we tried larger t, our results did not depend much on our choice of t. The other hyper-
parameters are set to their defaults for WideResNet architectures. In Table 1 we report the best
validation error achieved during a single run of training, demonstrating that our algorithm indeed
leads to improved generalization over the strong WideResNet baseline for a variety of settings.

6 CONCLUSION

Many popular objectives in deep learning are based on maximizing a notion of output margin, but
unfortunately it is difficult to obtain good statistical guarantees by analyzing this output margin.
In this paper, we design a new all-layer margin which attains strong statistical guarantees for deep
models. Our proofs for these guarantees follow very naturally from our definition of the margin.
We apply the all-layer margin in several ways: 1) we obtain tighter data-dependent generalization
bounds for neural nets 2) for adversarially robust classification, we directly bound the robust gener-
alization error in terms of local Lipschitzness around the adversarially perturbed training examples,
and 3) we design a new algorithm to encourage larger all-layer margins and demonstrate improved
performance on real-world data in the clean classification setting. We hope that our results prompt
further study on maximizing all-layer margin as a new objective for deep learning.
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A GENERALIZED ALL-LAYER MARGIN AND MISSING PROOFS FOR
SECTION 2

In this section, we provide proofs for Section 2 in a more general and rigorous setting. We first
formally introduce the setting, which considers functions composed of layers which map between
arbitrary normed spaces.

Recall that F denotes our classifier from Section 2 computed via the composition fk ◦ · · · ◦ f1, For
convenience, we overload notation and also let it refer to the sequence of functions {f1, . . . , fk}.
Recall that F denotes the class of all compositions of layers Fk, . . . ,F1, where we let functions in
Fi map domainsDi−1 toDi. We will fixDk , Rl, the space of predictions for l classes. Each space
is equipped with norm ‖ · ‖ (our theory allows the norm to be different for every i, but for simplicity
we use the same symbol ‖ · ‖ for all layers).

For a given F , we now define the general all-layer margin mF : D0 × [l]→ R as follows:

mF (x, y) ,
min |||δ|||

subject to γ(F (x, δ), y) ≤ 0
(A.1)

The norm ||| · ||| will have the following form:

|||δ||| = ‖(α1‖δ1‖, . . . , αk‖δk‖)‖p
where αi ≥ 0 will be parameters chosen later to optimize the resulting bound, and ‖ · ‖p denotes the
standard `p-norm. This more general definition of mF will be useful for obtaining Theorems 3.1
and 4.1. Note that by setting αi = 1 for all i and p = 2, we recover the simpler mF defined in
Section 2.

It will be useful to define additional notation for the perturbed function between layers i and j,
denoted by fj←i(h, δ), recursively as follows:

fi←i(h, δ) , fi(h) + δi‖h‖, and fj←i(h, δ) , fj←j(fj−1←i(h, δ)) + δj‖fj−1←i(h, δ)‖

where we choose fi−1←i(h, δ) , h. Note that F (x, δ) , fk←1(x, δ), and the notation hi(x, δ) from
Section 2 is equivalent to fi←1(x, δ). We will use the simplified notation fj←i(x) , fj←i(x, 0)
when the perturbation δ is 0 at all layers.

As before, it will be convenient for the analysis to assume that the ε-covering number of Fi in
operator norm scales with ε−2. We formally state this condition for general function classes and
norms below:

Condition A.1 (ε−2 covering condition). We say that a function class G satisfies the ε−2 covering
condition with respect to norm ‖ · ‖ with complexity C‖·‖(G) if for all ε > 0,

logN‖·‖(ε,G) ≤

⌊
C2
‖·‖(G)

ε2

⌋

Now we provide the analogue of Theorem 2.1 for the generalized all-layer margin:

Theorem A.1. Fix any integer q > 0. Suppose that all layer functions Fi satisfy Condition A.1 with
operator norm ‖ · ‖op and complexity function C‖·‖op(Fi). Let the all layer margin mF be defined as
in (A.1). Then with probability 1− δ over the draw of the training data, all classifiers F ∈ F which
achieve training error 0 satisfy

EP [`0-1(F (x), y)] .


∥∥∥ 1
mF

∥∥∥
Lq(Pn)

C|||·|||(F)

√
n


2q/(q+2)

q log2 n+ ζ

where C|||·|||(F) ,
(∑

i α
2p/(p+2)
i C‖·‖op(Fi)2p/(p+2)

)(p+2)/2p

is a complexity (in the sense of Con-

dition A.1) for covering F in ||| · ||| and ζ , O
(

log(1/δ)+logn
n

)
is a low-order term.

14



Under review as a conference paper at ICLR 2020

Note that this recovers Theorem 2.1 when αi = 1 for all i and p = 2. The proof of Theorem A.1
mirrors the plan laid out in Section 2. For F = {f1, . . . , fk}, we overload notation and write
|||F ||| = ‖(α1‖f1‖op, . . . , αk‖fk‖op)‖p. As before, the first step of the proof is showing that mF has
low complexity as measured by covering numbers.

Lemma A.1. Define m ◦ F , {(x, y) 7→ mF (x, y) : F ∈ F}. Then

N∞(ε,m ◦ F) ≤ N|||·|||(ε,F)

As in Section 2, we prove Lemma A.1 by bounding the error between mF and mF̂ in terms of the
||| · |||-norm of the difference between F and F̂ .

Claim A.1. For any x, y ∈ D0 × [l], and function sequences F = {fi}ki=1, F̂ = {f̂i}ki=1, we have
|mF (x, y)−mF̂ (x, y)| ≤ |||F − F̂ |||.

Proof. Suppose that δ?,F optimizes equation (A.1) used to define mF (x, y). Now we use the nota-
tion h?i , fi←1(x, δ?,F ). Define δ̂ as follows:

δ̂i , δ?,Fi +
fi(h

?
i−1)− f̂i(h?i−1)

‖h?i−1‖

We first argue via induction that f̂i←1(x, δ̂) = h?i . As the base case, we trivially have f̂0←1(x, δ̂) =
x = h?0.

f̂i←1(x, δ̂) = f̂i(f̂i−1←1(x, δ̂)) + δ̂i‖f̂i−1←1(x, δ̂)‖

= f̂i(h
?
i−1) + δ̂i‖h?i−1‖ (by the inductive hypothesis)

= f̂i(h
?
i−1) +

(
δ?,Fi +

fi(h
?
i−1)− f̂i(h?i−1)

‖h?i−1‖

)
‖h?i−1‖ (definition of δ̂)

= fi(h
?
i−1) + δ?,Fi ‖h

?
i−1‖

= h?i (definition of g?i )

Thus, we must have F̂ (x, δ̂) = F (x, δ?,F ), so it follows that γ(F̂ (x, δ̂), y) ≤ 0 as well. Further-
more, by triangle inequality

|||δ̂||| ≤ |||δ?,F |||+ |||δ̂ − δ?,F ||| (A.2)

Now we note that as ‖fi(h
?
i−1)−f̂i(h?

i−1)‖
‖h?

i−1‖
≤ ‖fi − f̂i‖op, it follows that

|||δ̂ − δ?,F ||| ≤ ‖(α1‖f1 − f̂1‖op, . . . , αk‖fk − f̂k‖op)‖p = |||F − F̂ |||

Thus, using (A.2) and the definition of mF̂ , we have

mF̂ (x, y) ≤ |||δ̂||| ≤ mF (x, y) + |||F − F̂ |||

where we relied on the fact that |||δ?,F ||| = mF (x, y). Using the same reasoning, we also obtain
the inequality mF (x, y) ≤ mF̂ (x, y) + |||F − F̂ |||. Combining gives |mF (x, y) − mF̂ (x, y)| ≤
|||F − F̂ |||.

Lemma A.1 now directly follows.

Proof of Lemma A.1. As Claim A.1 holds for any choice of (x, y) ∈ D0 × [l], it follows that if F̂
covers F in norm ||| · |||, then m ◦ F̂ will be a cover for m ◦ F in the functional∞ norm.

We now state the generalized version of Lemma 2.2. The statement below is a straightforward
application of our covering number bound in Lemma A.1 with theory in (Srebro et al., 2010); for
minor technical reasons we translate their result to covering numbers and reprove it in Section A.1.
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Lemma A.2 (Straightforward adaptation from (Srebro et al., 2010)). Suppose that ` is a β-smooth
loss function taking values in [0, 1]. Furthermore suppose thatF satisfies Condition A.1 with respect
to norm ||| · ||| and complexity C|||·|||(F). Then with probability 1− δ, for all F ∈ F ,

EP [`(mF (x, y))] ≤ 3

2
EPn [`(mF (x, y))] + c

(
βC2
|||·|||(F) log2 n

n
+

log(1/δ) + log log n

n

)
for some universal constant c > 0.

