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ABSTRACT

Despite the recent success of Lipschitz regularization in stabilizing GAN training,
the exact reason of its effectiveness remains poorly understood. It is commonly
believed that the main function of K-Lipschitz regularization is to restrict the
L2-norm of the neural network gradient to be smaller than a threshold K (e.g.
K = 1) such that ‖∇f‖ ≤ K. While in this work, we uncover a counter-intuitive
fact that under typical GAN setups, the choice of K does not matter. This finding
suggests that instead of keeping the neural network gradients small, an even more
important function of Lipschitz regularization is its restriction on the domain and
interval of attainable gradient values of the loss function. This avoids the bias of
the loss function over input samples. Empirically, we verify our proposition on
the MNIST, CIFAR10 and CelebA datasets.

1 INTRODUCTION

Generative Adversarial Networks (GANs) are a class of generative models successfully applied to
various applications, e.g., pose-guided image generation (Ma et al., 2017), image-to-image transla-
tion (Zhu et al., 2017), super-resolution (Ledig et al., 2017), high resolution image synthesis (Wang
et al., 2018), urban modeling (Kelly et al., 2018), etc. Theoretically, Goodfellow et al. (2014) proved
the convergence of GAN training by assuming that the generator is always updated according to the
temporarily optimal discriminator at each training step. In practice, this assumption is too difficult
to satisfy and GANs remain notoriously difficult to train. To stabilize the training of the GANs,
various techniques have been proposed regarding the choices of architectures (Radford et al., 2015;
He et al., 2016), loss functions (Arjovsky et al., 2017; Mao et al., 2017a), regularization and normal-
ization (Arjovsky et al., 2017; Gulrajani et al., 2017; Mescheder et al., 2018; Miyato et al., 2018).
We refer interested audiences to (Lucic et al., 2017; Kurach et al., 2018) for empirical studies.

Among them, the Lipschitz regularization (Gulrajani et al., 2017; Miyato et al., 2018) has shown
great success in stabilizing the training of various GANs recently. For example, Mao et al. (2017b)
and Fedus et al. (2018) observed that the gradient penalty Lipschitz regularizer helps to improve
the training of the LS-GAN (Mao et al., 2017a) and the NS-GAN (Goodfellow et al., 2014) respec-
tively; Miyato et al. (2018) observed that the NS-GAN with their spectral normalization Lipschitz
regularizer works better than WGAN-GP (Gulrajani et al., 2017).

In this paper, we provide an analysis to better understand the impact of Lipschitz regularization and
the loss function. This analysis is summarized below.

i) How does the Lipschitz constant K influence GAN training?
• For the neural network, under typical GAN setups, the choice of K does not matter. The

only exception is that a very smallK leads to numerical robustness issues and slow training.
• For the loss function,K restricts its domain and thereby the range of values of the attainable

gradients. This means that, asK → 0, all loss functions degenerate to linear functions with
constant gradients that are similar to the Wasserstein loss.

In other words, K does not matter for the network itself, but it matters for the loss function.

ii) How does the loss function influence GAN training? There are actually two conflicting goals:

• The loss function should be strictly convex for better convergence than linear ones.
• The loss function should be linear to avoid mode collapse.
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So our main insight is that the rule of thumb of using small Lipschitz constants is mainly to de-
generate loss functions to almost linear ones. These degenerate losses improve GAN training by
achieving a balance between the two conflicting goals mentioned above. Because of this, the exact
shapes of the loss functions before degeneration do not seem to matter that much. We demonstrate
this by two experiments. First, we show that when K is sufficiently small, even GANs trained with
ridiculous loss functions (e.g. cosine) give comparable results to all other loss functions. Second, we
can directly degenerate loss functions by introducing loss function scaling. This enables successful
GAN training for a wide range of K for all loss functions, which only worked for the Wasserstein
loss before. Our analysis is made more formal and expanded on in the following sections.

2 LIPSCHITZ REGULARIZATION AND GAN LOSS FUNCTIONS

Traditionally, Lipschitz regularization and GAN loss functions have been studied separately.

GAN Loss Functions. Under the assumption of optimal discriminators, the GAN loss function is
usually interpreted as a measure of some sort of statistical divergence between the model distribu-
tion and the data distribution. Based on this understanding, a variety of GAN loss functions have
been proposed. Goodfellow et al. (2014) first proposed to use the sigmoid cross-entropy loss func-
tion that minimizes the Jensen-Shannon (JS) divergence. However, because of the saturation at both
ends of the sigmoid function, such a loss function can lead to vanishing gradients and thus fail to
update the generator. To compensate for it, Goodfellow et al. (2014) proposed a variant named the
non-saturating loss (NS-GAN), which heuristically amplifies the gradients when updating the gen-
erator. Observing that the JS divergence is a special case of the f -divergence, Nowozin et al. (2016)
extended the idea of Goodfellow et al. (2014) and showed that any f -divergence can be used to train
GANs. Their work suggested that the performance of GANs can be improved by employing “better”
divergence measures. Following this direction, Arjovsky & Bottou (2017) first pointed out the flaws
of the JS divergence used in GANs and then proposed to use the Wasserstein distance (WGAN)
instead (Arjovsky et al., 2017). In addition, they employed the Kantorovich-Rubinstein dual of
the Wasserstein distance to improve the computational efficiency, which simplifies the WGAN loss
function to a simple identity function but at the cost of requiring the discriminator neural network to
be 1-Lipschitz continuous. Meanwhile, Mao et al. (2017a) proposed to use the quadratic loss func-
tion that minimizes the Pearson χ2 divergence, which is called the Least-Square GAN (LS-GAN).

Lipschitz Regularization. Instead of stabilizing GAN training, Lipschitz regularization is first de-
signed to enforce the 1-Lipschitz continuity of the discriminator neural network, which is required
by the Kantorovich-Rubinstein duality applied in WGAN (Arjovsky et al., 2017). Since then, several
algorithms are proposed to implement Lipschitz regularization. Arjovsky et al. (2017) first proposed
the weight clipping, whose main idea is to clamp the weights of each neural network layer to a small
fixed range [−c, c], where c is a small positive constant. Although weight clipping guarantees the
Lipschitz continuity of the discriminator, the choice of parameter c is difficult and prone to invalid
gradients. To this end, Gulrajani et al. (2017) proposed the gradient penalty (GP) which incorpo-
rates an extra regularization term of discriminator’s gradient magnitude into the loss function. In
their original setting, GP is one-centered to enforce 1-Lipschitz continuity. While Mescheder et al.
(2018) showed that the zero-centered one is more reasonable for the convergence of GAN train-
ing. However, one major problem of GP is that it is computed with finite samples, which makes
it intractable to be applied to the entire output space. To sidestep this problem, Gulrajani et al.
(2017) proposed to heuristically sample from the straight lines connecting model distribution and
data distribution. However, this makes their approach heavily dependent on the support of the model
distribution (Miyato et al., 2018). Addressing this issue, Miyato et al. (2018) proposed the spectral
normalization (SN) that enforces the Lipschitz continuity of a neural network in the operator space.
Observing that the Lipschitz constant of the entire neural network is bounded by the product of those
of its layers, they break down the problem to applying the Lipschitz regularization onto each neural
network layer. These simplified sub-problems can then be solved by normalizing the weight matrix
of each layer according to its largest singular value.

While recently, a tendency of applying 1-Lipschitz regularization to GANs without Lipschitz con-
straint requirements appears and links the two fields together. For example, Fedus et al. (2018) and
Mao et al. (2017b) observed that applying the gradient penalty Lipschitz regularizer designed for the
WGAN also helps to improve the training of the NS-GAN and the LS-GAN respectively. Similarly,
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Table 1: The GAN loss functions used in our experiments. f(·) is the output of the discriminator
neural network; g(·) is the output of the generator neural network; x is the sample from the training
dataset; z is the sample from the noise distribution. For the NS-GAN, f∗(·) = sigmoid[f(·)].

GAN types Discriminator Loss Generator Loss
NS-GAN −E[log(f∗(x))]− E[log(1− f∗(g(z)))] −E[log(f∗(g(z)))]

LS-GAN E[(f(x)− 1)2] + E[f(g(z))2] E[(f(g(z))− 1)2]

WGAN E[f(x)]− E[f(g(z))] E[f(g(z))]

COS-GAN −E[cos(f(x)− 1)]− E[cos(f(g(z)) + 1)] −E[cos(f(g(z))− 1)]

EXP-GAN E[exp(f(x))] + E[exp(−f(g(z)))] E[exp(f(g(z)))]

Miyato et al. (2018) observed that the NS-GAN with their spectral normalization regularizer works
better than WGAN-GP (Gulrajani et al., 2017). All these observations imply that:
Hypothesis 1. Keeping neural network gradients small by enforcing 1-Lipschitz regularization is
the key to successful GAN training while the choice of loss functions contributes little.

