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We Seek to Model Distances on Some Set

e Distance tells us how close or far apart things are

e Examples of things:
o Nodes in a graph (shortest path length)
o States in reinforcement learning (optimal value function)
o Items in a recommender system
o Images in computer vision



Hypothesis: Triangle Inequality is a Good Inductive Bias

The (shortest) distance from A to C is no greater than C
the distance from A to B plus the distance from B to C. \
d(A, C) < d(A, B) + d(B, C) B

A

Many have found this to be a useful inductive bias: A
{ e Kaelbling’s DG Learning (1993)

&
(4
‘0“"«\
)
)
99;36““
\f

e Schaul et als Universal Value Functions (2015)
e He et al’s Optimality Tightening (2016)
. { e Hsieh et al.’s Collaborative Metric Learning (2017)
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e Snell et al.’s Prototypical Networks (2017)



Deep Metric Learning

Map inputs to a latent metric space,
e.g., R" with Euclidean metric (right), and
apply the metric in the latent space.

AKA Siamese network (Bromley 1994).

This architecture satisfies the triangle
inequality.

d(z,y) = [[¢(z) — o(y)ll
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Where Euclidean Metric Learning Fails

1. Many simple metrics cannot be embedded into any Euclidean space.

Norm MSE Deep Norm Wide Norm Mahalanobis

Euclidean, R"  0.057 i ; /\ s & 2
Deep Norm, R*  0.000 & Y\ \ 00 _D/—).A
Wide Norm, R?  0.000 = AN \/ - !

2. Many metrics we care about (e.g., almost all RL tasks) are asymmetric!

Value Groundtruth P Value Euclidean i Value DeepNorm Asym
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Comparison of Architectures
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Comparison of Architectures

Metric / Norm Properties

N1/ M1-2 N2 N3 /M3
Positive Positive Triangle
Definite Homogenous Inequality

Euclidean v v v
Unconstrained NN x x x
Deep Norm « v v
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Deep — more expressive

Fast for pairwise distances
in large mini-batches!

Can use either DN or WN
as base architecture.

N NS SN SN

. optionally enforced via
*  propositions (see paper)



Modeling
2D Norms
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Learning General Value Functions

Problem: Learn a Universal Value Function Approximator (UVFA) 1/ (3, g)
in goal-oriented RL environment: R(s, s’) = —1 epsterminates @ s =g

Value Groundtruth P Value Euclidean 5 Value DeepNorm Asym .
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4-Room Env

Maze Env
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Fig. 5: GVF results. Generalization as measured by SPL metric (higher is better) on held out (s, g)

pairs as function of fraction of goals seen during training. Results averaged over 3 seeds and error bar
indicates standard deviation. For fraction = 1 we evaluate on entire data.



Application: Norm/Metric Substitution

Can be used in any architecture / algorithm that uses a Euclidean norm or metric

e Clustering & retrieval
e Collaborative metric learning

e Few-shot learning (e.g., prototypical networks) /e.g., asymmetric node2vec?

May be useful for asymmetric applications (e.g., DAGs, ordered embeddings,
entailment)

Caveat: triangle inequality not always necessary / sensible
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Thanks for watching!

e Check out our paper to learn more!

e Check our Github:
https://qithub.com/spitis/deepnorms

for Tensorflow (v1) and Pytorch implementations.

e Happy to answer any questions by email:
spitis@cs.toronto.edu hchan(@cs.toronto.edu
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