Deep Norm

MLP













### An Inductive Bias for Distances: Neural Nets that Respect the Triangle Inequality

Deep Norms, Wide Norms, and Neural Metrics

Silviu Pitis\*

Harris Chan\* K

Kiarash Jamali

Jimmy Ba

University of Toronto, Vector Institute

\*Equal contribution

ICLR 2020, April 26-30

### We Seek to Model Distances on Some Set

- Distance tells us how close or far apart things are
- Examples of things:
  - Nodes in a graph (shortest path length)
  - States in reinforcement learning (optimal value function)
  - $\circ~$  Items in a recommender system
  - $\circ\,$  Images in computer vision

### Hypothesis: Triangle Inequality is a Good Inductive Bias

The (shortest) distance from A to C is *no greater* than the distance from A to B plus the distance from B to C.

### $d(A, C) \leq d(A, B) + d(B, C)$

Many have found this to be a useful inductive bias:

- Kaelbling's DG Learning (1993)
- Schaul et al.'s Universal Value Functions (2015)
- He et al.'s Optimality Tightening (2016)
- Hsieh et al.'s Collaborative Metric Learning (2017)
- Snell et al.'s Prototypical Networks (2017)



### **Deep Metric Learning**

Map inputs to a latent metric space, e.g., R<sup>n</sup> with Euclidean metric (right), and apply the metric in the latent space. AKA **Siamese network** (Bromley 1994).

This architecture satisfies the triangle inequality.



### Where <u>Euclidean</u> Metric Learning Fails

#### 1. Many simple metrics cannot be embedded into any Euclidean space.



#### 2. Many metrics we care about (e.g., almost all RL tasks) are asymmetric!



### **Comparison of Architectures**

|                  | N1 / M1-2<br>Positive<br>Definite | N2<br>Positive<br>Homogenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N3 / M3<br>Triangle<br>Inequality | N4 / M4<br>Symmetric | Universal<br>Norm<br>Approximator |
|------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|-----------------------------------|
| Euclidean        | 1                                 | <ul> <li>Image: A second s</li></ul> | 1                                 | 1                    | ×                                 |
| Unconstrained NN | ×                                 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                 | ×                    | 1                                 |

### **Comparison of Architectures**

|                  |                                   | Metric / Norr                |                                   |                      |                                   |                                                      |
|------------------|-----------------------------------|------------------------------|-----------------------------------|----------------------|-----------------------------------|------------------------------------------------------|
|                  | N1 / M1-2<br>Positive<br>Definite | N2<br>Positive<br>Homogenous | N3 / M3<br>Triangle<br>Inequality | N4 / M4<br>Symmetric | Universal<br>Norm<br>Approximator |                                                      |
| Euclidean        | 1                                 | 1                            | ~                                 | ~                    | ×                                 |                                                      |
| Unconstrained NN | ×                                 | ×                            | ×                                 | ×                    | ~                                 |                                                      |
| Deep Norm        | ×                                 | 1                            | 1                                 | ×                    | ~                                 | Deep $ ightarrow$ more expressive                    |
| Wide Norm        | ×                                 | 1                            | 1                                 | ×                    | 1                                 | Fast for pairwise distance<br>in large mini-batches! |
| Neural Metric    | ×                                 | ×                            | 1                                 | ×                    | 1                                 | Can use either DN or WN as base architecture.        |



## Modeling 2D Norms



### Learning General Value Functions

**Problem:** Learn a Universal Value Function Approximator (UVFA)  $V_{\theta}(s, q)$ in goal-oriented RL environment: R(s,s')=-1 eps terminates @ **s** = **g** 







Fig. 5: GVF results. Generalization as measured by SPL metric (higher is better) on held out (s, g) pairs as function of fraction of goals seen during training. Results averaged over 3 seeds and error bar indicates standard deviation. For fraction = 1 we evaluate on entire data.

# **Application: Norm/Metric Substitution**

Can be used in any architecture / algorithm that uses a Euclidean norm or metric

- Clustering & retrieval
- Collaborative metric learning
- Few-shot learning (e.g., prototypical networks)

e.g., asymmetric node2vec?

May be useful for **asymmetric** applications (e.g., DAGs, ordered embeddings, entailment)

Caveat: triangle inequality not always necessary / sensible



## Thanks for watching!

• Check out our paper to learn more!

• Check our Github:

https://github.com/spitis/deepnorms

for Tensorflow (v1) and Pytorch implementations.

Happy to answer any questions by email:
 <u>spitis@cs.toronto.edu</u>
 <u>hchan@cs.toronto.edu</u>