However, due to its complex nature, deep learning is usually criticized as ”alchemy” (Hutson, 2018)
and prone to attribution error, i.e. the credit of success is often incorrectly attributed. To this end,
we would like to question the above hypothesis: is it true?

2.1 EMPIRICAL EVALUATIONS ON LIPSCHITZ REGULARIZED GANS

To answer the above question, we empirically evaluate how the choice of Lipschitz constants influ-
ence the performance of various Lipschitz regularized GANs. First, we regularize the discriminator
neural network with the state-of-the-art spectral normalization and enforce K-Lipschitz regulariza-
tion by tuning the hyper-parameter kSN (Miyato et al., 2018),

W̄SN (W,kSN ) := kSN ·W/σ(W ), (1)

where W is the weight matrix of a neural network layer, σ(W ) is its largest singular value. The
relationship between kSN and K can be quantitatively approximated as K ≈ knSN (Miyato et al.,
2018), where n is the number of neural network layers in the discriminator. Then, we train these
Lipschitz regularized GANs with a variety of GAN loss functions (Table 1) consisting of three most
widely-used ones: NS-GAN, LS-GAN, WGAN, and two arbitrary ones: cos(·) and exp(·). Follow-
ing the best practice, we employ the Fréchet Inception Distance (FID) metric (Heusel et al., 2017)
to quantitatively measure the performance of these GANs. The smaller the FID score, the better the
performance of the GAN. Please see Appendix B for the detailed neural network architectures and
other experimental setups.

Table 2 shows the FID scores of different GAN loss functions with different kSN . Qualitative results
are shown in Appendix E. At the first glance, the results seem to be a solid support of Hypothesis
1. For example, when kSN ≤ 1.0, all the loss functions (including the arbitrary ones) can be
used to train GANs stably; the FID scores of all loss functions (except the WGAN) are similar; the
FID scores of all loss functions slightly worsen as kSN further decreases. When kSN ≥ 5.0, the
performance of all the GANs (except the WGAN) worsen and even break (very high FID scores,
e.g. ≥ 100). However, the history tells us that significant scientific progresses are usually inspired
by outliers instead of the observations as expected. In our case, the WGAN is such an outlier as it
works normally when kSN ≥ 5.0. This suggests that the performance of WGAN is insensitive to
the choice of Lipschitz constants, which contradicts Hypothesis 1. So does the choice of Lipschitz
constant really matter?

3 DO LIPSCHITZ CONSTANTS MATTER?

In a nutshell, the choice of Lipschitz constants does not matter when i) scale insensitive activa-
tion functions (e.g. ReLU) and ii) optimizers using normalized gradients (e.g. RMSProp) are used.
Note that both techniques are dominating ones in practical applications due to their effectiveness in
stabilizing neural network training (Glorot et al., 2011; Tieleman & Hinton, 2012).
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Table 2: FID scores vs. kSN on different datasets. kSN is typically fixed as 1 to enforce 1-Lipschitz
regularization (Miyato et al., 2018). The WGAN is an outlier that works normally even when kSN ≥
5.0. For the line plots, x-axis shows kSN (in log scale) and y-axis shows the FID scores. From left
to right, the seven points on each line have kSN = 0.2, 0.25, 0.5, 1.0, 5.0, 10.0, 50.0 respectively.
Lower FID scores are better. SN: spectral normalization (Miyato et al., 2018).

Dataset GANs FID Scores
kSN= 0.2 0.25 0.5 1.0 5.0 10.0 50.0

MNIST

NS-GAN-SN 5.41 3.99 4.20 3.90 144.28 156.60 155.41
LS-GAN-SN 5.14 3.96 3.90 4.42 36.26 59.04 309.35
WGAN-SN 6.35 6.06 4.44 4.70 3.58 3.50 3.71
COS-GAN-SN 5.41 4.83 4.05 3.86 291.44 426.62 287.23
EXP-GAN-SN 4.38 4.93 4.25 3.69 286.96 286.96 286.96

CIFAR10

NS-GAN-SN 29.23 24.37 23.29 15.81 41.04 49.67 48.03
LS-GAN-SN 28.04 26.85 23.14 17.30 33.53 39.90 349.35
WGAN-SN 29.20 25.07 26.61 21.75 21.63 21.45 23.36
COS-GAN-SN 29.45 25.31 20.73 15.88 309.96 327.20 370.13
EXP-GAN-SN 30.89 24.74 20.90 16.66 401.24 401.24 401.24

CelebA

NS-GAN-SN 18.59 12.71 8.04 6.11 18.95 17.04 184.06
LS-GAN-SN 20.34 12.14 8.85 5.69 12.40 13.14 399.39
WGAN-SN 23.26 17.93 8.48 9.41 9.03 7.37 7.82
COS-GAN-SN 20.59 13.93 8.88 5.20 356.70 265.53 256.44
EXP-GAN-SN 18.23 13.65 9.18 5.88 328.94 328.94 328.94
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(c) CelebA

Let us consider a simple discriminator D(x) = L(f(x)), where x is the input, f is the discriminator
neural network with scalar output, L is the loss function. Following Miyato et al. (2018), we omit
the bias term for simplicity and describe a spectral normalized f(x) as:

f(x) = W̄N+1
SN (aN (W̄N

SN (aN−1(W̄N−1
SN (...a1(W̄ 1

SNx)...))))), (2)

where, an is the activation function, W̄n
SN is the normalized weight matrix of the n-th layer (Eq.1).

Forward Pass. As Glorot et al. (2011) and Hoffer et al. (2018) suggested, scale-invariant activation
functions allow the scaling parameter like kSN to move freely within the neural network without
influencing its function. For example, let W1-Lip = W/σ(W ), Eq.2 can be rewritten as

f(x) = K
[
WN+1

1-Lip(aN (WN
1-Lip(aN−1(WN−1

1-Lip(...a1(W 1
1-Lipx)...)))))

]
, (3)

where K = (kSN )N+1 is the Lipschitz constant. Thus, it can be concluded that K only works as a
scaling hyper-parameter and is independent of the overall network function.

Backpropagation. Similar to the case of forward pass, scale-insensitive activation functions allow
kSN to move freely during backpropagation.

∇a(kSN ·W1-Liphin)) = kSN∇a(W1-Liphin) (4)

where hin is the input of a neural network layer. Eq.4 implies that the scaling parameter kSN
will be accumulated when the gradients are backpropagated through neural network layers, which
may produce exploding or vanishing gradients that can heavily influence the training. However, for
optimizers with normalized gradients (e.g. RMSProp), each gradient is divided by an exponentially
decaying average of the past gradients, which largely eliminates the influence of the gradient scale.
For example in RMSProp (Tieleman & Hinton, 2012),

wt+1 = wt − η
kmSN · gt√

E[(kmSN · g)2]t + ε
= wt − η

gt√
E[g2]t + ε/k2mSN

(5)
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where kmSN is a scaling parameter, w is the neural network weight, η is the learning rate, g is the
gradient, E[g2] is the exponentially decaying average that E[g2]t = γE[g2]t1 + (1− γ)g2t , ε > 0 is
a small constant for numerical stability that can usually be ignored when ε� E[(kmSN · g)2]t.

Summarizing the above analysis, the major influence of kSN is only a simple scaling effect applied
to the neural network output during the forward pass, which has nothing to do with the overall neural
network function. Thus, the choice of Lipschitz constant does not matter.

The above conclusion clarifies the “strange” robustness of WGAN against large kSN (kSN ≥ 5)
in Table 2: the WGAN loss functions are linear and have constant gradients which are independent
of the scale of neural network outputs that is controlled by kSN . Thus, the choice of kSN does
not influence the performance of WGAN. Similarly, it can be easily inferred that the big impact of
Lipschitz constants on the performance of other GANs (Table 2) originates from its interaction with
the loss functions.

Remark. The above analysis also clarifies the observation that when kSN ≤ 1, the FID scores of all
loss functions slightly worsen as kSN decreases, which is actually a numerical problem. Eq.5 shows
that the effect of ε is heavily dependent on the scale of gradients. When kSN is small (e.g. kSN =
0.2), the gradients are dramatically scaled down by a factor of kmSN . As a result, ε cannot be ignored
and reduces the magnitude of the gradients, which accounts for the degenerated performance.