The final ingredient is showing that when each individual layerFi satisfies Condition A.1 in operator
norm, the class of compositions F satisfies Condition A.1 with respect to norm ||| · |||.
Lemma A.3. Suppose that each Fi satisfies Condition A.1 with norm ‖ · ‖op and complexity
C‖·‖op(Fi). Define the complexity measure C|||·|||(F) by

C|||·|||(F) ,

(∑
i

α
2p/(p+2)
i C‖·‖op(Fi)

2p/(p+2)

)(p+2)/2p

(A.3)

Then we have

logN|||·|||(ε,F) ≤

⌊
C2
|||·|||(F)

ε2

⌋
which by definition implies that F satisfies Condition A.1 with norm ||| · ||| and complexity C|||·|||(F).

Proof. Let F̂i be an εi-cover ofFi in the operator norm ‖·‖op. We will first show that F̂ , {F̂k◦· · ·◦
F̂1 : F̂i ∈ F̂i} is a ‖{αiεi}ki=1‖p-cover of F in ||| · |||. To see this, for any F = (fk, . . . , f1) ∈ F , let
f̂i ∈ F̂i be the cover element for fi, and define F̂ , (f̂k, . . . , f̂1). Then we have

|||F̂ − F ||| = ‖{αi‖f̂i − fi‖op}ki=1‖p
≤ ‖{αiεi}ki=1‖p

as desired. Furthermore, we note that log |F̂ | ≤
∑
i

⌊
C2
‖·‖op

(Fi)

ε2i

⌋
by Condition A.1. Now we will

choose
εi = εC|||·|||(F)−2/(p+2)C‖·‖op(Fi)

2/(p+2)α
−p/(p+2)
i

We first verify that this gives an ε-cover of F in ||| · |||:

‖{αiεi}ki=1‖p = ε

(
C|||·|||(F)−2p/(p+2)

∑
i

C‖·‖op(Fi)
2p/(p+2)α

p−p2/(p+2)
i

)1/p

= εC|||·|||(F)−2/(p+2)

(∑
i

C‖·‖op(Fi)
2p/(p+2)α

2p/(p+2)
i

)1/p

= εC|||·|||(F)−2/(p+2)C|||·|||(F)2/(p+2) = ε

Next, we check that the covering number is bounded by
⌊
C2
|||·|||(F)

ε2

⌋
:

∑
i

⌊
C2
‖·‖op

(Fi)
ε2i

⌋
≤

∑i C2
‖·‖op

(Fi)2C|||·|||(F)4/(p+2)C‖·‖op(Fi)−4/(p+2)α
2p/(p+2)
i

ε2


=

⌊∑
i C|||·|||(F)4/(p+2)C‖·‖op(Fi)2p/(p+2)α

2p/(p+2)
i

ε2

⌋

=

⌊
C|||·|||(F)4/(p+2)C|||·|||(F)2p/(p+2)

ε2

⌋
=

⌊C|||·|||(F)2

ε2

⌋
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Finally, we prove Theorem A.1 (and as a result, Theorem 2.1). This will hinge on applying
Lemma A.2 with the correct choice of smooth loss.

Proof of Theorems A.1 and 2.1. Define `β(m) , 1 + 2 min{0,PrZ∼N (0,1)(Z/
√
β ≥ m) − 0.5}.

By Claim A.2, this loss is c1β smooth and for mF (x, y) > 0 satisfies

`β(mF (x, y)) ≤
(

c2
√
q

√
βmF (x, y)

)q
for universal constants c1, c2. We additionally have `0-1(F (x), y) ≤ `β(mF (x, y)). Because of
Lemma A.3, the conditions of Lemma A.2 are satisfied, and applying Lemma A.2 with smooth loss
`β gives with probability 1− δ, for all F ∈ F with training error 0

EP [`0-1(F (x), y)] . ẼF (β) +
log(1/δ) + log log n

n

where ẼF (β) is defined by

ẼF (β) ,
1

n

∑
(x,y)∈Pn

(
c2
√
q

√
βmF (x, y)

)q
+
βC2
|||·|||(F) log2 n

n

and C2
|||·|||(F) is defined as in Lemma A.3. Choosing β to minimize the above expression would give

the desired bound – however, such a post-hoc analysis cannot be performed because the optimal β
depends on the training data, and the loss class has to be fixed before the training data is drawn.

Instead, we utilize the standard technique of union bounding over a grid of β̂ in log-scale. Let
ξ , C2

|||·|||(F)poly(n−1) denote the minimum choice of β̂ in this grid, and select in this grid all

choices of β̂ in the form ξ2j for j ≥ 0. For a given choice of β̂, we assign it failure probability
δ̂ = δ

2β̂/ξ
, such that by design

∑
δ̂ = δ. Thus, applying Lemma A.2 for each choice of β̂ with

corresponding failure probability δ̂, we note with probability 1− δ,

EP [`0-1(F (x), y)] . ẼF (β̂) +
log(1/δ) + log(β̂/ξ) + log log n

n

holds for all β̂ and F ∈ F .

Now for fixed F ∈ F , let β?F denote the optimizer of ẼF (β). We claim either there is some choice
of β̂ with

ẼF (β̂) +
log(1/δ) + log(β̂/ξ) + log log n

n
. ẼF (β?F ) +O

(
log n+ log(1/δ)

n

)
(A.4)

or ẼF (β?F ) & 1, in which case the generalization guarantees of Theorem A.1 for this F anyways
trivially hold. To see this, we note that there is β̂ in the grid such that β̂ ∈ [β?F , 2β

?
F + ξ]. Then

ẼF (β̂) ≤ 1

n

∑
(x,y)∈Pn

(
c2
√
q√

β?FmF (x, y)

)q
+

4β?FC2
|||·|||(F) log2 n

n
+ poly(n−1)

≤ 4ẼF (β?F ) + poly(n−1)

Furthermore, we note that if β?F > poly(n)ξ, then ẼF (β?F ) & 1. This allows to only consider
β̂ < poly(n)ξ, giving (A.4).

Thus, with probability 1− δ, for all F ∈ F , we have

EP [`0-1(F (x), y)] . ẼF (β?F ) +O

(
log n+ log(1/δ)

n

)

It remains to observe that setting β?F = Θ

q( n
∥∥∥ 1

mF

∥∥∥q
Lq(Pn)

C|||·|||(F)2 log2 n

)2/(q+2)
 gives us the theorem

statement.
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Claim A.2. For β > 0, define the loss function `β(m) , 1 + 2 min{0,PrZ∼N (0,1)(Z/
√
β ≥

m)− 0.5}. Then `β satisfies the following properties:

1. For all m ∈ R, `β(m) ∈ [0, 1], and for m ≤ 0, `β(m) = 1.

2. The function `β is c1β-smooth for some constant c independent of β.

3. For any integer q > 0 and m > 0, `β(m) ≤ qq/2cq2
βq/2mq for some constant c independent of q.

Proof. The first property follows directly from the construction of `β . For the second property, we
first note that

d2

dm2
Pr

Z∼N (0,1)
(Z/

√
β ≥ m) =

mβ3/2

√
2π

exp(−m2β/2)

Now first note that at m = 0, the above quantity evaluates to 0, and thus `β has a second
derivative everywhere (as m = 0 is the only point where the function switches). Furthermore,
maxmm

√
β exp(−m2β/2) = maxy y exp(−y2/2) ≤ c′ for some constant c′ independent of β.

Thus, the above expression is upper bounded by β√
2π
c′, giving the second property.

For the third property, we note that for m > 0, `β(m) = 2 PrZ∼N (0,1)(Z/
√
β ≥ m). As the q-th

moment of a Gaussian random variable with variance 1 is upper bounded by qq/2cq2 for all q and
some c2 independent of q, Markov’s inequality gives the desired result.

A.1 PROOF OF LEMMA A.2

The proof is a straightforward application of Lemma A.1 and conversion of (Srebro et al., 2010) from
the language of Rademacher complexity to covering numbers.

Proof. We can follow the proof of Theorem 1 in (Srebro et al., 2010), with the only difference
that we replace their Rademacher complexity term with our complexity function C|||·|||(F). For
completeness, we outline the steps here.

Define H(µ) = {h ∈ ` ◦ m ◦ F : EPn
[h] ≤ µ} to be the class of functions in ` ◦ m ◦ F with

empirical loss at most µ. Define ψ(µ) ,
C|||·|||(F)

√
48βµ√

n
log n. By Lemma A.4, the following holds

for all µ:

Eσ

[
sup

h∈H(µ)

∑
i

σih(xi, yi)

]
≤ ψ(µ)

Now using the same steps as (Srebro et al., 2010) (which relies on applying Theorem 6.1 of (Bous-
quet, 2002)), we obtain for all F ∈ F , with probability 1− δ
EP [` ◦mF ] ≤ EPn

[` ◦mF ] + 106r?n

+
48

n
(log 1/δ + log log n) +

√
EPn [` ◦mF ](8r?n +

4

n
(log 1/δ + log log n))

(A.5)

where r?n is the largest solution of ψ(µ) = µ. We now plug in r?n .
β log2 nC2

|||·|||(F)

n and use the fact
that
√
c1c2 ≤ (c1 + c2)/2 for any c1, c2 > 0 to simplify the square root term in A.5.

EP [` ◦mF ] ≤ 3

2
EPn

[` ◦mF ] + c

(
βC2
|||·|||(F) log2 n

n
+

log(1/δ) + log log n

n

)
for some universal constant c.

