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ABSTRACT

These days deep neural networks are ubiquitously used in a wide range of tasks,
from image classification and machine translation to face identification and self-
driving cars. In many applications, a single model error can lead to devastating
financial, reputational and even life-threatening consequences. Therefore, it is cru-
cially important to correct model mistakes quickly as they appear. In this work, we
investigate the problem of neural network editing — how one can efficiently patch
a mistake of the model on a particular sample, without influencing the model be-
havior on other samples. Namely, we propose Editable Training, a model-agnostic
training technique that encourages fast editing of the trained model. We empiri-
cally demonstrate the effectiveness of this method on large-scale image classifica-
tion and machine translation tasks.

1 INTRODUCTION

Deep neural networks match and often surpass human performance on a wide range of tasks includ-
ing visual recognition (Krizhevsky et al. (2012); D. C. Ciresan (2011)), machine translation (Hassan
et al. (2018)) and others (Silver et al. (2016)). However, just like humans, artificial neural networks
sometimes make mistakes. As we trust them with more and more important decisions, the cost
of such mistakes grows ever higher. A single misclassified image can be negligible in academic re-
search but can be fatal for a pedestrian in front of a self-driving vehicle. A poor automatic translation
for a single sentence can get a person arrested (Hern (2018)) or ruin company’s reputation.
Since mistakes are inevitable, deep learning practitioners should be able to adjust model behavior
by correcting errors as they appear. However, this is often difficult due to the nature of deep neural
networks. In most network architectures, a prediction for a single input depends on all model param-
eters. Therefore, updating a neural network to change its predictions on a single input can decrease
performance across other inputs.
Currently, there are two workarounds commonly used by practitioners. First, one can re-train the
model on the original dataset augmented with samples that account for the mistake. However, this
is computationally expensive as it requires to perform the training from scratch. Another solution is
to use a manual cache (e.g. lookup table) that overrules model predictions on problematic samples.
While being simple, this approach is not robust to minor changes in the input. For instance, it
will not generalize to a different viewpoint of the same object or paraphrasing in natural language
processing tasks.
In this work, we present an alternative approach that we call Editable Training. This approach
involves training neural networks in such a way that the trained parameters can be easily edited af-
terwards. Editable Training employs modern meta-learning techniques (Finn et al. (2017)) to ensure
that model’s mistakes can be corrected without harming its overall performance. With thorough
experimental evaluation, we demonstrate that our method works on both small academical datasets
and industry-scale machine learning tasks. We summarize the contributions of this study as follows:

• We address a new problem of fast editing of neural network models. We argue that this
problem is extremely important in practice but, to the best of our knowledge, receives little
attention from the academic community.

• We propose Editable Training — a model-agnostic method of neural network training that
learns models, whose errors can then be efficiently corrected.1

• We extensively evaluate Editable Training on large-scale image classification and machine
translation tasks, confirming its advantage over existing baselines.

1The source code is available online at https://github.com/editable-ICLR2020/editable
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2 RELATED WORK

In this section, we aim to position our approach with respect to existing literature. Namely, we
explain the connections of Editable Neural Networks with ideas from prior works.

Meta-learning is a family of methods that aim to produce learning algorithms, appropriate for a
particular machine learning setup. These methods were shown to be extremely successful in a large
number of problems, such as few-shot learning (Finn et al. (2017); Nichol et al. (2018)), learnable
optimization (Andrychowicz et al. (2016)) and reinforcement learning (Houthooft et al. (2018)). In-
deed, Editable Neural Networks also belong to the meta-learning paradigm, as they basically ”learn
to allow effective patching”. While neural network correction has significant practical importance,
we are not aware of published meta-learning works, addressing this problem.