4 RESTRICTIONS OF GAN LOSS FUNCTIONS

In this section, we will show that: compared to the choice of Lipschitz constants, the dominating
factor of Lipschitz regularization is its side-effect of restricting the domain and interval of attainable
gradient values of the loss functions. To support our claim, we first theoretically analyze why a K-
Lipschitz regularized discriminator restricts the domain and interval of attainable gradient values of
the loss function to intervals bounded by K. Then, an empirical study is performed accordingly to
verify our theoretical analysis. Finally, we show that such restrictions prevent the backpropagation
of vanishing or exploding gradients as well as avoid the bias of loss functions over input samples,
which stabilizes GAN training.

4.1 THEORETICAL DERIVATION

Let us consider a simple discriminator D(x) = L(f(x)), where x is the input, f is a neural network
with scalar output, L is the loss function. During training, the loss function L works by backpropa-
gating the gradient∇L = ∂L(f(x))/∂f(x) to update the neural network weights:

∂D(x)

∂Wn
=

∂L(f(x))

∂f(x)

∂f(x)

∂Wn
(6)

where Wn is the weight matrix of the n-th layer. Let X and Ω be the domain and the range of f
respectively (i.e. f : X → Ω), it can be easily derived that the attainable values of∇L is determined
by Ω (i.e. ∇L : Ω → Ψ). Without loss of generality, we assume that x ∈ X = [−1, 1]m×n×3 are
normalized images and derive the bound of the size of Ω as follows:
Theorem 1. If the discriminator neural network f satisfies the k-Lipschitz continuity condition, we
have f : X → Ω ⊂ R satisfying |min(Ω)−max(Ω)| ≤ k

√
12mn.

Please see Appendix A for the proof of Theorem 1. Theorem 1 shows that the size of Ω is bounded
by k. However, k can be unbounded when Lipschitz regularization is not enforced during training,
which results in an unbounded Ω and a large interval of attainable gradient values. On the contrary,
when K-Lipschitz regularization is applied (i.e. k ≤ K), the loss function L is restricted as follows:
Corollary 1.1 (Restriction of Loss Function). Assume that f is a Lipschitz regularized neural
network whose Lipschitz constant k ≤ K, the loss function L is C2-continuous with M as the
maximum absolute value of its second derivatives in its domain. Let Ψ be the interval of attainable
gradient values that ∇L : Ω→ Ψ, we have∣∣min(Ω)−max(Ω)

∣∣ ≤ K√12mn (7)∣∣min(Ψ)−max(Ψ)
∣∣ ≤M ·K√12mn (8)
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(a) The domain Ω shrinks with decreasing kSN for different loss functions. The x-axis shows the number of
training iterations while the y-axis shows the domain Ω. Note that the y-axis is in log scale.

kSN
NS-GAN-SN, L(·) = − log(sigmoid(·)) LS-GAN-SN, L(·) = (·)2

Ω Ψ Ω Ψ
5.0 [−8.130, 126.501] [−1.000, −0.000] [−2.460, 12.020] [−4.921, 24.041]
1.0 [−0.683, 2.091] [−0.664, −0.110] [−0.414, 1.881] [−0.828, 3.762]
0.5 [−0.178, 0.128] [−0.545, −0.468] [0.312, 0.621] [0.623, 1.242]
0.25 [−0.006, 0.006] [−0.502, −0.498] [0.478, 0.522] [0.956, 1.045]

(b) The domain Ω and the interval of attained gradient values Ψ against kSN (∇L : Ω→ Ψ).

Figure 1: Empirical results regarding the restrictions of different GAN loss functions (Table 1)
on the CelebA dataset. NS-GAN: Non-Saturating GAN; LS-GAN: Least-Square GAN; WGAN:
Wasserstein GAN. kSN is a parameter of spectral normalization (Eq.1).

Corollary 1.1 shows that under a mild condition (C2-continuous), applying K-Lipschitz regular-
ization restricts the domain Ω and thereby the interval of attainable gradient values Ψ of the loss
function L to intervals bounded by K. When K is small, e.g., K = 1 (Gulrajani et al., 2017; Fedus
et al., 2018; Mao et al., 2017b; Miyato et al., 2018), the interval of attainable gradient values of the
loss function is considerably reduced, which prevents the backpropagation of vanishing or exploding
gradients and thereby stabilizes the training.

−5 0 5
0

2

4
a = −4.0

b = −3.0

c = −0.4

d = 0.2

[a, b] shifts to [c, d].

Remark on the Changes of Ωi During Training. So far we an-
alyzed the restriction of the loss function by a static discriminator.
However, the discriminator neural network f is dynamically updated
during training and thus its range Ω∪ = ∪iΩi, where Ωi is the dis-
criminator range at each training step i. Therefore, we need to ana-
lyze two questions:

1. How does the size of Ωi change during training?

2. Does Ωi shift during training (figure on the right)?

For question 1, the size of Ωi is always bounded by the Lipschitz constantK throughout the training.
While for question 2, the answer depends on the discriminator loss function. In a nutshell, common
loss functions (e.g. NS-GAN, LS-GAN) are strictly convex and have a unique minimum respectively,
which forces Ωi to be positioned around it and prevents Ωi from shifting. Thus, Ω∪ is still roughly
bounded by K. However, Ωi may be allowed to shift when the discriminator loss functions is not
strictly convex (e.g. WGAN). While for WGAN, its attainable gradient value Ψ is a constant that is
independent of Ωi. Thus, regarding to Ψ, we can view it as a degenerate loss function that still fits
in our discussion.

4.2 EMPIRICAL VERIFICATION

Figure 1 shows the corresponding empirical results on the restriction of different loss functions.
Note that the K-Lipschitz regularization is enforce by applying the spectral normalization (Miyato
et al., 2018) that K ≈ knSN , where n is the number of neural network layers (Eq.1).
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Restriction on Ω. In Figure 1 (a), we plot the domain Ω as intervals for different iterations under
different kSN . It can be observed that the interval Ω shrinks rapidly as kSN decreases, which verifies
that the domain Ω is restricted by the Lipschitz regularization (Eq.7).

Changes of Ωi During Training Figure 1 (a) also shows that the domains Ωi of the NS-GAN
and the LS-GAN are rather fixed during training while those of the WGAN shift, which verifies
our remark on the changes of Ωi during training. More specifically, it can be observed that Ωi
of NS-GAN (Table 1) are relatively fixed around zero, which is the unique minimum of its loss
function. A similar phenomenon can be observed for LS-GAN (Table 1) around 0.5. Interestingly,
we empirically observed that the Ωi of WGAN also get relatively fixed at late stages of the training.

Restriction on Ψ. In Figure 1 (b), we show the corresponding intervals of attainable gradient values
Ψ when the domain Ω (Ω = ∪iΩi) is restricted as in Figure 1. In particular, we compute the bounds
of Ψ as follows,

min(Ψ) = ∇L
(

min(Ω)
)
,max(Ψ) = ∇L

(
max(Ω)

)
. (9)

because ∇L is monotonically increasing in Ω for common GAN loss functions that are convex
(e.g., NS-GAN, LS-GAN, WGAN). Note that the Ψ of WGAN is not included as it is a constant
whose size is always zero. Similar to the domain Ω, Ψ also shrinks with the increasing strength of
Lipschitz regularization, which avoids the saturating and exploding parts of the loss function. For
example when kSN = 5.0, the gradient of the NS-GAN loss function saturates to a value around 0
while that of the LS-GAN loss function explodes to 24.041. However, such problems do not happen
when kSN ≤ 1.0. Note that we only compute Ψ on one of the two symmetric loss terms used in the
discriminator loss function (Table 1). The interval of attained gradient values of the other loss term
follows similar patterns.

4.3 HOW DOES THE RESTRICTION OF LOSS FUNCTIONS HELP TRAINING?

At this point, we know that instead of influencing the overall neural network function, the choice
of Lipschitz constant K only works by restricting the domain and thereby the interval of attainable
gradient values of the loss function, which is implemented by scaling the neural network outputs by
K (Eq.3). Thus, for a K-Lipschitz regularized neural network f , we have

f : X → Ω ⇐⇒ f : X → K · Ω1-Lip (10)

where Ω1-Lip is the range of a corresponding 1-Lipschitz continuous neural network. This suggests
that we can restrict the domain Ω of loss function L by a positive scaling hyper-parameter α directly,

Lα(Ω) = L(α · Ω)/α. (11)

Compared to tuning kSN , the proposed domain scaling is more numerically stable as it does not
influence the scale of the backpropagated gradients and thus does not suffer from the numerical
problem caused by ε (discussed in section 3, Remark). This also motivates us to include α in the
denominator of Eq.11, which helps to preserve the gradient scale of the loss function. Please see
Appendix D for the extensive experiments on domain scaling.