Lemma A.4. In the setting above, for all µ > 0, we have

Eσ

[
sup

h∈H(µ)

∑
i

σih(xi, yi)

]
≤
C|||·|||(F)

√
48βµ

√
n

log n

where {σi}ni=1 are i.i.d. Rademacher random variables.
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Proof. First, by Dudley’s Theorem (Dudley, 1967), we have

Eσ

[
sup

h∈H(µ)

∑
i

σih(xi, yi)

]
≤ inf
α>0

(
α+

1√
n

∫ ∞
α

√
logNL2(Pn)(ε,H(µ))dε

)
Now by Claim A.3, we obtain

Eσ

[
sup

h∈H(µ)

∑
i

σih(xi, yi)

]
≤ inf
α>0

α+
1√
n

∫ ∞
α

√√√√⌊48βµ
C2
|||·|||(F)

ε2

⌋
dε

 (by Claim A.3)

≤ inf
α>0

α+

√
48βµ√
n

∫ ∞
α/
√

48βµ

√√√√⌊C2
|||·|||(F)

ε′2

⌋
dε′


We obtained the last line via change of variables to ε′ = ε/

√
48βµ. Now we substitute α =

C|||·|||(F)
√

48βµ√
n

and note that the integrand is 0 for ε′ > C|||·|||(F) to get

Eσ

[
sup

h∈H(µ)

∑
i

σih(xi, yi)

]
≤
C|||·|||(F)

√
48βµ

√
n

(
1 +

∫ C|||·|||(F)

C|||·|||(F)/
√
n

1

ε′
dε′

)

≤
C|||·|||(F)

√
48βµ

√
n

log n

The following claim applies Lemma A.1 in order to bound the covering number ofH(µ) in terms of
C|||·|||(F).

Claim A.3. In the setting of Lemma A.2, we have the covering number bound

logNL2(Pn)(ε,H(µ)) ≤
⌊

48βµ
C|||·|||(F)

ε2

⌋

Proof. As ` ◦ m ◦ F is the composition of a β-smooth loss ` with the function class m ◦ F , by
equation (22) of (Srebro et al., 2010) we have

logNL2(Pn)(ε,H(µ)) ≤ logN∞(ε/
√

48βµ,m ◦ F)

≤ logN|||·|||(ε/
√

48βµ,F) (by Lemma A.1)

≤
⌊

48βµ
C|||·|||(F)

ε2

⌋
(as F satisfies Condition A.1)

B PROOFS FOR NEURAL NET GENERALIZATION

This section will derive the generalization bounds for neural nets in Theorem 3.1 by invoking the
more general results in Section C. To prove Theorem 3.1, we first state its analogue for all neural
nets satisfying fixed norm bounds on its weights.

Lemma B.1. In the neural network setting, suppose that the activation φ has a κ′φ-Lipschitz deriva-
tive. For parameters {a(i)}ri=1 meant to be norm constraints for the weights, define the class of
neural nets with bounded weight norms with respect to reference matrices {A(i), B(i)} as follows:

F , {x 7→ F (x) : min{
√
d‖W(i) −A(i)‖fro, ‖W(i) −B(i)‖1,1}

√
log d ≤ a(i) ∀i}
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Then with probability 1− δ, for any q > 0 and for all F ∈ F , we have

EP [`0-1(F (x), y)]

≤ 3

2
EPn

[`0-1(F (x), y)] +O

(
r log n+ log(1/δ)

n

)

+ (1− EPn
[`0-1(F (x), y)])

2/(q+2)
O

q( log2 n

n

) q
(q+2)

(∑
i

(‖κNN
(i) ‖Lq(Sn)a(i))

2/3

) 3q
(q+2)


where Sn denotes the subset of examples classified correctly by F and κNN

(i) is defined as in (3.2).

Proof. We will identify the class of neural nets with matrix norm bounds {a(i)}ri=1 with a sequence
of function families

F2i−1 , {h 7→Wh : W ∈ Rd×d,min{
√
d‖W −A(i)‖F , ‖W −B(i)‖1,1}

√
log d ≤ a(i)}

F2i , {h 7→ φ(h)}

and let F , F2r−1 ◦ · · · ◦F1 denote all possible parameterizations of neural nets with norm bounds
{a(i)}ri=1. Let ‖·‖op be defined with respect to Euclidean norm ‖·‖2 on the input and output spaces,
which coincides with matrix operator norm for linear operators. We first claim that

logN‖·‖op(ε,F2i−1) .

⌊
a(i)

2

ε2

⌋
This is because we can construct two covers: one for {h 7→ Wh :

√
d‖W‖F /

√
log d ≤ a(i)}, and

one for {h 7→Wh : ‖W‖1,1/
√

log d ≤ a(i)}, each of which has log size bounded by O(ba(i)
2/ε2c)

by Lemma F.1 and Claim F.2. Now we offset the first cover by the linear operator A(i) and the
second by B(i) and take the union of the two, obtaining an ε-cover for F2i−1 in operator norm.
Furthermore, logN‖·‖op(ε,F2i) = 0 simply because F2i is the singleton function.

Thus, F2i−1,F2i satisfy Condition A.1 with norm ‖ · ‖op and complexity functions C‖·‖op(F2i−1) .
a(i), C‖·‖op(F2i) = 0, so we can apply Theorem C.1. It remains to argue that κ?2i−1(x, y) as defined
for Theorem C.1 using standard Euclidean norm ‖ · ‖2 is equivalent to κNN

(i) (x, y) defined in (3.2).
To see this, we note that functions in F2j−1 have 0-Lipschitz derivative, leading those terms with a
coefficient of κ′2j−1 to cancel in the definition of κ?i (x, y). There is a 1-1 correspondence between
the remaining terms of κ?2i−1(x, y) and κNN

(i) (x, y), so we can substitute κNN
(i) (x, y) into Theorem C.1

in place of κ?2i−1(x, y). Furthermore, as we have C‖·‖op(F2i) = 0, the corresponding terms disappear
in the bound of Theorem C.1, finally giving the desired result.

Now we obtain Theorem 3.1 by union bounding Lemma B.1 over choices of {a(i)}ri=1.

Proof of Theorem 3.1. We will use the standard technique of applying Lemma B.1 over many
choices of {a(i)}, and union bounding over the failure probability. Choose ξ = poly(n−1) and
consider a grid of {α̂(i)} with â(i) = ξ2ji for ji ≥ 1.We apply Lemma B.1 with for all possible
norm bounds {α̂(i)} in the grid, using failure probability δ̂ = δ/(

∏
i â(i)/ξ) for a given choice of

{α̂(i)}. By union bound, with probability 1−
∑
δ̂ = 1− δ, the bound of Lemma B.1 holds simul-

taneously for all choices of {α̂(i)}. In particular, for the neural net F with parameters {W(i)}, there
is a choice of {α̂(i)} satisfying

min{
√
d‖W(i) −A(i)‖fro, ‖W(i) −B(i)‖1,1}

√
log d

≤ â(i) ≤ 2min{
√
d‖W(i) −A(i)‖fro, ‖W(i) −B(i)‖1,1}

√
log d+ ξ

for all i. The application of Lemma B.1 for this choice of α̂(i) gives us the desired generalization
bound.
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B.1 GENERALIZATION BOUND FOR RELU NETWORKS

In the case where φ is the relu activation, we can no longer lower bound the all-layer margin
mF (x, y) using the techniques in Section C, which rely on smoothness. However, we can still
obtain a generalization bound in terms of the distribution of 1/mF (x, y) on the training data. We
can expect 1/mF (x, y) to be small in practice because relu networks typically exhibit stability to
perturbations. In particular, the quantity 1/mF (x, y) could be much smaller than its counterpart
in prior works: the bounds of (Bartlett et al., 2017; Neyshabur et al., 2017b) which depend on the
product of weight norms divided by margin, and the bounds of (Nagarajan & Kolter, 2019) which
depend on the inverse pre-activations, observed to be large in practice. In fact, it is possible to upper
bound 1/mF (x, y) in terms of both these quantities.

For this setting, we choose a fixed ||| · ||| defined as follows: if i corresponds to a linear layer in the
network, set αi = 1, and for i corresponding to activation layers, set αi = ∞ (in other words, we
only allow perturbations after linear layers). We remark that we could use alternative definitions of
||| · |||, but because we do not have a closed-form lower bound on mF , the tradeoff between these
formulations is unclear.

Theorem B.1. In the neural network setting, suppose that φ is any activation (such as the relu
function) and mF is defined using ||| · ||| as described above. Fix any integer q > 0. Then with
probability 1− δ, for all relu networks F parameterized by weight matrices {W(i)}ri=1 that achieve
training error 0, we have

EP [`0-1 ◦ F ] ≤ O

log2 n


∥∥∥ 1
mF

∥∥∥
Lq(Pn)

(∑
i a(i)

)
√
n


2q/(q+2)

+ ζ

where a(i) is defined as in Theorem 3.1, and ζ , O
(

log(1/δ)+r logn+
∑

i(a(i)+1)

n

)
is a low-order

term.

