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ABSTRACT

Ensuring robustness of Deep Neural Networks (DNNs) is crucial to their adoption
in safety-critical applications such as self-driving cars, drones, and healthcare.
Notably, DNNs are vulnerable to adversarial attacks in which small input per-
turbations can produce catastrophic misclassifications. In this work, we propose
EMPIR, ensembles of quantized DNN models with different numerical precisions,
as a new approach to increase robustness against adversarial attacks. EMPIR is
based on the observation that quantized neural networks often demonstrate much
higher robustness to adversarial attacks than full precision networks, but at the
cost of a substantial loss in accuracy on the original (unperturbed) inputs. EM-
PIR overcomes this limitation to achieve the “best of both worlds”, i.e., the higher
unperturbed accuracies of the full precision models combined with the higher ro-
bustness of the low precision models, by composing them in an ensemble. Further,
as low precision DNN models have significantly lower computational and storage
requirements than full precision models, EMPIR models only incur modest com-
pute and memory overheads compared to a single full-precision model (<25%
in our evaluations). We evaluate EMPIR across a suite of 3 different DNN tasks
(MNIST, CIFAR-10 and ImageNet) and under 4 different adversarial attacks. Our
results indicate that EMPIR boosts the average adversarial accuracies by 43.6%,
15.3% and 11.9% for the DNN models trained on the MNIST, CIFAR-10 and
ImageNet datasets respectively, when compared to single full-precision models,
without sacrificing accuracy on the unperturbed inputs.

1 INTRODUCTION

The success of Deep Neural Networks (DNNs) in different machine learning tasks has fueled their
use in safety-critical applications like autonomous cars, unmanned aerial vehicles and healthcare,
wherein errors (misclassifications) made by DNNs can lead to severe — in the extreme case, fatal
— consequences. Therefore, robustness, i.e., the ability to cope with erroneous or malicious inputs
fed to an application, is emerging as an important requirement for DNNs.

Several efforts have in fact shown that DNNs behave in unexpected and incorrect ways for small,
specifically designed input perturbations (Goodfellow et al. (2014)). An attacker can take advan-
tage of this behavior to intentionally modify the inputs in a manner that forces the DNN model to
mis-classify and the overall system that uses the DNN to fail. A variety of methods for launching
adversarial attacks on DNNs have been proposed over the years. These adversarial attacks system-
atically modify a given original input to cause a misclassification while keeping the input distortion
minimal. A few examples of adversarial attacks that have been successfully applied to various DNN
models are the Fast Gradient Sign Method (FGSM) (Goodfellow et al. (2014)), Jacobian-based
Saliency Map Attack (JSMA) (Papernot et al. (2015)), Carlini-Wagner (CW) (Carlini & Wagner
(2016)) and the Basic Iterative Method (BIM) (Kurakin et al. (2016)).

Prior works have tried to overcome these vulnerabilities by proposing various defense mechanisms
against adversarial attacks. Adversarial training (Goodfellow et al. (2014)), defensive distillation
(Papernot et al. (2015)) and input gradient regularization (Ross & Doshi-Velez (2017)) are a few
representative defense techniques. Each of these approaches, albeit promising, has limitations with
respect to the kind of attacks they can defend against, the increase in training complexity, as well
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as their effect on the model’s accuracy on the original unperturbed inputs. To address these short-
comings, we propose EMPIR, an ensemble of mixed precision 1 DNN models, as a new form of
defense against adversarial attacks and demonstrate that it can significantly improve the robustness
of a variety of DNN models across a wide range of adversarial attacks.

Ensembles have been widely explored as an approach to improve the performance of machine learn-
ing models and classifiers (Hansen & Salamon (1990)). Examples of various successful ensembling
methods include averaging, bagging (Breiman (1996)), boosting (Dietterich (2000)), etc. Recently,
it has also been suggested that ensembles may help boost the robustness of DNNs (Strauss et al.
(2017)). The individual models in these ensembles are restricted to full precision DNN models, i.e.,
models utilizing 32 bits of numerical precision to represent different data-structures. Such ensem-
bles are very expensive in terms of the computational and memory overhead (e.g., 10× the baseline
for an ensemble with 10 models (Strauss et al. (2017))). In contrast, the use of quantized models in
EMPIR, which entail the use of significantly lower number of bits in storage and compute, ensures
that the overhead is modest (less than 25% in our evaluations).