The equivalency between tuning Lipschitz constants and domain scaling (Eq.11) implies that the
performance improvements of various Lipschitz regularized GANs (Table 2) originates from the
restriction of the loss function. But what kinds of restrictions are beneficial to the GAN training?
Qualitatively, we hypothesize that:

1. The interval of attainable gradients values should be small. This prevents the backpropa-
gation of exploding or vanishing gradients and guarantees that there is no significant bias
over input samples from the same category (i.e. real or synthesized).

2. For better convergence, the restricted loss function should be strictly convex and has a
unique minimum locally in its restricted domain.

For the first point, we omit the discussion of the well-studied exploding or vanishing gradients prob-
lem and focus on the bias of loss functions that may cause mode collapse (Figure 2). As we know,
neural networks are naturally biased over inputs: they may “prefer” some input samples over the oth-
ers by thinking they are “more real” and outputting higher/lower values, even though all the inputs
are sample from unbiased real data. Biased (scale-sensitive) loss functions like NS-GAN backprop-
agate different gradients according to the biased network outputs, which further enhances the bias
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(a) α = 1e−9, FID = 3.61 (b) α = 1e−3, FID = 154.14 (c) α = 1e−1, FID = 155.54

Figure 2: Samples of randomly generated images with NS-GAN against α (kSN = 50.0, MNIST).

and may cause mode collapse (Figure 2). On the contrary, using unbiased (e.g. WGAN) or weakly
biased loss functions (e.g. restricted loss functions) can sidestep the problem by backpropagating
same or similar gradients for input samples within the same category (i.e. real or synthesized).
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The second point makes sense because strictly convex loss func-
tions with unique minima usually have better convergence. We
observe that any loss function degenerates as its domain Ω
shrinks to a single value. According to Taylor’s expansion, let
ω, ω + ∆ω ∈ Ω, we have:

L(ω + ∆ω) = L(ω) +
L′(ω)

1!
∆ω +

L′′(ω)

2!
(∆ω)2 + · · · . (12)

As |max(Ω)−min(Ω)| shrinks to zero, we have L(ω + ∆ω) ≈
L(ω)+L′(ω)∆ω showing that we can approximate any loss func-
tion by a linear function with constant gradient as its domain Ω
shrinks to a single value (figure on the right). Let ω ∈ Ω, we im-
plement the degeneration of a loss function by scaling its domain
Ω with an extremely small constant α:

lim
α→0

∂Lα(ω)

∂ω
=

1

α
· ∂L(α · ω)

∂ω
=
∂L(α · ω)

∂(α · ω)
= ∇L(0). (13)

We use α = 1e−25 in our experiments. Smaller values are not used due to numerical errors (NaN ).

GANs FID Scores
MNIST CIFAR10 CELEBA

WGAN 3.71 23.36 7.82
NS-GAN 3.74 21.92 8.10
LS-GAN# 3.81 21.47 8.51
COS-GAN 3.96 23.65 8.30
EXP-GAN 3.86 21.91 8.22

More specifically, we scale the domain by α =
1e−25 and show the FID scores of WGAN and
those of different loss functions in the table on
the right. To verify that α is an alternative to
kSN and can compensate its effect, we use a large
kSN = 50. The LS-GAN# (Mao et al., 2017b) is
the zero-centered version of LS-GAN, whose ratio-
nale is discussed in Appendix D. It can be observed
that all loss functions have similar performance as WGAN. However, due to the loss of strict con-
vexity, their performance is slightly worsen than the best ones in Table 2 and in Appendix D.

5 CONCLUSION

In this paper, we studied the influence of Lipschitz regularization on the GAN training. First, we
point out a counter-intuitive fact that under typical GAN setups, the choice of Lipschitz constants
is independent of the overall neural network function but just works as a scaling hyper-parameter
of the neural network output. Second, we demonstrate that instead of keeping the neural network
gradients small, the dominating factor of Lipschitz regularization is its restriction on the domain and
interval of attainable gradient values of the loss function. Such restrictions stabilize GAN training
by preventing the backpropagation of vanishing or exploding gradients and avoiding the bias of the
loss function over input samples, which is a new step in understanding the exact reason for Lipschitz
regularization’s effectiveness.
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A PROOF OF THEOREM 1

Theorem 1. If the discriminator neural network f satisfies the k-Lipschitz continuity condition, we
have f : X → Ω ⊂ R satisfying |min(Ω)−max(Ω)| ≤ k

√
12mn.

Proof. Given a k-Lipschitz continuous neural newtork f , for all x1, x2 ∈ X , we have:

|f(x1)− f(x2)| ≤ k‖x1 − x2‖. (14)

Let xb, xw ∈ X be the pure black and pure white images that maximize the Euclidean distance:

‖xb − xw‖ =
√

(−1− 1)2 ·m · n · 3 =
√

12mn. (15)

Thus, we have:

|f(x1)− f(x2)| ≤ k‖x1 − x2‖
≤ k‖xb − xw‖ = k

√
12mn.

(16)

Thus, the range of f is restricted to Ω, which satisfies:

|min(Ω)−max(Ω)| ≤ k
√

12mn (17)
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B DETAILED EXPERIMENTAL SETUPS

In our experiments, we use two variants of the standard CNN architecture (Radford et al., 2015;
Arjovsky et al., 2017; Miyato et al., 2018) for the GANs to learn the distributions of the MNIST,
CIFAR10 datasets at 32× 32 resolution and the CelebA dataset (Liu et al., 2015) at 64× 64 resolu-
tion. We use a batch size of 64 to train the GANs. We use an RMSProp optimizer with learning rate
0.00005. To make a fair comparison, we fix the number of discriminator updates in each iteration
ndis = 1 for all the GANs tested, i.e. we do not use multiple discriminator updates like (Arjovsky &
Bottou, 2017; Arjovsky et al., 2017). Unless specified, we stop the training after 105 iterations. De-
tails of the architectures are shown as follows. BN batch normalization; SN: spectral normalization;
c = 3 for CIFAR10 dataset and c = 1 for MNIST dataset in input x ∈ [−1, 1]64×64×c.

z ∈ R100 ∼ N (0, 1)
Reshape→ 1× 1× 100

4× 4, stride=1, deconv. BN 512 ReLU
4× 4, stride=2, deconv. BN 256 ReLU
4× 4, stride=2, deconv. BN 128 ReLU
4× 4, stride=2, deconv. BN 64 ReLU

4× 4, stride=2, deconv. 3 Tanh

Generator

RGB image x ∈ [−1, 1]32×32×3

4× 4, stride=2, conv 64 SN lReLU(0.2)
4× 4, stride=2, conv 128 SN lReLU(0.2)
4× 4, stride=2, conv 256 SN lReLU(0.2)
4× 4, stride=2, conv 512 SN lReLU(0.2)

4× 4, stride=1, conv 1

Discriminator

(a) Network architectures (64× 64 resolution).

z ∈ R100 ∼ N (0, 1)
Reshape→ 1× 1× 100

4× 4, stride=1, deconv. BN 256 ReLU
4× 4, stride=2, deconv. BN 128 ReLU
4× 4, stride=2, deconv. BN 64 ReLU

4× 4, stride=2, deconv. 3 Tanh

Generator

Image x ∈ [−1, 1]64×64×c

4× 4, stride=2, conv 64 SN lReLU(0.2)
4× 4, stride=2, conv 128 SN lReLU(0.2)
4× 4, stride=2, conv 256 SN lReLU(0.2)

4× 4, stride=1, conv 1

Discriminator

(b) Network architectures (32× 32 resolution).

C RESTRICTIONS OF GAN LOSS FUNCTIONS (GRADIENT PENALTY)

Before spectral normalization, the best-performing Lipschitz regularizer is the gradient penalty (Gul-
rajani et al., 2017):

L = LGAN + λ E
x̂∈Px̂

[(‖ 5x̂ D(x̂)‖ − kGP )2], (18)

where LGAN is the GAN loss function without gradient penalty, λ is the weight of the gradient
penalty term, Px̂ is the distribution of linearly interpolated samples between the target distribution
and the model distribution, kGP is the target gradient norm that controls the Lipschitz constant of
the discriminator K. In general, the smaller kGP , the smaller K. However, it is challenging to find
a quantitative approximation between kGP and K because the gradient penalty term λEx̂∈Px̂

[(‖5x̂
D(x̂)‖ − kGP )2] has no upper bound during training. Such a challenge makes gradient penalty less
impactful in restricting the loss function.