The proof follows via direct application of Theorem A.1 and the same arguments as Lemma B.1
relating matrix norms to covering numbers. We remark that in the case of relu networks, we can
upper bound 1

mF (x,y) via a quantity depending on the inverse pre-activations that mirrors the bound
of Nagarajan & Kolter (2019). However, as mentioned earlier, this is a pessimistic upper bound
as Nagarajan & Kolter (2019) show that the inverse preactivations can be quite large in practice.

C GENERALIZATION BOUND FOR SMOOTH FUNCTION COMPOSITIONS

In this section, we present the bound for general smooth function compositions used to prove Theo-
rem 3.1.

We will work in the same general setting as Section A. Let Jj←i(x, δ) denote the i-to-j Jacobian
evaluated at fi−1←1(x, δ), i.e. Jj←i(x, δ) , Dhfj←i(h, δ)|h=fi−1←1(x,δ). We will additionally
define general notation for hidden layer and Jacobian norms which coincides with our notation for
neural nets. Let si(x) , ‖fi←1(x)‖ and s0(x) , ‖x‖. As the function Dfj←i outputs opera-
tors mapping Di−1 to Dj , we can additionally define κj←i(x) , ‖Dfj←i ◦ fi−1←1(x)‖op, with
κj←j+1(x) , 1.

Let κ′i be an upper bound on the Lipschitz constant of Dfi←i measured in operator norm:

‖Dfi←i(h)−Dfi←i(h+ ν)‖op ≤ κ′i‖ν‖
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Now we define the value κ?i (x, y), which can be thought of as a Lipschitz constant for perturbation
δi in the definition of mF , as follows:

κ?i (x, y) , si−1(x)

8κk←i+1(x)

γ(F (x), y)
+

k−1∑
j=i

8κj←i+1(x)

sj(x)


+ si−1(x)

 ∑
1≤j2≤j1≤k

j1∑
j′=max{i+1,j2}

16
κ′j′κj′←i+1(x)κj1←j′+1(x)κj′−1←j2(x)

κj1←j2(x)


+ 8

∑
j2≤i≤j1

κj1←i+1(x)κi−1←j2(x)

κj1←j2(x)

(C.1)

For this general setting, the following theorem implies that for any integer q > 0, if F classifies
all training examples correctly, then its error converges at a rate that scales with n−q/(q+2) and the
products ‖κ?i ‖Lq(Pn)C‖·‖op(Fi).
Theorem C.1. Let F = {fk ◦ · · · ◦ f1 : fi ∈ Fi} denote a class of compositions of functions from
k families {Fi}ki=1, each of which satisfies Condition A.1 with operator norm ‖ · ‖op and complexity
C‖·‖op(Fi). For any choice of integer q > 0, with probability 1 − δ for all F ∈ F the following
bound holds:
EP [`0-1(F (x), y)]

≤ 3

2
(EPn

[`0-1(F (x), y)]) +O

(
k log n+ log(1/δ)

n

)

+ (1− EPn [`0-1(F (x), y)])
2

q+2 O

q( log2 n

n

)q/(q+2)
(∑

i

‖κ?i ‖
2/3
Lq(Sn)C‖·‖op(Fi)

2/3

) 3q
q+2


where Sn denotes the subset of training examples correctly classified by F and κ?i is defined in (C.1).
In particular, if F classifies all training samples correctly, i.e. |Sn| = n, with probability 1 − δ we
have

EP [`0-1(F (x), y)] . q

(
log2 n

n

)q/(q+2)
(∑

i

‖κ?i ‖
2/3
Lq(Sn)C‖·‖op(Fi)

2/3

)3q/(q+2)

+ ζ

where ζ , O
(
k logn+log(1/δ)

n

)
is a low order term.

To prove this theorem, we will plug the following lower bound on mF into Lemma A.2 with the
appropriate choice of smooth loss `. We remark that we could also use Theorem A.1 as our starting
point, but this would still require optimizing over {αi}ki=1.
Lemma C.1 (General version of Lemma 3.1). In the setting of Theorem C.1, where each layer Fi
is a class of smooth functions, if γ(F (x), y) > 0, we have

mF (x, y) ≥ ‖{κ?i (x, y)/αi}ki=1‖−1
p/(p−1)

We prove Lemma C.1 in Section D by formalizing the intuition outlined in Section 3. With
Lemma C.1 in hand, we can prove Theorem C.1. This proof will follow the same outline as the
proof of Theorem A.1. The primary difference is that we optimize over k values of αi, whereas
Theorem A.1 only optimized over the smoothness β.

Proof of Theorem C.1. We use `β with β = 1 defined in Claim A.2 as a surrogate loss for the 0-1
loss. Since Claim A.2 gives `0-1(F (x), y) ≤ `β=1(mF (x, y)), by Lemma A.2 it follows that
EP [`0-1(F (x), y)] ≤ EP [`β=1(mF (x, y))]

≤ 3

2
EPn

[`β=1(mF (x, y))] + c1

(
C2
|||·|||(F) log2 n

n
+

log(1/δ) + log log n

n

)
(C.2)
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Now we first note that for a misclassified pair, `β=1(mF (x, y)) = `0-1(F (x), y) = 1. For cor-

rectly classified examples, we also have the bound `β=1(mF (x, y)) ≤ (c2q)
q/2

mF (x,y)q for constant c2
independent of q. Thus, it follows that

EPn
[`β=1(mF (x, y))] ≤ EPn

[`0-1(F (x), y)] +
1

n

∑
(x,y)∈Sn

(c2q)
q/2

mF (x, y)q

Plugging this into (C.2), we get with probability 1− δ for all F ∈ F ,

EPn
[`β=1(mF (x, y))] ≤ 3

2
EPn

[`0-1(F (x), y)] +O

(
E +

log(1/δ) + log log n

n

)
(C.3)

where E is defined by

E =
1

n

∑
(x,y)∈Sn

(c2q)
q/2

mF (x, y)q
+
C2
|||·|||(F) log2 n

n
(C.4)

Thus, it suffices to upper bound E. By Lemma C.1, we have mF (x, y) ≥
‖{κ?i (x, y)/αi}ki=1‖

−1
p/(p−1) for the choice of α, p used to define mF . We will set p = q/(q−1) and

union bound (C.3) over choices of α.

First, for a particular choice of α and p = q/(q − 1), we apply our lower bound on mF (x, y) to
simplify (C.4) as follows:

E ≤ 1

n

∑
(x,y)∈Sn

(c2q)
q/2‖(κ?i (x, y)/αi)

k
i=1‖qq +

C2
|||·|||(F) log2 n

n

≤
k∑
i=1

α−qi

 (c2q)
q/2

n

∑
(x,y)∈Sn

κ?i (x, y)q

+

(∑
i

α
2q/(3q−2)
i C‖·‖op(Fi)

2q/(3q−2)

) 3q−2
q

log2 n

n

(C.5)

For convenience, we use ẼF (α) to denote (C.5) as a function of α. Note that κ?i depends on F .
Now let α?F denote the minimizer of ẼF (α). As we do not know the exact value of α?F before the
training data is drawn, we cannot simply plug the exact value of α?F into (C.5). Instead, we will
apply a similar union bound as the proof of Theorem A.1, although this union bound is slightly
more complicated because we optimize over k quantities simultaneously.

We use ξi to denote the lower limit on αi in our search over α, setting ξi = C‖·‖op(Fi)−1poly(n−1).4

Now we consider a grid of {α̂i}ki=1, where α̂ has entries of the form α̂i = ξi2
j for any j ≥ 0. For a

given choice of α̂, we assign it failure probability

δ̂ =
δ∏

i 2α̂i/ξ
(C.6)

where δ is the target failure probability after union bounding. First, note that∑
δ̂ = δ

∑
j1≥0

· · ·
∑
jk≥0

1

2j1+···+jk+k
≤ δ

Therefore, with probability 1 − δ, we get that (C.2) holds for mF defined with respect to every α̂.
In particular, with probability 1− δ, for all F ∈ F and α̂ in the grid,

EP [`0-1(F (x), y)]

≤ EPn
[`β=1(mF (x, y))]

≤ 3

2
EPn [`0-1(F (x), y)] +O

(
ẼF (α̂) +

∑
i log(2α̂i/ξi) + log(1/δ) + log log n

n

)
4If C‖·‖op(Fi) = 0, then we simply set αi =∞, which is equivalent to restricting the perturbations used in

computing mF to layers where C‖·‖op(Fi) > 0.
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where the last term was obtained by subsituting (C.6) for the failure probability.

Now we claim that there is some choice of α̂ in the grid such that either

ẼF (α̂) +

∑
i log(2α̂i/ξi) + log(1/δ) + log log n

n
≤ 9ẼF (α?F ) +O

(
k log(n) + log(1/δ)

n

)
(C.7)

or ẼF (α?F ) & 1 (in which case it is trivial to obtain generalization error bounded by ẼF (α?F )).