Catastrophic forgetting is a well-known phenomenon arising in the problem of lifelong/continual
learning (Ratcliff (1990)). For a sequence of learning tasks, it turns out that after deep neural net-
works learn on newer tasks, their performance on older tasks deteriorates. Several lines of research
address overcoming catastrophic forgetting. The methods based on Elastic Weight Consolidation
(Kirkpatrick et al. (2016)) update model parameters based on their importance to the previous learn-
ing tasks. The rehearsal-based methods (Robins (1995)) occasionally repeat learning on samples
from earlier tasks to ”remind” the model about old data. Finally, a line of work (Garnelo et al.
(2018); Lin et al. (2019)) develops specific neural network architectures that reduce the effect of
catastrophic forgetting. The problem of efficient neural network patching differs from continual
learning, as our setup is not sequential in nature. However, correction of model for mislabeled
samples must not affect its behavior on other samples, which is close to overcoming catastrophic
forgetting task.

Adversarial training. The proposed Editable Training also bears some resemblance to the ad-
versarial training (Goodfellow et al. (2015)), which is the dominant approach of adversarial attack
defense. The important difference here is that Editable Training aims to learn models, whose behav-
ior on some samples can be efficiently corrected. Meanwhile, adversarial training produces models,
which are robust to certain input perturbations. However, in practice one can use Editable Train-
ing to efficiently cover model vulnerabilities against both synthetic (Szegedy et al. (2013); Yuan
et al. (2017); Ebrahimi et al. (2017); Wallace et al. (2019)) and natural (Hendrycks et al. (2019))
adversarial examples.

3 EDITING NEURAL NETWORKS

In order to measure and optimize the model’s ability for editing, we first formally define the oper-
ation of editing a neural network. Let f(x, θ) be a neural network, with x denoting its input and
θ being a set of network parameters. The parameters θ are learned by minimizing a task-specific
objective function Lbase(θ), e.g. cross-entropy for multi-class classification problems.

Then, if we discover mistakes in the model’s behavior, we can patch the model by changing its
parameters θ. Here we aim to change model’s predictions on a subset of inputs, corresponding
to misclassified objects, without affecting other inputs. We formalize this goal using the editor
function: θ̂=Edit(θ, le). Informally, this is a function that adjusts θ to satisfy a given constraint
le(θ̂) ≤ 0, whose role is to enforce desired changes in the model’s behavior.

For instance, in the case of multi-class classification, le can guarantee that the model assigns input
x to the desired label yref : le(θ̂) = maxyi log p(yi|x, θ̂) − log p(yref |x, θ̂). Under such definition
of le, the constraint le(θ̂) ≤ 0 is satisfied iff argmaxyi log p(yi|x, θ̂) = yref .

To be practically feasible, the editor function must meet three natural requirements:

• Reliability: the editor must guarantee le(θ̂) ≤ 0 for the chosen family of le(·);
• Locality: the editor should minimize influence on f(·, θ̂) outside of satisfying le(θ̂) ≤ 0;

• Efficiency: the editor should be efficient in terms of runtime and memory;

Intuitively, the editor locality aims to minimize changes in model’s predictions for inputs unrelated
to le. For classification problem, this requirement can be formalized as minimizing the difference
between model’s predictions over the ”control” set Xc: E

x∈Xc

#[f(x, θ̂) 6= f(x, θ)]→ min.
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3.1 GRADIENT DESCENT EDITOR

A natural way to implement Edit(θ, le) for deep neural networks is using gradient descent. Param-
eters θ are shifted against the gradient direction−α∇θle(θ) for several iterations until the constraint
le(θ) ≤ 0 is satisfied. We formulate the SGD editor with up to k steps and learning rate α as:

Editkα(θ, le, k) =

{
θ, if le(θ) ≤ 0 or k = 0

Editk−1α (θ − α · ∇θle(θ), le), otherwise
(1)

The standard gradient descent editor can be further augmented with momentum, adaptive learn-
ing rates (Duchi et al. (2010); Zeiler (2012)) and other popular deep learning tricks (Kingma &
Ba (2014); Smith & Topin (2017)). One technique that we found practically useful is Resilient
Backpropagation: RProp, SignSGD by Bernstein et al. (2018) or RMSProp by Tieleman & Hinton
(2012). We observed that these methods produce more robust weight updates that improve locality.

3.2 EDITABLE TRAINING

The core idea behind Editable Training is to enforce the model parameters θ to be ”prepared” for
the editor function. More formally, we want to learn such parameters θ, that the editor Edit(θ, le)
is reliable, local and efficient, as defined in above.