As Figure 3 shows, we plot the domain Ω as intervals for different iterations under different kGP
and kSN for the gradient penalty and the spectral normalization regularizers respectively. Similar
to Gulrajani et al. (2017) and Fedus et al. (2018), we use λ = 10 for the gradient penalty. It can be
observed that for both regularizers, the interval Ω shrinks as kGP and kSN decreases, which shows
that the domain of the loss function is also restricted when gradient penalty is applied. However,
kSN is much more impactful than kGP in restricting Ω, which is another reason for our choice of
using spectral normalization to alter the strength of the Lipschitz regularization in this paper. The
details of the architectures are shown below.
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Figure 3: Relationship between domain Ω and kGP , kSN for different loss functions on CelebA
dataset, where kGP , kSN are the parameters controlling the strength of the Lipschitz regularizers.
The domain Ω shrinks with decreasing kGP or kSN . Each column shares the same loss function
while each row shares the same Lipschitz regularizer. NS-GAN: Non-Saturating GAN (Goodfel-
low et al., 2014); LS-GAN: Least-Square GAN (Mao et al., 2017a); WGAN: Wasserstein GAN
(Arjovsky et al., 2017); GP: gradient penalty (Gulrajani et al., 2017); SN: spectral normalization
(Miyato et al., 2018). Note that the y-axis is in log scale.

z ∈ R100 ∼ N (0, 1)
Reshape→ 1× 1× 100

4× 4, stride=1, deconv. BN 512 ReLU
4× 4, stride=2, deconv. BN 256 ReLU
4× 4, stride=2, deconv. BN 128 ReLU
4× 4, stride=2, deconv. BN 64 ReLU

4× 4, stride=2, deconv. 3 Tanh

Generator

RGB image x ∈ [−1, 1]64×64×3

4× 4, stride=2, conv 64 BN lReLU(0.2)
4× 4, stride=2, conv 128 BN lReLU(0.2)
4× 4, stride=2, conv 256 BN lReLU(0.2)
4× 4, stride=2, conv 512 BN lReLU(0.2)

4× 4, stride=1, conv 1

Discriminator

(a) Network architectures with gradient penalty regularizer (64× 64 resolution).

D EMPIRICAL RESULTS ON DOMAIN SCALING

Table 5 shows the FID scores against α on the MNIST, CIFAR10 and CelebA datasets, where α is
the hyper-parameter for domain scaling,

Lα(Ω) = L(α · Ω)/α. (19)

Table 5 (a) shows that the FID scores of different loss functions generally improve with decreasing
α, which is similar to those of kSN . To further illustrate the similarity between α and kSN , we show
that a small α (e.g. α ≤ 10−9) can compensate for the influence of an extremely large Lipschtiz
constant (K ≈ knSN = 504 = 6.25 × 106) and thereby stabilizes GAN training. Also, the FID
scores when α ≤ 10−11 are slightly worse than those when α ≤ 10−9. As discussed in the main
paper, the reason for this phenomenon is that restricting the domain of the loss function converges
towards the performance of WGAN whose loss function does not have a unique minimum.

Table 5 (b) shows that the FID scores of different loss functions generally worsen with less restricted
domains. Note that when α ≥ 105, the common practice of 1-Lipschitz regularization fails to
stabilize the GAN training, which also implies that Lipschitz regularization only works as a scaling
hyper-parameter of the neural network output.
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Remark on LS-GAN and LS-GAN#. Note that the LS-GAN-SN has some abnormal behavior
(e.g. α = 1e−11 in Table 5 (a) and α = 1e1 in Table 5 (b)) due to the conflict between its 0.5-
centered domain and our zero-centered domain scaling method (Eq.11). This can be easily fixed by
using the zero-centered LS-GAN#-SN (Mao et al., 2017b).

Table 5: FID scores vs. α. For the line plots, the x-axis shows α (in log scale) and the y-axis shows
the FID scores. Lower FID scores are better.

Dataset GANs FID Scores Line Plot
α = 1e−11 1e−9 1e−7 1e−5 1e−3 1e−1

MNIST

NS-GAN-SN 3.67 3.61 3.81 33.48 154.14 155.54

10−110−310−510−710−910−11

0

100

200

300

400
NS-GAN-SN

LS-GAN-SN

LS-GAN#-SN

EXP-GAN-SN

COS-GAN-SN

LS-GAN-SN 281.82 6.48 3.74 24.93 29.31 285.46
LS-GAN#-SN 4.25 4.15 3.99 27.62 55.64 90.00
COS-GAN-SN 3.74 3.93 3.66 445.15 306.09 263.85
EXP-GAN-SN 4.14 4.01 3.54 134.76 286.96 286.96

CIFAR10

NS-GAN-SN 19.58 22.46 18.73 24.57 49.56 43.42

10−110−310−510−710−910−11
0

100

200

300

400
NS-GAN-SN

LS-GAN-SN

LS-GAN#-SN

EXP-GAN-SN

COS-GAN-SN

LS-GAN-SN 400.91 127.38 18.68 34.78 33.17 282.11
LS-GAN#-SN 20.16 19.96 18.13 31.03 35.06 254.88
COS-GAN-SN 22.16 22.69 20.19 356.10 369.11 445.37
EXP-GAN-SN 21.93 21.70 18.50 236.77 401.24 401.24

CelebA

NS-GAN-SN 9.08 7.05 7.84 18.51 18.41 242.64

10−110−310−510−710−910−11
0

100

200

300

400
NS-GAN-SN

LS-GAN-SN

LS-GAN#-SN

EXP-GAN-SN

COS-GAN-SN

LS-GAN-SN 135.17 6.57 10.67 13.39 17.42 311.93
LS-GAN#-SN 6.66 5.68 8.72 11.13 14.90 383.61
COS-GAN-SN 8.00 6.31 300.55 280.84 373.31 318.53
EXP-GAN-SN 8.85 6.09 264.49 375.32 375.32 375.32

(a) kSN = 50.0

Dataset GANs FID Scores Line Plot
α = 1e1 1e3 1e5 1e7 1e9 1e11

MNIST

NS-GAN-SN 6.55 148.97 134.44 133.82 130.21 131.87

101 103 105 107 109 1011
0

100

200

300

400

NS-GAN-SN

LS-GAN-SN

LS-GAN#-SN

EXP-GAN-SN

COS-GAN-SN

LS-GAN-SN 23.37 26.96 260.05 255.73 256.96 265.76
LS-GAN#-SN 13.43 26.51 271.85 212.74 274.63 269.96
COS-GAN-SN 11.79 377.62 375.72 363.45 401.12 376.39
EXP-GAN-SN 11.02 286.96 286.96 286.96 286.96 286.96

CIFAR10

NS-GAN-SN 17.63 47.31 46.85 45.44 45.67 39.90

101 103 105 107 109 1011
0

100

200

300

400

NS-GAN-SN

LS-GAN-SN

LS-GAN#-SN

EXP-GAN-SN

COS-GAN-SN

LS-GAN-SN 25.55 34.44 373.07 171.18 309.55 312.96
LS-GAN#-SN 20.45 36.18 429.21 269.63 291.55 297.71
COS-GAN-SN 18.59 386.24 259.83 268.89 293.29 318.65
EXP-GAN-SN 21.56 401.24 401.24 401.24 401.24 401.24

CelebA

NS-GAN-SN 5.88 16.14 17.75 17.67 16.87 18.81

101 103 105 107 109 1011
0

100

200

300

400

NS-GAN-SN

LS-GAN-SN

LS-GAN#-SN

EXP-GAN-SN

COS-GAN-SN

LS-GAN-SN 8.41 12.09 201.22 312.83 299.30 321.84
LS-GAN#-SN 7.21 13.13 221.41 248.48 311.21 315.94
COS-GAN-SN 6.62 450.57 233.42 390.40 306.17 335.87
EXP-GAN-SN 6.91 375.32 375.32 375.32 375.32 375.32

(b) kSN = 1.0

E ADDITIONAL QUALITATIVE RESULTS

In this section, we show the qualitative results (sample images) corresponding to the quantitative
experiments in the main paper. The FID scores and line plots are shown together with the samples.