To see this, we first consider α̂ in our grid such that α̂i ∈ [α?F,i, 2α
?
F,i + ξi]. By construction of our

grid of α̂, such a choice always exists. Then we have

ẼF (α̂)

=

k∑
i=1

α̂−qi

 (c2q)
q/2

n

∑
(x,y)∈Sn

κ?i (x, y)q

+

(∑
i

α̂
2q/(3q−2)
i C‖·‖op(Fi)

2q/(3q−2)

) 3q−2
q

log2 n

n

≤
k∑
i=1

α?F,i
−q

 (c2q)
q/2

n

∑
(x,y)∈Sn

κ?i (x, y)q


+ 9

(∑
i

α?F,i
2q/(3q−2)C‖·‖op(Fi)

2q/(3q−2)

)(3q−2)/q
log2 n

n
+ poly(n−1)

The first term we obtained because α̂i ≥ α?F,i, and the second via the upper bound α̂i ≤ 2α?F,i + ξi.
Thus, for some choice of α̂ in the grid, we have ẼF (α̂) ≤ 9ẼF (α?F ) + poly(n−1). Furthermore,
if α?F > c · C‖·‖op(Fi)−1n for some constant c, we note that ẼF (α?F ) & 1 - thus, it suffices to only
consider α?F ≤ c · C‖·‖op(Fi)−1n. In particular, we only need to consider α̂i where log(2α̂i/ξi) .
log n. Combining both of these facts gives (C.7).

Thus, it follows that for all F ∈ F ,

EP [`0-1(F (x), y)] ≤ 3

2
EPn

[`0-1(F (x), y)] +O

(
ẼF (α?F ) +

k log n+ log(1/δ)

n

)
(C.8)

Finally, we can apply Lemma C.2 using zi =
(

(c2q)
q/2

n

∑
(x,y)∈Sn κ

?
i (x, y)q

)1/q

=(
|Sn|
n

)1/q

‖κ?i ‖Lq(Sn) and bi =
C‖·‖op (Fi) logn

√
n

to get

ẼF (α?F ) .

(
|Sn|
n

)2/(q+2)

q

(
log2 n

n

)q/(q+2)
(∑

i

‖κ?i ‖
2/3
Lq(Sn)C‖·‖op(Fi)

2/3

)3q/(q+2)

Substituting into (C.8) gives the desired bound.

Lemma C.2. For coefficients {zi}ki=1, {bi}ki=1 > 0 and integer q > 0, define

E(α) ,
∑
i

zqi /α
q
i +

(∑
i

α
2q/(3q−2)
i b

2q/(3q−2)
i

)(3q−2)/q

with minimizer α? and minimum value E?. Then

E? ≤ 2

(∑
i

(zibi)
2/3

)3q/(q+2)

Proof. Choose {αi}ki=1 as follows (we obtained this by solving for α for which∇αE(α) = 0):

αi =
(q

2

) 1
(q+2)

z
3q−2

3q

i b
− 2

3q

i

[∑
i

z
2/3
i b

2/3
i

] 2−2q
q(q+2)
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For this particular choice of α, we can compute

∑
i

zqi /α
q
i =

(q
2

)− q
q+2
∑
i

zqi z
−q+2/3
i b

2/3
i

[∑
i

z
2/3
i b

2/3
i

] 2q−2
q+2

=
(q

2

)− q
q+2

(∑
i

z
2/3
i b

2/3
i

)[∑
i

z
2/3
i b

2/3
i

] 2q−2
q+2

=
(q

2

)− q
q+2

(∑
i

z
2/3
i b

2/3
i

) 3q
q+2

Likewise, we can also compute(∑
i

α
2q/(3q−2)
i b

2q/(3q−2)
i

)(3q−2)/q

=
(q

2

) 2
q+2

(∑
i

(zibi)
2/3

)(3q−2)/q (∑
i

(zibi)
2/3

) 4−4q
q(q+2)

=
(q

2

) 2
q+2

(∑
i

(zibi)
2/3

) 3q2+4q−4+4−4q
q(q+2)

=
(q

2

) 2
q+2

(∑
i

(zibi)
2/3

) 3q
q+2

Finally, we note that
(
q
2

)2/(q+2)
+
(
q
2

)− q
q+2 ≤ 2, so we obtain

E? ≤ E(α) ≤ 2

(∑
i

(zibi)
2/3

)3q/(q+2)

D LOWER BOUNDING mF FOR SMOOTH LAYERS

In this section, we prove Lemma C.1, showing that when the function F is a composition of func-
tions with Lipschitz derivative, we will be able to lower boundmF (x, y) in terms of the intermediate
Jacobians and layer norms evaluated at x. To prove Lemma C.1, we rely on tools developed by (Wei
& Ma, 2019) which control the change in the output of a composition of functions if all the interme-
diate Jacobians are bounded.

In particular, using the techniques of (Wei & Ma, 2019), we work with an “augmented” indicator
which lower bounds the indicator that the prediction is correct, 1[γ(F (x, δ), y) ≥ 0]. We show
that by conditioning on small Jacobian and hidden layer norms, we can construct the augmented
indicator to be κ?i (x, y)-Lipschitz in the perturbations δ. Furthermore, by construction, the value of
the augmented indicator will equal 1 when δ = 0, and the augmented indicator value at perturbation
δ is lower bounded by 1 −

∑
i κ

?
i (x, y)‖δi‖. This immediately lower bounds the perturbation level

required to create a negative margin.

First, we define the soft indicator 1≤t as follows:

1≤t(z) =

{
1 if z ≤ t
2− z/t if t ≤ z ≤ 2t
0 if 2t ≤ z

We also define the ramp loss Tρ as follows:

Tρ(z) =

{
1 if z ≥ ρ
z/ρ if 0 ≤ z < ρ
0 if z < 0
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Now we define the augmented indicator which takes into account the perturbed margin and hidden
layer and Jacobian norms by

I(δ;x, y) , Tρ(γ(fk←1(x, δ), y))
∏

1≤i≤k−1

1≤ti(‖fi←1(x, δ)‖)
∏

1≤i≤j≤k

1≤τj←i
(‖Jj←i(x, δ)‖op)

(D.1)

for nonnegative parameters ρ, ti, τj←i which we will later choose to be the margin, hidden layer
norm, and Jacobian norms at the unperturbed input. The lemma below bounds the Lipschitz constant
of I(δ;x, y) in δi.

Lemma D.1. For nonnegative parameters ti, τj←i, ρ, with τj←j+1 = 1 for any j and τj←j′ = 0 for
j ≤ j′ + 2, define the function I(δ;x, y) as in (D.1). Then in the setting of Lemma C.1, for a given
i ∈ [k], for all choices of δi and ν, if δj = 0 for j > i, we have

|I(δi + ν, δ−i;x, y)− I(δi, δ−i;x, y)| ≤ κ̃i‖ν‖

for κ̃i defined as follows:

κ̃i , ti−1

8τk←i+1

ρ
+

k−1∑
j=i

8τj←i+1

tj
+

∑
1≤j2≤j1≤k

j1∑
j′=max{i+1,j2}

16κ′j′
τj′←i+1τj1←j′+1τj′−1←j2

τj1←j2


+ 8

∑
j2≤i≤j1

τj1←i+1τi−1←j2
τj1←j2

(D.2)

To see the core idea of the proof, consider differentiating I(δ;x, y) with respect to δi (ignoring for
the moment that the soft indicators are technically not differentiable). Let the terms A1, . . . , Aq
represent the different indicators which the product I(δ;x, y) is comprised of. Then we would have
by the product rule for differentiation:

DδiI(δ;x, y) =
∑
j

∏
j′ 6=j

Aj′(δ;x, y)DδiAj(δ;x, y)

Now the idea is that for every j, the product
∏
j′ 6=j Aj′(δ;x, y) contains an indicator that

DδiAj(δ;x, y) is bounded – this is stated formally by Lemmas D.3, D.4, and D.5. Informally,
this allows us to bound ‖DδiI(δ;x, y)‖ by the desired Lipschitz constant κ̃i.

To formally prove this statement for the case of non-differentiable functions (as the soft-indicators
1≤t are non-differentiable), it will be convenient to introduce the following notion of product-
Lipschitzness: for functions A1 : DI → R+ and A2 : DI → R+, where DI is some normed
space, we say that function A1 is τ̄ -product-Lipschitz w.r.t. A2 if there exists some c, C > 0 such
that for any ‖ν‖ ≤ c and x ∈ DI , we have

|A1(x+ ν)−A1(ν)|A2(x) ≤ τ̄‖ν‖+ C‖ν‖2

We use the following fact that the product of functions which are product-Lipschitz with respect to
one another is in fact Lipschitz. We provide the proof in Section D.1.

Lemma D.2. LetA1, . . . , Aq : DI → [0, 1] be a set of Lipschitz functions such thatAi is τ̄i-product-
Lipschitz w.r.t

∏
j 6=iAj for all i. Then the product

∏
iAi is 2

∑
i τ̄i-Lipschitz.