Our training procedure employs the fact that Gradient Descent Editor (1) is differentiable w.r.t. θ.
This well-known observation (Finn et al. (2017)) allows us to optimize through the editor function
directly via backpropagation (see Figure 1).
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Batch:
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      le(⋅)
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Figure 1: A high-level scheme of editable training: (left) forward pass, (right) backward pass.

Editable Training is performed on minibatches of constraints le ∼ p(le) (e.g. images and target
labels). First, we compute the edited parameters θ̂ = Edit(θ, le) by applying up to k steps of
gradient descent (1). Second, we compute the objective that measures locality and efficiency of the
editor function:

Obj(θ, le) = Lbase(θ) + cedit · Ledit(θ) + cloc · Lloc(θ) (2)

Ledit(θ) = max(0, le(Edit
k
α(θ, le)) (3)

Lloc(θ) = E
x∼p(x)

DKL(p(y|x, θ)||p(y|x,Editkα(θ, le))) (4)

Intuitively, Ledit(θ) encourages reliability and efficiency of the editing procedure by making sure
the constraint is satisfied in under k gradient steps. The final term Lloc(θ) is responsible for locality
by minimizing the KL divergence between the predictions of original and edited models.

We use hyperparameters cedit, cloc to balance between the original task-specific objective, editor ef-
ficiency and locality. Setting both of them to large positive values would cause the model to sacrifice
some of its performance for a better edit. On the other hand, sufficiently small cedit, cloc will not
cause any deterioration of the main training objective while still improving the editor function in
all our experiments (see Section 4). We attribute this to the fact that neural networks are typically
overparameterized. Most neural networks can accommodate the edit-related properties and still have
enough capacity to optimize Obj(θ, le). The learning step α and other optimizer parameters (e.g.
β for RMSProp) are trainable parameters of Editable Training and we optimize them explicitly via
gradient descent.

4 EXPERIMENTS

In this section, we extensively evaluate Editable Training on several deep learning problems and
compare it to existing alternatives for efficient model patching.
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4.1 TOY EXPERIMENT: CIFAR-10

First, we experiment on image classification with the small CIFAR-10 dataset with standard train/test
splits (Krizhevsky et al.). The training dataset is further augmented with random crops and random
horizontal flips. All models trained on this dataset follow the ResNet-18 (He et al. (2015)) architec-
ture and use the Adam optimizer (Kingma & Ba (2014)) with default hyperparameters.

Our baseline is ResNet-18 (He et al. (2015)) neural network trained to minimize the standard cross-
entropy loss without Editable Training. This model provides 6.3% test error rate at convergence.

Comparing editor functions. As a preliminary experiment, we compare several variations of edi-
tor functions for the baseline model without Editable Training. We evaluate each editor by applying
N=1000 edits le. Each edit consists of an image from the test set assigned with a random (likely in-
correct) label uniformly chosen from 0 to 9. AfterN independent edits, we compute three following
metrics over the entire test set:

• Drawdown — mean absolute difference of classification error before and after performing
an edit. Smaller drawdown indicates better editor locality.

• Success Rate — a rate of edits, for which editor succeeds in under k=10 gradient steps.

• Num Steps — an average number of gradient steps needed to perform a single edit.

Editor Function GD Scaled GD RProp RMSProp Momentum Adam
Drawdown 3.8% 2.81% 1.99% 1.77% 2.42% 19.4%

Success Rate 98.8% 99.1% 100% 100% 96.0% 100%
Num Steps 3.54 3.91 2.99 3.11 5.60 3.86

Table 1: Comparison of different editor functions on the CIFAR10 dataset with the baseline
ResNet18 model trained without Editable Training.

• Gradient Descent (GD) — standard gradient descent.

• Scaled GD — like GD, but the learning rate is divided by the global gradient norm from
the first gradient step.

• RProp — like GD, but the algorithm only uses the sign of gradients: θ−α ·sign(∇θle(θ)).
• RMSProp — like GD, but the learning rate for each individual parameter is divided by√

rmst + ε where rms0 = [∇θle(θ0)]2 and rmst+1 = β · rmst + (1− β) · [∇θle(θ)]2.