E.1 SAMPLES OF FID SCORES vs. kSN EXPERIMENT

This subsection corresponds to the FID scores vs. kSN experiment (Table 2 in the main paper).

With varying kSN on the MNIST dataset,
• Figure 4 shows sample images of the NS-GAN-SN;
• Figure 5 shows sample images of the LS-GAN-SN;
• Figure 6 shows sample images of the WGAN-SN;
• Figure 7 shows sample images of the COS-GAN-SN;
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• Figure 8 shows sample images of the EXP-GAN-SN.
With varying kSN on the CIFAR10 dataset,

• Figure 9 shows sample images of the NS-GAN-SN;
• Figure 10 shows sample images of the LS-GAN-SN;
• Figure 11 shows sample images of the WGAN-SN;
• Figure 12 shows sample images of the COS-GAN-SN;
• Figure 13 shows sample images of the EXP-GAN-SN.

With varying kSN on the CelebA dataset,
• Figure 14 shows sample images of the NS-GAN-SN;
• Figure 15 shows sample images of the LS-GAN-SN;
• Figure 16 shows sample images of the WGAN-SN;
• Figure 17 shows sample images of the COS-GAN-SN;
• Figure 18 shows sample images of the EXP-GAN-SN.

E.2 SAMPLES OF THE FID SCORES vs. α EXPERIMENT

This subsection corresponds to the FID scores vs. α experiment (Table 5). The results show that
instead of the restriction of the neural network gradients, the restriction of the loss function is the
dominating factor of Lipschitz regularization.

Results for Table 5 (a) With varying α, kSN = 50.0 and on MNIST dataset,
• Figure 19 shows sample images of the NS-GAN-SN;
• Figure 20 shows sample images of the LS-GAN-SN;
• Figure 21 shows sample images of the LS-GAN#-SN;
• Figure 22 shows sample images of the EXP-GAN-SN;
• Figure 23 shows sample images of the COS-GAN-SN.

With varying α, kSN = 50.0 and on CIFAR10 dataset,
• Figure 24 shows sample images of the NS-GAN-SN;
• Figure 25 shows sample images of the LS-GAN-SN;
• Figure 26 shows sample images of the LS-GAN#-SN;
• Figure 27 shows sample images of the EXP-GAN-SN;
• Figure 28 shows sample images of the COS-GAN-SN.

With varying α, kSN = 50.0 and on CelebA dataset,
• Figure 29 shows sample images of the NS-GAN-SN;
• Figure 30 shows sample images of the LS-GAN-SN;
• Figure 31 shows sample images of the LS-GAN#-SN;
• Figure 32 shows sample images of the EXP-GAN-SN;
• Figure 33 shows sample images of the COS-GAN-SN.

Results for Table 5 (b) With varying α, kSN = 1.0 and on MNIST dataset,
• Figure 34 shows sample images of the NS-GAN-SN;
• Figure 35 shows sample images of the LS-GAN-SN;
• Figure 36 shows sample images of the LS-GAN#-SN;
• Figure 37 shows sample images of the EXP-GAN-SN;
• Figure 38 shows sample images of the COS-GAN-SN.

With varying α, kSN = 1.0 and on CIFAR10 dataset,
• Figure 39 shows sample images of the NS-GAN-SN;
• Figure 40 shows sample images of the LS-GAN-SN;
• Figure 41 shows sample images of the LS-GAN#-SN;
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• Figure 42 shows sample images of the EXP-GAN-SN;
• Figure 43 shows sample images of the COS-GAN-SN.

With varying α, kSN = 1.0 and on CelebA dataset,
• Figure 44 shows sample images of the NS-GAN-SN;
• Figure 45 shows sample images of the LS-GAN-SN;
• Figure 46 shows sample images of the LS-GAN#-SN;
• Figure 47 shows sample images of the EXP-GAN-SN;
• Figure 48 shows sample images of the COS-GAN-SN.

E.3 SAMPLES OF THE DEGENERATE LOSS FUNCTION

Figure 49 shows the sample images of WGAN-SN and some extremely degenerate loss functions,
which corresponds to the following table in the main paper. It can be observed that all loss functions
have similar performance.

GANs FID Scores
MNIST CIFAR10 CELEBA

WGAN-SN 3.71 23.36 7.82
NS-GAN-SN 3.74 21.92 8.10
LS-GAN#-SN 3.81 21.47 8.51
COS-GAN-SN 3.96 23.65 8.30
EXP-GAN-SN 3.86 21.91 8.22
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FID scores vs. kSN of Different Loss Functions

- MNIST -
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(a) kSN = 50.0, FID = 155.41 (b) kSN = 10.0, FID = 156.60 (c) kSN = 5.0, FID = 144.28

(d) kSN = 1.0, FID = 3.90 (e) kSN = 0.5, FID = 4.20 (f) kSN = 0.25, FID = 3.99

(g) kSN = 0.2, FID = 5.41
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Figure 4: Samples of randomly generated images with NS-GAN-SN of varying kSN (MNIST). For
the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.
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(a) kSN = 50.0, FID = 309.35 (b) kSN = 10.0, FID = 59.04 (c) kSN = 5.0, FID = 36.26

(d) kSN = 1.0, FID = 4.42 (e) kSN = 0.5, FID = 3.90 (f) kSN = 0.25, FID = 3.96

(g) kSN = 0.2, FID = 5.14
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Figure 5: Samples of randomly generated images with LS-GAN-SN of varying kSN (MNIST). For
the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.
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(a) kSN = 50.0, FID = 3.71 (b) kSN = 10.0, FID = 3.50 (c) kSN = 5.0, FID = 3.58

(d) kSN = 1.0, FID = 4.70 (e) kSN = 0.5, FID = 4.44 (f) kSN = 0.25, FID = 6.06

(g) kSN = 0.2, FID = 6.35
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Figure 6: Samples of randomly generated images with WGAN-SN of varying kSN (MNIST). For
the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.
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(a) kSN = 50.0, FID = 287.23 (b) kSN = 10.0, FID = 426.62 (c) kSN = 5.0, FID = 291.44

(d) kSN = 1.0, FID = 3.86 (e) kSN = 0.5, FID = 4.05 (f) kSN = 0.25, FID = 4.83

(g) kSN = 0.2, FID = 5.41

0.
20

0.
25

0.
50

1.
00

5.
00

10
.0

0

50
.0

0

0

100

200

300

400 NS-GAN-SN

LS-GAN-SN

WGAN-SN

COS-GAN-SN

EXP-GAN-SN

Figure 7: Samples of randomly generated images with COS-GAN-SN of varying kSN (MNIST).
For the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.
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(a) kSN = 50.0, FID = 286.96 (b) kSN = 10.0, FID = 286.96 (c) kSN = 5.0, FID = 286.96

(d) kSN = 1.0, FID = 3.69 (e) kSN = 0.5, FID = 4.25 (f) kSN = 0.25, FID = 4.93

(g) kSN = 0.2, FID = 4.38
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Figure 8: Samples of randomly generated images with EXP-GAN-SN of varying kSN (MNIST).
For the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.
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FID scores vs. kSN of Different Loss Functions

- CIFAR10 -
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(a) kSN = 50.0, FID = 48.03 (b) kSN = 10.0, FID = 49.67 (c) kSN = 5.0, FID = 41.04

(d) kSN = 1.0, FID = 15.81 (e) kSN = 0.5, FID = 23.29 (f) kSN = 0.25, FID = 24.37

(g) kSN = 0.2, FID = 29.23
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Figure 9: Samples of randomly generated images with NS-GAN-SN of varying kSN (CIFAR10).
For the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.