Now we proceed to formalize the intuition of product-rule differentiation presented above, by show-
ing that the individual terms in I(δ;x, y) are product-Lipschitz with respect to the other terms. For
the following three lemmas, we require the technical assumption that for any fixed choice of x, δ−i,
the functions fj←1(x, δ), Jj′←j′′(x, δ) are worst-case Lipschitz in δi as measured in ‖ · ‖, ‖ · ‖op,
respectively, with Lipschitz constant C ′. Our proof of Lemma D.1, however, can easily circumvent
this assumption. The proofs of the following three lemmas are given in Section D.1.

Lemma D.3. Choose i, j with k − 1 ≥ j ≥ i. Then after we fix any choice of
x, δ−i, the function 1≤tj (‖fj←1(x, δ)‖) is 4τj←i+1ti−1

tj
-product-Lipschitz in δi with respect to

1≤τj←i+1(‖Jj←i+1(x, δ)‖op)1≤ti−1(‖fi−1←1(x, δ)‖).
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Lemma D.4. Choose i ≤ k. Then after we fix any choice of x, δ−i, the func-
tion Tρ(γ(fk←1(x, δ), y)) is 4τk←i+1ti−1

ρ -product-Lipschitz in δi with respect to
1≤τk←i+1

(‖Jk←i+1(x, δ)‖op)1≤ti−1
(‖fi−1←1(x, δ)‖).

Lemma D.5. Choose i, j1, j2 with j1 ≥ j2, j1 > i. Set product-Lipschitz constant τ̄ as follows:

τ̄ =
8
(
τj1←i+1τi−1←j2 + ti−1

∑
j′:max{j2,i+1}≤j′≤j1 κ

′
j′τj′←i+1τj1←j′+1τj′−1←j2

)
τj1←j2

Then for any fixed choice of x, δ−i satisfying δj = 0 for j > i, the func-
tion 1≤τj1←j2

(‖Jj1←j2(x, δ)‖op) is τ̄ -product-Lipschitz in δi with respect to
1≤ti−1

(‖fi−1←1(x, δ)‖)
∏

1≤j′′≤j′≤k 1≤τj′←j′′ (‖Jj′←j′′(x, δ)‖op). Here note that we have
τi−1←j2 = 0 if i− 1 ≤ j2 + 1.

Given the described steps, we will now complete the proofs of Lemmas D.1 and C.1.

Proof of Lemma D.1. We first assume that the conditions of Lemmas D.3, D.4, D.5 regarding C ′-
worst-case Lipschitzness hold. We note that I(δ;x, y) is a product which contains all the functions
appearing in Lemmas D.3, D.4, and D.5. Thus, Claim D.1 allows us to conclude that each term in
I(δ;x, y) is product-Lipschitz with respect to the product of the remaining terms. As these lemmas
also account for all the terms in I(δ;x, y), we can thus apply Lemma D.2, where eachAi is set to be
a term in the product for I(δ;x, y). Therefore, to bound the Lipschitz constant in δi of I(δ;x, y), we
sum the product-Lipschitz constants given by Lemmas D.3, D.4, and D.5. This gives that I(δ;x, y)
is κ̃i-Lipschitz in δi for κ̃i defined in (D.2).

Now to remove the C ′ worst-case Lipschitzness assumption, we can follow the reasoning of Claim
D.6 of (Wei & Ma, 2019) to note that such Lipschitz constants exist if we restrict δi to some compact
set, and thus conclude the lemma statement for δi restricted to this compact set. Now we simply
choose this compact set sufficiently large to include both δi and δi + ν.

Proof of Lemma C.1. We will apply Lemma D.1, using ti = si(x), ρ = γ(F (x), y), τj←i =
κj←i(x). First, note that for this choice of parameters, the Lipschitz constant κ̃i of Lemma D.1
evaluates to κ?i (x, y). Thus, it follows that for all δ,

|I(0;x, y)− I(δ;x, y)|

≤
∑
i

|I(δ1, . . . , δi−1, δi = 0, δj>i = 0;x, y)− I(δ1, . . . , δi, δj>i = 0;x, y)|

≤
∑
i

κ?i (x, y)‖δi‖ (D.3)

Furthermore, by the definition of I(δ;x, y), we have

1[γ(F (x, δ), y) ≥ 0] ≥ I(δ;x, y)

Finally, by our choice of the parameters used to define I(δ;x, y), we also have I(0;x, y) ≥ 1.
Combining everything with (D.3), we get

1[γ(F (x, δ), y) ≥ 0] ≥ I(δ;x, y) ≥ I(0;x, y)−
∑
i

κ?i (x, y)‖δi‖

≥ 1− ‖{κ?i (x, y)/αi}ki=1‖p/(p−1)‖{αi‖δi‖}ki=1‖p
(since ‖ · ‖p/(p−1) and ‖ · ‖p are dual norms)

= 1− ‖{κ?i (x, y)/αi}ki=1‖p/(p−1)|||δ|||

Thus, for any δ, if |||δ||| < ‖{κ?i (x, y)/αi}ki=1‖
−1
p/(p−1), then 1[γ(F (x, δ), y) ≥ 0] > 0, which

in turn implies γ(F (x, δ), y) ≥ 0. It follows by definition of mF (x, y) that mF (x, y) ≥
‖{κ?i (x, y)/αi}ki=1‖

−1
p/(p−1).
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D.1 PROOFS FOR PRODUCT-LIPSCHITZ LEMMAS

Proof of Lemma D.2. As eachAi is Lipschitz and there are a finite number of functions, there exists
C ′ such that any possible product Ai1Ai2 · · ·Aij is C ′-Lipschitz. Furthermore, by the definition of
product-Lipschitz, there are c, C > 0 such that for any ‖ν‖ ≤ c, x ∈ DI , and 1 ≤ i ≤ q, we have

|(Ai(x+ ν)−Ai(x))|
∏
j 6=i

Aj(x) ≤ τ̄i‖ν‖+ C‖ν‖2

Now we note that∏
i

Ai(x+ ν)−
∏
i

Ai(x) =
∑
i

i−1∏
j=1

Aj(x+ ν)

q∏
j=i+1

Aj(x)

 (Ai(x+ ν)−Ai(x)) (D.4)

Now for any i, we have

|(Ai(x+ ν)−Ai(x))

i−1∏
j=1

Aj(x+ ν)

q∏
j=i+1

Aj(x)|

≤ |(Ai(x+ ν)−Ai(x))|(
i−1∏
j=1

Aj(x) + C ′‖ν‖)
q∏

j=i+1

Aj(x) (as
∏i−1
j=1Aj is C ′-Lipschitz)

≤ |Ai(x+ ν)−Ai(x)|(
∏
j 6=i

Aj(x) + C ′‖ν‖)

We used the fact that
∏q
j=i+1Aj(x) ≤ 1. Now we have |Ai(x + ν) − Ai(x)|

∏
j 6=iAj(x) ≤

τ̄i‖ν‖+ C‖ν‖2, and |Ai(x+ ν)−Ai(x)|C ′‖ν‖ ≤ C ′2‖ν‖2 as Ai is C ′-Lipschitz, so

|(Ai(x+ ν)−Ai(x))

i−1∏
j=1

Aj(x+ ν)

q∏
j=i+1

Aj(x)| ≤ τ̄i‖ν‖+ (C + C ′
2
)‖ν‖2

Plugging this back into (D.4) and applying triangle inequality, we get

|
∏
i

Ai(x+ ν)−
∏
i

Ai(x)| ≤ ‖ν‖

(∑
i

τ̄i + q(C + C ′
2
)‖ν‖

)

Define the constant C ′′ , min{c,
∑

i τ̄i
q(C+C′2)}. For any x and all ν satisfying ‖ν‖ ≤ C ′′, we have

|
∏
i

Ai(x+ ν)−
∏
i

Ai(x)| ≤ 2‖ν‖
∑
i

τ̄i (D.5)

Now for any x, y ∈ DI , we wish to show |
∏
iAi(y) −

∏
iAi(x)| ≤ 2‖x − y‖

∑
i τ̄i. To this end,

we divide x− y into segments of length at most C ′′ and apply (D.5) on each segment.

Define x(j) = x + j C′′

‖x−y‖ (y − x) for j = 1, . . . , b‖x − y‖/C ′′c. Then as ‖x(j) − x(j−1)‖ ≤ C ′′,

we have |
∏
iAi(x

(j)) −
∏
iAi(x

(j−1))| ≤ ‖x(j) − x(j−1)‖
∑
i τ̄i. Furthermore, we note that

the sum of all the segment lengths equals ‖y − x‖. Thus, we can sum this inequality over pairs
(x, x(1)), . . . , (x(b‖x−y‖/C′′c), y) and apply triangle inequality to get

|
∏
i

Ai(y)−
∏
i

Ai(x)| ≤ 2‖x− y‖
∑
i

τ̄i

as desired.

