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● Distance tells us how close or far apart things are

● Examples of things:
○ Nodes in a graph (shortest path length)
○ States in reinforcement learning (optimal value function)
○ Items in a recommender system
○ Images in computer vision

We Seek to Model Distances on Some Set



The (shortest) distance from A to C is no greater than 
the distance from A to B plus the distance from B to C.

d(A, C) ≤ d(A, B) + d(B, C)  

Many have found this to be a useful inductive bias:
● Kaelbling’s DG Learning (1993)

● Schaul et al.’s Universal Value Functions (2015)

● He et al.’s Optimality Tightening (2016)

● Hsieh et al.’s Collaborative Metric Learning (2017)

● Snell et al.’s Prototypical Networks (2017) 

Hypothesis: Triangle Inequality is a Good Inductive Bias
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Deep Metric Learning

Map inputs to a latent metric space, 
e.g., Rn with Euclidean metric (right), and 
apply the metric in the latent space.
AKA Siamese network (Bromley 1994).

This architecture satisfies the triangle 
inequality. 



Where Euclidean Metric Learning Fails
1. Many simple metrics cannot be embedded into any Euclidean space. 

 

2. Many metrics we care about (e.g., almost all RL tasks) are asymmetric!



Metric / Norm Properties

N1 / M1-2
Positive
Definite

N2
Positive 

Homogenous

N3 / M3
Triangle 

Inequality

N4 / M4
Symmetric

Universal Norm 
Approximator

Euclidean ✔ ✔ ✔ ✔ ✘

Unconstrained NN ✘ ✘ ✘ ✘ ✔

Comparison of Architectures



✗✔ ✗✔

Metric / Norm Properties

N1 / M1-2
Positive
Definite

N2
Positive 

Homogenous

N3 / M3
Triangle 

Inequality

N4 / M4
Symmetric

Universal Norm 
Approximator

Euclidean ✔ ✔ ✔ ✔ ✘

Unconstrained NN ✘ ✘ ✘ ✘ ✔
Deep Norm ✔ ✔ ✔
Wide Norm ✔ ✔ ✔

Neural Metric ✔ ✔

✗✔✗✔
✗✔✗✔ ✗✔

✗✔:  optionally enforced via    propositions (see paper)

Fast for pairwise distances 
in large mini-batches!

Can use either DN or WN 
as base architecture.

Deep → more expressive

Comparison of Architectures



Modeling 
2D Norms



Learning General Value Functions

Problem: Learn a Universal Value Function Approximator (UVFA)
in goal-oriented RL environment:                                , eps terminates @ s = g 





Application: Norm/Metric Substitution

Can be used in any architecture / algorithm that uses a Euclidean norm or metric
● Clustering & retrieval
● Collaborative metric learning
● Few-shot learning (e.g., prototypical networks)

May be useful for asymmetric applications (e.g., DAGs, ordered embeddings, 
entailment)

Caveat: triangle inequality not always necessary / sensible

≤

| ?| ||||
e.g., asymmetric node2vec?



Thanks for watching!

● Check out our paper to learn more!

● Check our Github:
https://github.com/spitis/deepnorms 

for Tensorflow (v1) and Pytorch implementations.

● Happy to answer any questions by email:
spitis@cs.toronto.edu hchan@cs.toronto.edu

https://github.com/spitis/deepnorms
mailto:spitis@cs.toronto.edu
mailto:hchan@cs.toronto.edu