23



Under review as a conference paper at ICLR 2020

(a) kSN = 50.0, FID = 349.35 (b) kSN = 10.0, FID = 39.90 (c) kSN = 5.0, FID = 33.53

(d) kSN = 1.0, FID = 17.30 (e) kSN = 0.5, FID = 23.14 (f) kSN = 0.25, FID = 26.85

(g) kSN = 0.2, FID = 28.04
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Figure 10: Samples of randomly generated images with LS-GAN-SN of varying kSN (CIFAR10).
For the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.
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(a) kSN = 50.0, FID = 23.36 (b) kSN = 10.0, FID = 21.45 (c) kSN = 5.0, FID = 21.63

(d) kSN = 1.0, FID = 21.75 (e) kSN = 0.5, FID = 26.61 (f) kSN = 0.25, FID = 25.07

(g) kSN = 0.2, FID = 29.20
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Figure 11: Samples of randomly generated images with WGAN-SN of varying kSN (CIFAR10).
For the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.
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(a) kSN = 50.0, FID = 370.13 (b) kSN = 10.0, FID = 327.20 (c) kSN = 5.0, FID = 309.96

(d) kSN = 1.0, FID = 15.88 (e) kSN = 0.5, FID = 20.73 (f) kSN = 0.25, FID = 25.31

(g) kSN = 0.2, FID = 29.45
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Figure 12: Samples of randomly generated images with COS-GAN-SN of varying kSN (CIFAR10).
For the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.
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(a) kSN = 50.0, FID = 401.24 (b) kSN = 10.0, FID = 401.24 (c) kSN = 5.0, FID = 401.24

(d) kSN = 1.0, FID = 16.66 (e) kSN = 0.5, FID = 20.90 (f) kSN = 0.25, FID = 24.74

(g) kSN = 0.2, FID = 30.89
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Figure 13: Samples of randomly generated images with EXP-GAN-SN of varying kSN (CIFAR10).
For the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.
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FID scores vs. kSN of Different Loss Functions

- CelebA -
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(a) kSN = 50.0, FID = 184.06 (b) kSN = 10.0, FID = 17.04 (c) kSN = 5.0, FID = 18.95

(d) kSN = 1.0, FID = 6.11 (e) kSN = 0.5, FID = 8.04 (f) kSN = 0.25, FID = 12.71

(g) kSN = 0.2, FID = 18.59
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Figure 14: Samples of randomly generated images with NS-GAN-SN of varying kSN (CelebA). For
the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.
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(a) kSN = 50.0, FID = 399.39 (b) kSN = 10.0, FID = 13.14 (c) kSN = 5.0, FID = 12.40

(d) kSN = 1.0, FID = 5.69 (e) kSN = 0.5, FID = 8.85 (f) kSN = 0.25, FID = 12.14

(g) kSN = 0.2, FID = 20.34
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Figure 15: Samples of randomly generated images with LS-GAN-SN of varying kSN (CelebA). For
the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.
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(a) kSN = 50.0, FID = 7.82 (b) kSN = 10.0, FID = 7.37 (c) kSN = 5.0, FID = 9.03

(d) kSN = 1.0, FID = 9.41 (e) kSN = 0.5, FID = 8.48 (f) kSN = 0.25, FID = 17.93

(g) kSN = 0.2, FID = 23.26
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Figure 16: Samples of randomly generated images with WGAN-SN of varying kSN (CelebA). For
the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.
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(a) kSN = 50.0, FID = 256.44 (b) kSN = 10.0, FID = 265.53 (c) kSN = 5.0, FID = 356.70

(d) kSN = 1.0, FID = 5.20 (e) kSN = 0.5, FID = 8.88 (f) kSN = 0.25, FID = 13.93

(g) kSN = 0.2, FID = 20.59
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Figure 17: Samples of randomly generated images with COS-GAN-SN of varying kSN (CelebA).
For the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.
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(a) kSN = 50.0, FID = 328.94 (b) kSN = 10.0, FID = 328.94 (c) kSN = 5.0, FID = 328.94

(d) kSN = 1.0, FID = 5.88 (e) kSN = 0.5, FID = 9.18 (f) kSN = 0.25, FID = 13.65

(g) kSN = 0.2, FID = 18.23
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Figure 18: Samples of randomly generated images with EXP-GAN-SN of varying kSN (CelebA).
For the line plot, x-axis shows kSN (in log scale) and y-axis shows the FID scores.

33



Under review as a conference paper at ICLR 2020

FID scores vs. α (kSN = 50.0) of Different Loss Functions

- MNIST -
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(a) α = 1e−11, FID = 3.67 (b) α = 1e−9, FID = 3.61 (c) α = 1e−7, FID = 3.81

(d) α = 1e−5, FID = 33.48 (e) α = 1e−3, FID = 154.14 (f) α = 1e−1, FID = 155.54
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Figure 19: Samples of randomly generated images with NS-GAN-SN of varying α (kSN = 50.0,
MNIST). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e−11, FID = 281.82 (b) α = 1e−9, FID = 6.48 (c) α = 1e−7, FID = 3.74

(d) α = 1e−5, FID = 24.93 (e) α = 1e−3, FID = 29.31 (f) α = 1e−1, FID = 285.46
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Figure 20: Samples of randomly generated images with LS-GAN-SN of varying α (kSN = 50.0,
MNIST). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e−11, FID = 4.25 (b) α = 1e−9, FID = 4.15 (c) α = 1e−7, FID = 3.99

(d) α = 1e−5, FID = 27.62 (e) α = 1e−3, FID = 55.64 (f) α = 1e−1, FID = 90.00
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Figure 21: Samples of randomly generated images with LS-GAN#-SN of varying α (kSN = 50.0,
MNIST). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e−11, FID = 4.14 (b) α = 1e−9, FID = 4.01 (c) α = 1e−7, FID = 3.54

(d) α = 1e−5, FID = 134.76 (e) α = 1e−3, FID = 286.96 (f) α = 1e−1, FID = 286.96
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Figure 22: Samples of randomly generated images with EXP-GAN-SN of varying α (kSN = 50.0,
MNIST). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.

38



Under review as a conference paper at ICLR 2020

(a) α = 1e−11, FID = 3.74 (b) α = 1e−9, FID = 3.93 (c) α = 1e−7, FID = 3.66

(d) α = 1e−5, FID = 445.15 (e) α = 1e−3, FID = 306.09 (f) α = 1e−1, FID = 263.85
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Figure 23: Samples of randomly generated images with COS-GAN-SN of varying α (kSN = 50.0,
MNIST). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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FID scores vs. α (kSN = 50.0) of Different Loss Functions

- CIFAR10 -
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(a) α = 1e−11, FID = 19.58 (b) α = 1e−9, FID = 22.46 (c) α = 1e−7, FID = 18.73

(d) α = 1e−5, FID = 24.57 (e) α = 1e−3, FID = 49.56 (f) α = 1e−1, FID = 43.42
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Figure 24: Samples of randomly generated images with NS-GAN-SN of varying α (kSN = 50.0,
CIFAR10). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e−11, FID = 400.91 (b) α = 1e−9, FID = 127.38 (c) α = 1e−7, FID = 18.68

(d) α = 1e−5, FID = 34.78 (e) α = 1e−3, FID = 33.17 (f) α = 1e−1, FID = 282.11
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Figure 25: Samples of randomly generated images with LS-GAN-SN of varying α (kSN = 50.0,
CIFAR10). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e−11, FID = 20.16 (b) α = 1e−9, FID = 19.96 (c) α = 1e−7, FID = 18.13

(d) α = 1e−5, FID = 31.03 (e) α = 1e−3, FID = 35.06 (f) α = 1e−1, FID = 254.88
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Figure 26: Samples of randomly generated images with LS-GAN#-SN of varying α (kSN = 50.0,
CIFAR10). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e−11, FID = 21.93 (b) α = 1e−9, FID = 21.70 (c) α = 1e−7, FID = 18.50

(d) α = 1e−5, FID = 236.77 (e) α = 1e−3, FID = 401.24 (f) α = 1e−1, FID = 401.24
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Figure 27: Samples of randomly generated images with EXP-GAN-SN of varying α (kSN = 50.0,
CIFAR10). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e−11, FID = 22.16 (b) α = 1e−9, FID = 22.69 (c) α = 1e−7, FID = 20.19

(d) α = 1e−5, FID = 356.10 (e) α = 1e−3, FID = 369.11 (f) α = 1e−1, FID = 445.37
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Figure 28: Samples of randomly generated images with COS-GAN-SN of varying α (kSN = 50.0,
CIFAR10). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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FID scores vs. α (kSN = 50.0) of Different Loss Functions

- CelebA -
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(a) α = 1e−11, FID = 9.08 (b) α = 1e−9, FID = 7.05 (c) α = 1e−7, FID = 7.84

(d) α = 1e−5, FID = 18.51 (e) α = 1e−3, FID = 18.41 (f) α = 1e−1, FID = 242.64
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Figure 29: Samples of randomly generated images with NS-GAN-SN of varying α (kSN = 50.0,
CelebA). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e−11, FID = 135.17 (b) α = 1e−9, FID = 6.57 (c) α = 1e−7, FID = 10.67