• Momentum GD — like GD, but the update follows the accumulated gradient direction ν:
ν0 = 0; νt+1 = α · ∇θle(θ0) + µ · νt.
• Adam — adaptive momentum algorithm as described in Kingma & Ba (2014) with tunable
α, β1, β2. To prevent Adam from replicating RMSProp, we restrict β1 to [0.1, 1.0] range.

For each optimizer, we tune all hyperparameters (e.g. learning rate) to optimize locality while
ensuring that editor succeeds in under k = 10 steps for at least 95% of edits. We also tune the
editor function by limiting the subset of parameters it is allowed to edit. The ResNet-18 model
consists of six parts: initial convolutional layer, followed by four ”chains” of residual blocks and a
final linear layer that predicts class logits. We experimented with editing the whole model as well as
editing each individual ”chain”, leaving parameters from other layers fixed. For each editor Table 1
reports the numbers, obtained for the subset of editable parameters, corresponding to the smallest
drawdown. For completeness, we also report the drawdown of Gradient Descent and RMSProp for
different subsets of editable parameters in Table 2.

Editable Layers Whole Model Chain 1 Chain 2 Chain 3 Chain 4
Gradient Descent 3.8% 18.3% 7.7% 5.3% 4.76%

RMSProp 2.29% 22.8% 1.85% 1.77% 1.99%

Table 2: Mean Test Error Drawdown when editing different ResNet18 layers on CIFAR10.

Table 1 and Table 2 demonstrate that the editor function locality is heavily affected by the choice
of editing function even for models trained without Editable Training. Both RProp and RMSProp
significantly outperform the standard Gradient Descent while Momentum and Adam show smaller
gains. In fact, without the constraint β1 > 0.1 the tuning procedure returns β1 = 0, which makes
Adam equivalent to RMSProp. We attribute the poor performance of Adam and Momentum to the
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fact that most methods only make a few gradient steps till convergence and the momentum term
cannot accumulate the necessary statistics.

Editable Training. Finally, we report results obtained with Editable Training. On each training
batch, we use a single constraint le(θ̂) = maxyi log p(yi|x, θ̂)−log p(yref |x, θ̂), where x is sampled
from the train set and yref is a random class label (from 0 to 9). The model is then trained by
directly minimizing objective (2) with k=10 editor steps and all other parameters optimized by
backpropagation.

We compare our Editable Training against two baselines, which also allow efficient model cor-
rection. The semi-parametric Deep k-Nearest Neighbors (DkNN) model (Papernot & McDaniel
(2018)) makes predictions by using k nearest neighbors in the space of embeddings, produced by
different CNN layers. For this approach, we edit the model by flipping labels of nearest neighbors
until the model predicts the correct class.

We also compare to alternative editor function inspired by Conditional Neural Processes (CNP)
(Garnelo et al. (2018)) that we refer to as Editable+CNP. For this baseline, we train a specialized
CNP model architecture that performs edits by adding a special condition vector to intermediate
activations. This vector is generated by an additional ”encoder” layer. We train the CNP model to
solve the original classification problem when the condition vector is zero (hence, the model behaves
as standard ResNet18) and minimize Ledit and Lloc when the condition vector is applied.

After tuning the CNP architecture, we obtained the best performance when the condition vector is
computed with a single ResNet block that receives the image representation via activations from
the third residual chain of the main ResNet-18 model. This ”encoder” also conditions on the target
class yref with an embedding layer (lookup table) that is added to the third chain activations. The
resulting procedure becomes the following: first, apply encoder to the edited sample and compute
the condition vector, then add this vector to the third layer chain activations for all subsequent inputs.