Proof of Lemma D.3. For convenience, define

A(x, δ) , 1≤τj←i+1(‖Jj←i+1(x, δ)‖op)1≤ti−1(‖fi−1←1(x, δ)‖)

We first note that Dδifj←1(x, δ), the partial derivative of fj←1 with respect to δi, is given by
Jj←i+1(x, δ)‖fi−1←1(x, δ)‖ by Claim D.2. As Jj←i+1(x, δ), ‖fi−1←1(x, δ)‖ are both worst-case
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Lipschitz in δi with some Lipschitz constant C ′, we can apply Claim H.4 of (Wei & Ma, 2019) to
obtain:

‖fj←1(x, δ−i, δi + ν)− fj←1(x, δ−i, δi)‖ ≤ (‖Dδifj←1(x, δ)‖op + C ′′/2‖ν‖)‖ν‖

for any ν and some Lipschitz constant C ′′. Thus, by the t−1
j Lipschitz-ness of the indicator 1≤tj ,

we have

|1≤tj (‖fj←1(x, δ−i, δi + ν)‖)− 1≤tj (‖fj←1(x, δ−i, δi‖)|A(x, δ)

≤ A(x, δ)
‖fj←1(x, δ−i, δi + ν)− fj←1(x, δ−i, δi)‖

tj

≤ A(x, δ)
(‖Dδifj←1(x, δ)‖op + C ′′/2‖ν‖)‖ν‖

tj

≤ A(x, δ)
(‖Jj←i+1(x, δ)‖op‖fi−1←1(x, δ)‖+ C ′′/2‖ν‖)‖ν‖

tj

Now by definition of A(x, δ), we get that the right hand side equals 0 if ‖Jj←i+1(x, δ)‖op ≥
2τj←i+1 or ‖fi−1←1(x, δ)‖ ≥ 2ti−1. Thus, the right hand side must be bounded by

4τj←i+1ti−1

tj
‖ν‖+ C ′′/2‖ν‖2

which gives product-Lipschitzness with constant 4τj←i+1ti−1

tj
.

Proof of Lemma D.4. This proof follows in an identical manner to that of Lemma D.3. The only
additional step is using the fact that γ(h, y) is 1-Lipschitz in h, so the composition Tρ(γ(h, y)) is
ρ−1-Lipschitz in h.

Proof of Lemma D.5. Let C ′ be an upper bound on the Lipschitz constant in δi of all the functions
Jj′←j′′(x, δ). As we assumed that each fj has κ′j-Lipschitz Jacobian, such an upper bound exists.
We first argue that

‖Jj1←j2(x, δ−i, δi + ν)− Jj1←j2(x, δ−i, δi)‖op

≤ ‖ν‖
∑

j′:max{j2,i+1}≤j′≤j1

(
κ′j′(‖Jj1←j′+1(x, δ)‖op + C ′/2‖ν‖)

· (‖Jj′←i+1(x, δ)‖op‖fi−1←1(x, δ)‖+ C ′′/2‖ν‖)‖Jj′−1←j2(x, δ)‖op

)
+ ‖ν‖(‖Jj1←i+1‖op + C ′/2‖ν‖)‖Ji−1←j2‖op

(D.6)

for some Lipschitz constant C ′′. The proof of this statement is nearly identical to the proof of Claim
D.3 in (Wei & Ma, 2019), so we only sketch it here and point out the differences. We rely on the
expansion

Jj1←j2(x, δ) = Jj1←j1(x, δ)Jj1−1←j1−1(x, δ) · · · Jj2←j2(x, δ)

which follows from the chain rule. Now we note that we can bound the change in a single term
Jj′←j′(x, δ) from perturbing δi as follows:

‖Jj′←j′(x, δ−i, δi + ν)− Jj′←j′(x, δ−i, δi)‖op

= ‖Dhfj′←j′(h, δ)|h=fj′−1←1(x,δ−i,δi+ν) −Dhfj′←j′(h, δ)|h=fj′−1←1(x,δ−i,δi)‖op

Note that when j′ > i, by assumption δj′ = 0, so Dhfj′←j′(h, δ) = Dhfj′(h). Thus, as fj′ has
κ′j′ -Lipschitz derivative, we get

‖Jj′←j′(x, δ−i, δi + ν)− Jj′←j′(x, δ−i, δi)‖op

≤ κ′j′‖fj′−1←1(x, δ−i, δi + ν)− fj′−1←1(x, δ−i, δi)‖
(since the derivative of fj′ is κ′j′ -Lipschitz)

≤ κ′j′(‖Dδifj′−1←1(x, δ−i, δi)‖op + C ′′/2‖ν‖)‖ν‖ (by Claim H.4 of (Wei & Ma, 2019))

≤ κ′j′(‖Jj′←i+1(x, δ)‖op‖fi−1←1(x, δ)‖+ C ′′/2‖ν‖)‖ν‖
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We obtained the last line via Claim D.2. We note that the cases when j′ > i contribute to the terms
under the summation in (D.6).

When j′ = i, we have Dhfi←i(h, δ) = Dhfi(h) + δiDh‖h‖ for any h, so ‖Dhfi←i(h, δi, δ−i) −
Dhfi←i(h, δi + ν, δ−i)‖op = ‖νDh‖h‖‖op ≤ ‖ν‖. As this holds for any h, it follows that
‖Ji←i(x, δ−i, δi + ν)− Ji←i(x, δ−i, δi)‖op ≤ ‖ν‖. This term results in the last quantity in (D.6).

Finally, when j′ < i, we have Jj′←j′(x, δ−i, δi+ν) = Jj′←j′(x, δ−i, δi) as Jj′←j′ does not depend
on δi.

To see how (D.6) follows, we would apply the above bound in a telescoping sum over indices j′
ranging from max{j2, i + 1} to j1. For a more detailed derivation, refer to the steps in Claim D.3
of (Wei & Ma, 2019).

Now for convenience define

A(x, δ) , 1≤ti−1
(‖fi−1←1(x, δ)‖)

∏
1≤j′′≤j′≤k

1≤τj′←j′′ (‖Jj′←j′′(x, δ)‖op)

Note that if any of the bounds set by the indicators in A(x, δ) are violated, then A(x, δ) = 0, and
thus |1≤τj1←j2

(‖Jj1←j2(x, δ−i, δi+ν)‖op)−1≤τj1←j2
(‖Jj1←j2(x, δ−i, δi)‖op)|A(x, δ) = 0. In the

other case, we have ‖fi−1←1(x, δ)‖ ≤ 2ti−1, and ‖Jj′←j′′(x, δ)‖op ≤ 2τj′←j′′ , in which case (D.6)
can be bounded by

‖Jj1←j2(x, δ−i, δi + ν)− Jj1←j2(x, δ−i, δi)‖opA(x, δ)

≤ 8ti−1

 ∑
j′:max{j2,i+1}≤j′≤j1

κ′j′τj′←i+1τj1←j′+1τj′−1←j2

 ‖ν‖
+ τj1←i+1τi−1←j2‖ν‖+ C ′′′‖ν‖2

for some C ′′′ that is independent of x, δ, ν. Thus, by Lipschitz-ness of 1≤τj1←j2
(·) and the triangle

inequality, we have

|1≤τj1←j2
(‖Jj1←j2(x, δ−i, δi + ν)‖op)− 1≤τj1←j2

(‖Jj1←j2(x, δ−i, δi)‖op)|A(x, δ) ≤

8
(
τj1←i+1τi−1←j2 + ti−1

∑
j′:max{j2,i+1}≤j′≤j1 κ

′
j′τj′←i+1τj1←j′+1τj′−1←j2

)
‖ν‖

τj1←j2
+ C ′′′‖ν‖2

This gives the desired result.

Claim D.1. Let A1, A2, A3 : DI → [0, 1] be functions where A1 is τ̄ -product-Lipschitz w.r.t. A2.
Then A1 is also τ̄ -product Lipschitz w.r.t. A2A3.

Proof. This statement follows from the definition of product-Lipschitzness and the fact that

|A1(x+ ν)−A1(ν)|A2(x)A3(x) ≤ |A1(x+ ν)−A1(ν)|A2(x)

since A3(x) ≤ 1.

Claim D.2. The partial derivative of fj←1 with respect to variable δi evaluated at x, δ can be
computed as

Dδifj←1(x, δ) = Jj←i+1(x, δ)‖fi−1←1(x, δ)‖

Proof. By definition, fj←1(x, δ) = fj←i+1(fi←1(x, δ), δ). Thus, we note that fj←1(x, δ) only
depends on δi through fi←1(x, δ), so by chain rule we have

Dδifj←1(x, δ) = Dhfj←i+1(h, δ)|h=fi←1(x,δ)Dδifi←1(x, δ)

= Jj←i+1(x, δ)Dδi [fi(fi−1←1(x, δ)) + δi‖fi−1←1(x, δ)‖]
= Jj←i+1(x, δ)‖fi−1←1(x, δ)‖

In the second line, we invoked the definition of Jj←i+1(x, δ).
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Claim D.3. We have the expansion

Jj←i(x, δ) = Jj←i(x, δ) · · · Jj←i(x, δ)

Proof. This is a result of the chain rule, but for completeness we state the proof here. We have

Dhfj←i(h, δ) = Dhfj(fj−1←i(h, δ), δ)

= Dh′fj←j(h
′, δ)|h′=fj−1←i(h,δ)Dhfj−1←i(h, δ) (by chain rule)

(D.7)

Thus, plugging in h = fi−1←1(x, δ), we get

Jj←i(x, δ) = Dhfj←i(h, δ)|h=fi−1←1(x,δ)

= Dh′fj←j(h
′, δ)|h′=fj−1←i(fi−1←1(x,δ),δ)Dhfj−1←i(h, δ)|h=fi−1←1(x,δ)

= Dh′fj←j(h
′, δ)|h′=fj−1←1(x,δ)Jj−1←i(x, δ)

= Jj←j(x, δ)Jj−1←i(x, δ)

Now we can apply identical steps to expand Jj−1←i(x, δ), giving the desired result.