(d) α = 1e−5, FID = 13.39 (e) α = 1e−3, FID = 17.42 (f) α = 1e−1, FID = 311.93
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Figure 30: Samples of randomly generated images with LS-GAN-SN of varying α (kSN = 50.0,
CelebA). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e−11, FID = 6.66 (b) α = 1e−9, FID = 5.68 (c) α = 1e−7, FID = 8.72

(d) α = 1e−5, FID = 11.13 (e) α = 1e−3, FID = 14.90 (f) α = 1e−1, FID = 383.61
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Figure 31: Samples of randomly generated images with LS-GAN#-SN of varying α (kSN = 50.0,
CelebA). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e−11, FID = 8.85 (b) α = 1e−9, FID = 6.09 (c) α = 1e−7, FID = 264.49

(d) α = 1e−5, FID = 375.32 (e) α = 1e−3, FID = 375.32 (f) α = 1e−1, FID = 375.32
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Figure 32: Samples of randomly generated images with EXP-GAN-SN of varying α (kSN = 50.0,
CelebA). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e−11, FID = 8.00 (b) α = 1e−9, FID = 6.31 (c) α = 1e−7, FID = 300.55

(d) α = 1e−5, FID = 280.84 (e) α = 1e−3, FID = 373.31 (f) α = 1e−1, FID = 318.53
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Figure 33: Samples of randomly generated images with COS-GAN-SN of varying α (kSN = 50.0,
CelebA). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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FID scores vs. α (kSN = 1.0) of Different Loss Functions

- MNIST -
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(a) α = 1e1, FID = 6.55 (b) α = 1e3, FID = 148.97 (c) α = 1e5, FID = 134.44

(d) α = 1e7, FID = 133.82 (e) α = 1e9, FID = 130.21 (f) α = 1e11, FID = 131.87
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Figure 34: Samples of randomly generated images with NS-GAN-SN of varying α (kSN = 1.0,
MNIST). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e1, FID = 23.37 (b) α = 1e3, FID = 26.96 (c) α = 1e5, FID = 260.05

(d) α = 1e7, FID = 255.73 (e) α = 1e9, FID = 256.96 (f) α = 1e11, FID = 265.76
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Figure 35: Samples of randomly generated images with LS-GAN-SN of varying α (kSN = 1.0,
MNIST). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e1, FID = 13.43 (b) α = 1e3, FID = 26.51 (c) α = 1e5, FID = 271.85

(d) α = 1e7, FID = 212.74 (e) α = 1e9, FID = 274.63 (f) α = 1e11, FID = 269.96
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Figure 36: Samples of randomly generated images with LS-GAN#-SN of varying α (kSN = 1.0,
MNIST). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e1, FID = 11.02 (b) α = 1e3, FID = 286.96 (c) α = 1e5, FID = 286.96

(d) α = 1e7, FID = 286.96 (e) α = 1e9, FID = 286.96 (f) α = 1e11, FID = 286.96
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Figure 37: Samples of randomly generated images with EXP-GAN-SN of varying α (kSN = 1.0,
MNIST). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e1, FID = 11.79 (b) α = 1e3, FID = 377.62 (c) α = 1e5, FID = 375.72

(d) α = 1e7, FID = 363.45 (e) α = 1e9, FID = 401.12 (f) α = 1e11, FID = 376.39
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Figure 38: Samples of randomly generated images with COS-GAN-SN of varying α (kSN = 1.0,
MNIST). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.

57



Under review as a conference paper at ICLR 2020

FID scores vs. α (kSN = 1.0) of Different Loss Functions

- CIFAR10 -
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(a) α = 1e1, FID = 17.63 (b) α = 1e3, FID = 47.31 (c) α = 1e5, FID = 46.85

(d) α = 1e7, FID = 45.44 (e) α = 1e9, FID = 45.67 (f) α = 1e11, FID = 39.90
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Figure 39: Samples of randomly generated images with NS-GAN-SN of varying α (kSN = 1.0,
CIFAR10). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e1, FID = 25.55 (b) α = 1e3, FID = 34.44 (c) α = 1e5, FID = 373.07

(d) α = 1e7, FID = 171.18 (e) α = 1e9, FID = 309.55 (f) α = 1e11, FID = 312.96
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Figure 40: Samples of randomly generated images with LS-GAN-SN of varying α (kSN = 1.0,
CIFAR10). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e1, FID = 20.45 (b) α = 1e3, FID = 36.18 (c) α = 1e5, FID = 429.21

(d) α = 1e7, FID = 269.63 (e) α = 1e9, FID = 291.55 (f) α = 1e11, FID = 297.71
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Figure 41: Samples of randomly generated images with LS-GAN#-SN of varying α (kSN = 1.0,
CIFAR10). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e1, FID = 21.56 (b) α = 1e3, FID = 401.24 (c) α = 1e5, FID = 401.24

(d) α = 1e7, FID = 401.24 (e) α = 1e9, FID = 401.24 (f) α = 1e11, FID = 401.24

101 103 105 107 109 1011
0

100

200

300

400

NS-GAN-SN

LS-GAN-SN

LS-GAN#-SN

EXP-GAN-SN

COS-GAN-SN

Figure 42: Samples of randomly generated images with EXP-GAN-SN of varying α (kSN = 1.0,
CIFAR10). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e1, FID = 18.59 (b) α = 1e3, FID = 386.24 (c) α = 1e5, FID = 259.83

(d) α = 1e7, FID = 268.89 (e) α = 1e9, FID = 293.29 (f) α = 1e11, FID = 318.65
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Figure 43: Samples of randomly generated images with COS-GAN-SN of varying α (kSN = 1.0,
CIFAR10). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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FID scores vs. α (kSN = 1.0) of Different Loss Functions

- CelebA -
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(a) α = 1e1, FID = 5.88 (b) α = 1e3, FID = 16.14 (c) α = 1e5, FID = 17.75

(d) α = 1e7, FID = 17.67 (e) α = 1e9, FID = 16.87 (f) α = 1e11, FID = 18.81
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Figure 44: Samples of randomly generated images with NS-GAN-SN of varying α (kSN = 1.0,
CelebA). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e1, FID = 8.41 (b) α = 1e3, FID = 12.09 (c) α = 1e5, FID = 201.22

(d) α = 1e7, FID = 312.83 (e) α = 1e9, FID = 299.30 (f) α = 1e11, FID = 321.84
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Figure 45: Samples of randomly generated images with LS-GAN-SN of varying α (kSN = 1.0,
CelebA). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e1, FID = 7.21 (b) α = 1e3, FID = 13.13 (c) α = 1e5, FID = 221.41

(d) α = 1e7, FID = 248.48 (e) α = 1e9, FID = 311.21 (f) α = 1e11, FID = 315.94
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Figure 46: Samples of randomly generated images with LS-GAN#-SN of varying α (kSN = 1.0,
CelebA). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e1, FID = 6.91 (b) α = 1e3, FID = 375.32 (c) α = 1e5, FID = 375.32

(d) α = 1e7, FID = 375.32 (e) α = 1e9, FID = 375.32 (f) α = 1e11, FID = 375.32
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Figure 47: Samples of randomly generated images with EXP-GAN-SN of varying α (kSN = 1.0,
CelebA). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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(a) α = 1e1, FID = 6.62 (b) α = 1e3, FID = 450.57 (c) α = 1e5, FID = 233.42

(d) α = 1e7, FID = 390.40 (e) α = 1e9, FID = 306.17 (f) α = 1e11, FID = 335.87
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Figure 48: Samples of randomly generated images with COS-GAN-SN of varying α (kSN = 1.0,
CelebA). For the line plot, x-axis shows α (in log scale) and y-axis shows the FID scores.
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FID scores of WGAN-SN and some extremely degenerate loss
functions (α = 1e−25) on different datasets
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(a) WGAN, FID = 3.71 (b) WGAN, FID = 23.36 (c) WGAN, FID = 7.82

(d) NSGAN, FID = 3.74 (e) NSGAN, FID = 21.92 (f) NSGAN, FID = 8.10

(g) LSGAN#, FID = 3.81 (h) LSGAN#, FID = 21.47 (i) LSGAN#, FID = 8.51

(j) COSGAN, FID = 3.96 (k) COSGAN, FID = 23.65 (l) COSGAN, FID = 8.30

(m) EXPGAN, FID = 3.86 (n) EXPGAN, FID = 21.91 (o) EXPGAN, FID = 8.22

Figure 49: Samples of randomly generated images with WGAN-SN and some extremely degenerate
loss functions (α = 1e−25) on different datasets. We use kSN = 50 for all our experiments.
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