Training Editor Editable Test Error Test Error Success Num
Procedure Function Layers Rate Drawdown Rate Steps

Baseline Training
GD All 6.3% 3.8% 98.8% 3.54

RMSProp Chain 3 6.3% 1.77% 100% 3.11
GD All 6.34% 1.42% 100% 3.39

Editable cloc = 0.01 GD Chain 3 6.28% 1.44% 100% 2.82
RMSProp Chain 3 6.31% 0.86% 100% 4.13

Editable cloc = 0.1 RMSProp Chain 3 7.19% 0.65% 100% 4.76
Editable+CNP (best) Cond. vector Chain 3 6.33% 1.06% 98.9% n/a

DkNN k = 10 Flip Labels n/a 6.36% 1.76% 100% n/a
DkNN k = 100 Flip Labels n/a 7.04% 1.05% 100% n/a

Table 3: Editable Training of ResNet18 on CIFAR10 dataset with different editor functions.
Table 3 demonstrates two advantages of Editable Training. First, with cloc=0.01 it is able to reduce
drawdown (compared to models trained without Editable Training) while having no significant effect
on test error rate. Second, editing Chain 3 alone is almost as effective as editing the whole model.
This is important because it allows us to reduce training time, making Editable Training≈ 2.5 times
slower than baseline training. Note, Editable+CNP turned out to be almost as effective as models
trained with gradient-based editors while being simpler to implement. In turn, DkNN performed
worse than competitors in terms of either test error rate or average drawdown depending on k.
4.2 ANALYZING EDITED MODELS

In this section, we aim to interpret the differences between the models learned with and without
Editable Training. First, we investigate which inputs are most affected when the model is edited on
a sample that belongs to each particular class. Based on Figure 2 (left), we conclude that edits of
baseline model cause most drawdown on samples that belong to the same class as the edited input
(prior to edit). However, this visualization loses information by reducing edits to their class labels.

In Figure 2 (middle) we apply t-SNE (van der Maaten & Hinton (2008)) to analyze the structure
of the ”edit space”. Intuitively, two edited versions of the same model are considered close if they
make similar predictions. We quantify this by computing KL-divergence between the model’s pre-
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Figure 2: Edited model visualizations (Left) Confusion matrix of baseline model: rows correspond
to editing images belonging to each of 10 classes; columns represent drawdowns per individual class.
(Middle) t-SNE visualizations. Point color represents original class labels; brightness encodes edit
targets (Right) The proportion of explained variance versus the number of components.

dictions before and after edit for each of 10.000 test samples. These KL divergences effectively
form a 10.000-dimensional model descriptor. We compute these descriptors for 4.500 edits applied
to models trained with and without Editable Training. These vectors are then embedded in two-
dimensional space with the t-SNE algorithm. We plot the obtained charts on Figure 2 (middle),
with point colors denoting original class labels of edited images. As expected, the baseline edits for
images of the same class are mapped to close points.

In turn, Editable Training does not always follow this pattern: the edit clusters are formed based on
both original and target labels with a highly interlinked region in the middle. Combined with the fact
that Editable Training has a significantly lower drawdown, this lets us hypothesize that with Editable
Training neural networks learn representations where edits affect objects of the same original class
to a smaller extent.

Conversely, the t-SNE visualization lacks information about the true dimensionality of the data
manifold. To capture this property, we also perform truncated SVD decomposition of the same
matrix of descriptors. Our main interest is the number of SVD components required to explain a
given percentage of data variance. In Figure 2 (right) we report the explained variance ratio for
models obtained with and without Editable Training. These results present evidence that Editable
Training learns representations that exploit the neural network capacity to a greater extent.

4.3 EDITABLE FINE-TUNING FOR LARGE SCALE IMAGE CLASSIFICATION

Section 4.1 demonstrates the success of Editable Training on the small CIFAR-10 dataset. However,
many practical applications require training for many weeks on huge datasets. Re-training such
model for the sake of better edits may be impractical. In contrast, it would be more efficient to start
from a pre-trained model and fine-tune it with Editable Training.

Here we experiment with the ILSVRC image classification task (Deng et al. (2009)) and consider
two pre-trained architectures: smaller ResNet-18 and deeper DenseNet-169 (Huang et al. (2016))
networks. For each architecture, we start with pre-trained model weights2 and fine-tune them on the
same dataset with Editable Training. More specifically, we choose the training objective Lbase(θ)
as KL-divergence between the predictions of the original network and its fine-tuned counterpart.
Intuitively, this objective encourages the network to preserve its original classification behavior,
while being trained to allow local edits.