Quantized DNNs are characterized by the use of lower numbers of bits to represent DNN data-
structures like weights and activations (Hubara et al. (2017); Zhou et al. (2016); Courbariaux et al.
(2015)). They have been widely explored as an approach to reduce the high computational and
memory demands of DNNs. Recent studies have also observed that these quantized models demon-
strate higher robustness to adversarial attacks (Galloway et al. (2017); Siraj Rakin et al. (2018);
Panda et al. (2019)). However, the loss in information associated with the quantization process
often makes these quantized models perform significantly worse than their full-precision counter-
parts while classifying the original unperturbed inputs. This motivates the design of EMPIR, which
successfully combines the higher robustness of low-precision models with the higher unperturbed
accuracy of the full-precision models. In the general case, EMPIR comprises of M full-precision
models and N low-precision models with the final prediction of the ensemble determined by aver-
aging the probabilities or counting the number of predictions for each class. In practice, we find
that M = 1 and N = 2 or 3 provides a significant improvement in adversarial accuracy with small
overheads.

In summary, the key contributions of this work are

• We propose the use of ensembles of mixed precision models as a defense against adversarial
attacks on DNNs.

• We analyze the effect of ensemble size and ensembling techniques on the overall robustness
and overhead of the ensemble.

• Across a suite of 3 different DNN models under 4 different adversarial attacks, we demon-
strate that EMPIR exhibits significantly higher robustness when compared to individual
models as well as ensembles of full-precision models.

2 ADVERSARIAL ATTACKS: BACKGROUND
Adversarial attacks modify inputs in a manner that force a DNN model to misclassify, while ensuring
that the input changes are small and imperceptible to human eyes. In the context of DNNs that
operate on images, which are the focus of our work, various attack mechanisms have been proposed
to systematically modify pixel values in the input image. A few such mechanisms are described
below.

Fast Gradient Sign Method (FGSM) (Goodfellow et al. (2014)). FGSM is a single-step at-
tack that operates by calculating the gradient of the loss function with respect to the input pixels
(OxL(θ,X, Y )). Based on the sign of the loss, the input pixels are increased or decreased by a small
constant, ε, to help move the image towards the direction of increased loss value. The adversarial
input, Xadv can be computed as:

Xadv = X + εSign(OxL(θ,X, Y )) (1)

Here, X is the original input image associated with an output Y and θ refers to the weights of the
network.

1Here, the term precision refers to the numerical precision of the models, or the number of bits used to
represent their weights and activations.
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Basic Iterative Method (BIM) (Kurakin et al. (2016)). BIM is an iterative version of the FGSM at-
tack which performs a finer optimization by modifying pixels by small values in each iteration. Fur-
ther, the image generated in each iteration has its pixel values clipped to ensure minimal distortion.
Mathematically, this attack can be described as:

X0
adv = X, XN+1

adv = ClipX,ε{XN
adv + αSign(OxL(θ,X

N
adv, y))} (2)

Here, the terms X , Y , θ and ε have the same meaning as in Equation 1 and XN
adv refers to the

adversarial input generated at the N th iteration and α is the step size in each iteration.

Carlini-Wagner (CW) (Carlini & Wagner (2016)). CW is another iterative attack that employs
optimizers to create strong adversarial inputs by simultaneously minimizing the input distortion and
maximizing the misclassification error. It can be described mathematically as:

min
δ
‖δ‖22 + c · f(X + δ) such that (X + δ) ∈ [0, 1]n

f(X) = max(max
i 6=t
{Z(X)i} − Z(X)t, 0)

Xadv = X + δ

(3)

where δ is the input distortion, c is the Lagrangian multiplier, Z(X) is the logit output for the input
X , t is the target class and f(X) is an objective function that satisfies the condition f(X + δ) ≤ 0
for all misclassifications.

Projected Gradient Descent (PGD) (Madry et al. (2017)). PGD is a third type of iterative attack
very similar in nature to the BIM attack. Unlike BIM, which starts with the original image itself,
PGD starts with a random perturbation of the original input image. PGD can be described by the
following equations:

X0
adv = X + randomUniform(shape(X), {−ε, ε})

XN+1
adv = ClipX,ε{XN

adv + αSign(OxL(θ,X
N
adv, y))}

(4)

Here, the terms X , Y , XN
adv , θ, ε and α have the same meaning as in Equation 2.