E PROOFS FOR ADVERSARIALLY ROBUST CLASSIFICATION

In this section, we derive the generalization bounds for adversarial classification presented in Sec-
tion 4. Recall the adversarial all-layer margin madv

F (x, y) , minx∈Badv(x)mF (x, y) defined in Sec-
tion 4. In this section, we will use the general definition of mF in (A.1).

We will provide the proof of Theorem E.1 using the same steps as those laid out in Sections 2 and A.
We first have the following analogue of Lemma A.1 bounding the covering number of madv ◦ F .

Lemma E.1. Define madv ◦ F , {(x, y) 7→ madv
F (x, y) : F ∈ F}. Then

N∞(ε,madv ◦ F) ≤ N|||·|||(ε,F)

This lemma allows us to invoke Lemma A.2 on a smooth loss composed with madv ◦ F , as we did
for the clean classification setting. The lemma is proven the exact same way as Lemma A.1, given
the Lipschitz-ness of madv

F below:

Claim E.1. For any x, y ∈ D0 × [l], and function sequences F = {fi}ki=1, F̂ = {f̂i}ki=1, we have
|madv

F (x, y)−madv
F̂

(x, y)| ≤ |||F − F̂ |||.

Proof. Let x? ∈ Badv(x) be such that madv
F (x, y) = mF (x?, y). By Claim A.1, we have

madv
F̂

(x, y) ≤ mF̂ (x?, y) ≤ mF (x?, y) + |||F − F̂ ||| = madv
F (x, y) + |||F − F̂ |||

We can apply the reverse reasoning to also obtain madv
F (x, y) ≤ madv

F̂
(x, y)+ |||F − F̂ |||. Combining

the two gives us the desired result.

Next, we lower bound madv
F when each function in F is smooth.

Lemma E.2. In the setting of Lemma C.1, let κadv
i (x, y) , maxx′∈Badv(x) κ

?
i (x
′, y). Then if

`adv
0-1 (F (x), y) = 0, we have

madv
F (x, y) ≥ ‖{κadv

i (x, y)/αi}ki=1‖−1
p/(p−1)
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Proof. By definition and Lemma C.1, we have

madv
F (x, y) = min

x′∈Badv(x)
mF (x′, y) ≥ min

x′∈Badv(x)
‖{κ?i (x′, y)/αi}ki=1‖−1

p/(p−1)

=
1

maxx′∈Badv(x) ‖{κ?i (x′, y)/αi}ki=1‖p/(p−1)

≥ 1

‖
{

maxx′∈Badv(x) κ
?
i (x
′, y)/αi

}k
i=1
‖p/(p−1)

=
1

‖{κadv
i (x′, y)/αi}ki=1‖p/(p−1)

This allows us to conclude the statement of Theorem C.1 with the exact same proof, but with κ?
replaced by κadv everywhere:

Theorem E.1. Let F = {fk ◦ · · · ◦ f1 : fi ∈ Fi} denote a class of compositions of functions from
k families {Fi}ki=1, each of which satisfies Condition A.1 with operator norm ‖ · ‖op and complexity
C‖·‖op(Fi). For any choice of integer q > 0, with probability 1 − δ for all F ∈ F the following
bound holds:

EP [`adv
0-1 (F (x), y)]

≤ 3

2

(
EPn [`adv

0-1 (F (x), y)]
)

+O

(
k log n+ log(1/δ)

n

)

+
(
1− EPn

[`adv
0-1 (F (x), y)]

) 2
q+2 O

q( log2 n

n

) q
q+2
(∑

i

‖κadv
i ‖

2/3
Lq(Sadv

n )
C‖·‖op(Fi)

2/3

) 3q
q+2


where Sadv

n denotes the subset of training examples correctly classified by F with respect to adver-
sarial perturbations. In particular, if F classifies all training samples with adversarial error 0, i.e.
|Sadv
n | = n, with probability 1− δ we have

EP [`adv
0-1 (F (x), y)] . q

(
log2 n

n

)q/(q+2)
(∑

i

‖κadv
i ‖

2/3
Lq(Sadv

n )
C‖·‖op(Fi)

2/3

)3q/(q+2)

+ ζ

where ζ , O
(
k logn+log(1/δ)

n

)
is a low order term.

The proof uses `β=1(madv
F (x, y)) as an upper bound for `adv

0-1 (F (x), y), and follows the steps of
Theorem C.1 to optimize over the choice of {αi}ki=1. As these steps are identical to Theorem C.1,
we omit them here. With Theorem E.1 in hand, we can conclude Theorem 4.1 using the same proof
as Theorem 3.1.

F MATRIX COVERING LEMMAS

In this section we present our spectral norm cover for the weight matrices, which is used in Section B
to prove our neural net generalization bounds.

Lemma F.1. LetMfro(B) denote the set of d1 × d2 matrices with Frobenius norm bounded by B,
i.e.

Mfro(B) , {M ∈ Rd1×d2 : ‖M‖fro ≤ B}

Then letting d , max{d1, d2} denote the larger dimension, for all ε > 0, we have

logN‖·‖op(ε,Mfro(B)) ≤
⌊

36dB2 log(9d)

ε2

⌋
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Proof. The idea for this proof is that since the cover is in spectral norm, we only need to cover the
top d′ , bB2/ε2c singular vectors of matrices M ∈M.

First, it suffices to work with square matrices, as a spectral norm cover of max{d1, d2} ×
max{d1, d2}matrices will also yield a cover of d1×d2 matrices in spectral norm (as we can extend
a d1 × d2 matrices to a larger square matrix by adding rows or columns with all 0, and the spectral
norm of the error from the cover element only increases). Thus, letting d , max{d1, d2}, we will
coverMfro(B) defined with respect to d× d matrices.

Let d′ , b9B2/ε2c. We first work in the case when d′ ≤ d. Let Û be a εU Frobenius norm cover of
d×d′ matrices with Frobenius norm bound d′. Let V̂ be the cover of d′×d matrices with Frobenius
norm bound B in Frobenius norm with resolution εV .

We construct a cover M̂ forMfro(B) as follows: take all possible combinations of matrices Û , V̂
from Û , V̂ , and add Û V̂ to M̂. First note that by Claim F.1, we have

log |M̂| ≤ dd′(log(3d′/εU ) + log(3B/εV ))

Now we analyze the cover resolution of M̂: for M ∈ M, first let truncd′(M) be the truncation of
M to its d′ largest singular values. Note that asM has at most d′ singular values with absolute value
greater than ε/3, ‖M − truncd′(M)‖op ≤ ε/3. Furthermore, let USV = truncd′(M) be the SVD
decomposition of this truncation, where U ∈ Rd×d′ , ‖U‖fro ≤ d′ and SV ∈ Rd′×d, ‖SV ‖fro ≤ B.
Let Û ∈ Û satisfy ‖Û − U‖fro ≤ εU , and V̂ ∈ V̂ satisfy ‖V̂ − SV ‖fro ≤ εV . Let M̂ = Û V̂ . Then
we obtain

‖M − M̂‖op ≤ ‖M − truncd′(M)‖op + ‖truncd′(M)− M̂‖op

≤ ε/3 + ‖USV − ÛSV ‖op + ‖ÛSV − Û V̂ ‖op

≤ ε+ εUB + εV d
′

Thus, setting εU = ε/3B, εV = ε/3d′, then we get a ε-cover of M with log cover size
b9dB2/ε2c(log 81d′

2
B2/ε2). As d′ ≤ d, this simplifies to b36dB2 log(9d)/ε2c.

Now when d′ ≥ d, we simply take a Frobenius norm cover of d × d matrices with Frobenius norm
bound B, which by Claim F.1 has log size at most d2 log(3B/ε) ≤ b36dB2 log(9d)/ε2c, where the
inequality followed because 9B2/ε2 ≥ d.

Combining both cases, we get for all ε > 0,

logN‖·‖op(ε,Mfro(B)) ≤
⌊

36dB2 log(9d)

ε2

⌋

The following claims are straightforward and follow from standard covering number bounds for
‖ · ‖2 and ‖ · ‖1 balls.
Claim F.1. LetMfro(B) denote the class of d1 × d2 matrices with Frobenius norm bounded by B.
Then for 0 < ε < B, logN‖·‖fro(ε,Mfro(B)) ≤ d1d2 log(3B/ε).

Claim F.2. Let M‖·‖1,1(B) denote the class of d1 × d2 matrices with the `1 norm of its entries
bounded by B. Then logN‖·‖fro(ε,M‖·‖1,1(B)) ≤ 5bB2/ε2c log 10d.
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