Similar to Section 4.1, the editor functions are only allowed to modify a subset of neural network
layers. We experiment with two choices of such subsets. First, we try to edit a pre-existing layer in
the network. Namely, we select the third out of four ”chains” in both architectures. In the second
experiment, we augment each architecture with an extra trainable layer after the last convolutional
layer. We set an extra layer to be a residual block with a 4096-unit dense layer, followed by ELU
activation (Clevert et al. (2015)) and another 1024-unit dense layer.

The evaluation is performed on N=1000 edits with random target class. We measure the drawdown
on the full ILSVRC validation set of 50.000 images. We use the SGD optimizer with momentum
µ=0.9. We set the learning rate to 10−5 for the pre-existing layers and 10−3 for the extra block.
The ImageNet training data is augmented with random resized crops and random horizontal flips.

2We use publicly available pre-trained models from https://github.com/pytorch/vision.
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Our baselines for this task are the pre-trained architectures without Editable Fine-Tuning. However,
during experiments, we noticed that minimizing the KL-divergenceL(θ) has a side-effect of improv-
ing validation error. We attribute this improvement to the model distillation phenomenon (Hinton
et al. (2015)). To disentangle these two effects, we consider an additional baseline where the model
is trained to minimize the KL-divergence without Editable Training terms. For fair comparison, we
also include baselines that edit an extra layer. This layer is initialized at random for the pre-trained
models and fine-tuned for the models trained with distillation.

Model Training Editable Test Error Mean Success Num
Architecture Procedure Layers Rate Drawdown Rate Steps

ResNet18

Pre-trained Chain 3 30.95% 3.89% 99.8% 3.582
Pre-trained Extra layer 30.95% 9.18% 100% 4.272
Distillation Extra layer 30.75% 2.80% 100% 2.63

Editable Chain 3 30.53% 3.78% 99.8% 3.616
Editable Extra layer 30.61% 0.57% 100% 3.388

DenseNet169

Pre-trained Chain 3 25.49% 5.20% 100% 2.551
Pre-trained Extra layer 25.47% 9.05% 100% 3.874
Distillation Extra layer 24.33% 1.67% 100% 2.822

Editable Chain 3 24.32% 4.47% 100% 2.556
Editable Extra layer 24.38% 0.96% 100% 2.970

Table 4: Editable Training on the ImageNet dataset with RMSProp editor function.

The results in Table 4 show that Editable Training can be effectively applied in the fine-tuning
scenario, achieving the best results with an extra trainable layer. In all cases Editable Fine-Tuning
took under 48 hours on a single GeForce 1080 Ti GPU while a single edit requires less than 150 ms.

4.3.1 REALISTIC EDIT TASKS WITH NATURAL ADVERSARIAL EXAMPLES

In all previous experiments, we considered edits with randomly chosen target class. However, in
many practical scenarios, most of these edits will never occur. For instance, it is far more likely
that an image previously classified as ”plane” would require editing into ”bird” than into ”truck”
or ”ship”. To address this consideration, we employ the Natural Adversarial Examples (NAE) data
set by Hendrycks et al. (2019). This data set contains 7.500 natural images that are particularly
hard to classify with neural networks. Without edits, a pre-trained model can correctly predict less
than 1% of NAEs, but the correct answer is likely to be within top-100 classes ordered by predicted
probabilities (see Figure 5 left).

The next set of experiments quantifies Editable Training in this more realistic setting. All models
are evaluated on a sample of 1.000 edits, each corresponding to one Natural Adversarial Example
and its reference class. We measure the drawdown from each edit on 50.000 ILSVRC test images.
We evaluate best techniques from Section 4.3 and their modifications that account for NAEs:

• Editable Training: Random — model trained to edit on random targets from the uniform
distribution, same as in Table 4. Compared to the same pre-trained and distilled baselines.
• Editable Training: Match Ranks — model trained to edit ImageNet training images with

targets sampled based on their rank under NAE rank distribution (see 5, left).
• Editable Training: Train on NAE — model trained to edit 6.500 natural adversarial

examples. These NAEs do not overlap with 1.000 NAE examples used for evaluation.

The results in Table 5 (top-left) show that Editable Training significantly reduces drawdown for
NAEs even when trained with random targets. However, accounting for the distribution of target
classes improves locality even further. Surprisingly enough, training on 6.500 actual NAEs fares
no better than simply matching the distribution of target ranks. Furthermore, Figure 5 (bottom-left)
demonstrates that models produced by editable training can also cope with doing multiple edits in a
sequence without ever being trained that way.
4.4 EDITABLE TRAINING FOR MACHINE TRANSLATION

The previous experiments focused on multi-class classification problems. However, Editable Train-
ing can be applied to any task where the model is trained by minimizing a differentiable objective.
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Training Test
Drawdown

Success Num
Procedure Error Rate Steps

Baseline Training
Pre-trained 30.99% 4.54% 100% 3.822
Distillation 30.75% 1.62% 100% 2.192

Editable Training
Random edits 30.79% 0.314% 100% 2.594
Match ranks 30.76% 0.146% 100% 2.149

Train on NAE 30.86% 0.167% 100% 2.236

Table 5: Editing Natural Adversarial Examples for ResNet18:
(Top-Left) Editor effectiveness when editing N = 1000 NAEs;
(Top-Right) Reference class rank distribution for baseline model,
(Bottom-Right) Error rate for edit sequences, ResNet18 baseline
and Match Ranks. Pale areas indicate std. deviation over 10 runs.
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Our final set of experiments demonstrates the applicability of Editable Training for machine trans-
lation task.

We consider the IWSLT 2014 German-English translation task with the standard training/test splits
(Cettolo et al. (2015)). The data is preprocessed with Moses Tokenizer (Koehn et al. (2007)) and
converted to lowercase. We further apply the Byte-Pair Encoding with 10.000 BPE rules learned
jointly from German and English training data. Finally, we train the Transformer (Vaswani et al.
(2017)) model similar to transformer-base configuration, slightly optimized for IWSLT De-En task3.

Typical machine translation models use beam search to find the most likely translation. Hence
we consider an edit to be successful if and only if the log-probability of target translation is greater
than log-probability of any alternative translation. So, le(θ̂) = maxyi log p(yi|s, θ̂)− log p(y0|s, θ̂),
where s is a source sentence, y0 denotes target translation and {yi}ki=1 are alternative translations.
During training, we approximate this by finding k=32 most likely translations with beam search
using the Transformer model trained normally on the same data. The edit targets are sampled from
the same model by sampling with temperature τ=1.2. The resulting edit consists of three parts: a
source sentence, a target translation and a set of alternative translations.

We define Lloc as KL-divergence between the predictions of the original and edited model averaged
over target tokens, Lloc = E

x,y∈D
1
|y|
∑
tDKL(p(yt|x, y0:t, θ) || p(yt|x, y0:tEditkα(θ, le))), where D

is a data batch, x and y are the source and translation phrases respectively, y0:t denotes a translation
prefix. The Edit function optimizes the final decoder layer using RMSProp with hyperparameters
tuned as in Section 4.1. The results in Table 6 show that Editable Training produces a model that
matches the baseline translation quality but has less than half of its drawdown.

Training Procedure Test BLEU BLEU Drawdown Success rate Num Steps
Baseline training, α=10−3 34.77 0.76 100% 2.35

Editable, cloc=100, α=10−3 34.80 0.35 100% 3.07
Editable, cloc=100, α=3 · 10−4 34.81 0.17 100% 5.5

Table 6: Evaluation of editable Transformer models on IWSLT14 German-English translation task.

5 CONCLUSION

In this paper we have addressed the efficient correction of neural network mistakes, a highly im-
portant task for deep learning practitioners. We have proposed several evaluation measures for
comparison of different means of model correction. Then we have introduced Editable Training,
a training procedure that produces models that allow gradient-based editing to address corrections
of the model behaviour. We demonstrate the advantage of Editable Training against reasonable
baselines on large-scale image classification and machine translation tasks.

3We use Transformer configuration ”transformer iwslt de en” from Fairseq v0.8.0 (Ott et al. (2019))
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