To summarize, different adversarial attacks have been proposed that expose the lack of robustness
in current DNN models by constructing adversarial inputs that force a misclassification. Developing
defenses to these adversarial attacks is critical to enable the deployment of DNNs in safety-critical
systems.

3 EMPIR: ENSEMBLES OF MIXED PRECISION DEEP NETWORKS FOR
INCREASED ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

To improve the robustness of DNN models, we propose EMPIR, ensembles of mixed precision
models. In this section, we will detail the design of these ensemble models and discuss the overheads
associated with them.

3.1 ADVERSARIAL ROBUSTNESS OF LOW-PRECISION NETWORKS

DNNs have conventionally been designed as full precision models utilizing 32-bit floating point
numbers to represent different data-structures like weights, activations and errors. However, the
high compute and memory demands of these full-precision models have driven efforts to move
towards quantized or low-precision DNNs (Hubara et al. (2017); Zhou et al. (2016); Courbariaux
et al. (2015); Wang et al. (2018)). A multitude of quantization schemes have been proposed to
minimize the loss of information associated with the quantization process. In this work, we adopt
the quantization scheme proposed in DoReFaNet (Zhou et al. (2016)) which has been shown to
produce low-precision models with competitive accuracy values. The corresponding quantization
scheme can be described by Equation 5.

quantizek(x) =
1

2k − 1
round((2k − 1) · x)

wk = 2 · quantizek(
tanh(w)

2 ·max(|tanh(w)|)
+

1

2
)− 1, ak = quantizek(a)

(5)

where k refers to the number of quantization bits in the low precision network, w and wk refer to
weight values before and after quantization, and a and ak refer to activation values before and after
quantization.
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Figure 1: Unperturbed accuracies and adversarial accuracies
of low-precision models trained for the MNIST dataset
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Figure 2: Overview of EMPIR

In addition to the widely known advantage of reduced model size and number of computations,
recent research efforts have also brought to light another lesser known advantage of low-precision
models in the form of increased robustness to adversarial attacks. It has been observed that low-
precision models in general exhibit higher values of adversarial accuracy than full-precision models
with identical network structures (Galloway et al. (2017); Panda et al. (2019)). One possible expla-
nation for this property is that higher quantization introduces higher amounts of non-linearity, which
prevents small changes in the input from drastically altering the output and forcing a misclassifica-
tion (Galloway et al. (2017)). Figure 1 shows the adversarial accuracies of different low precision
models trained on the MNIST dataset under the FGSM attack. It is apparent that models with lower
numbers of bits used for representing weights and activations exhibit significantly higher levels of
adversarial accuracy.

However, increasing the robustness of a system by simply replacing the full-precision model by
its low-precision variant can negatively impact its accuracy on the original unperturbed inputs (un-
perturbed accuracy). In other words, the model may now start to mis-classify inputs that were not
adversarially perturbed. Figure 1 also shows the unperturbed accuracies of low-precision models.
As expected, models with weights and activations represented using lower numbers of bits exhibit
lower unperturbed accuracies.

Based on the above observations, we propose the use of ensembles of mixed-precision models to
increase robustness against different kinds of adversarial attacks without sacrificing the accuracy on
unperturbed examples.

3.2 EMPIR: OVERVIEW

Figure 2 presents an overview of EMPIR. In the general case, an EMPIR model comprises of M
full-precision (FP) models and N low-precision (LP) models. The full-precision models help in
boosting the unperturbed accuracy of the overall model, while the low-precision models contribute
towards higher robustness. All the individual models are fed the same input and their output class
or probabilities are combined with the help of an ensembling technique at the end to determine the
final prediction of the EMPIR model. In practice, we found that a single full-precision model (M=1)
and a small number of low-precision models (N=2 or 3) are sufficient to achieve high adversarial
accuracies without any noticeable compromise in the unperturbed accuracies.

The ensembling function plays a vital role in the overall performance of the model as it determines
the final classification boundary. In this work, we consider two of the most commonly used en-
sembling functions, namely, averaging and max voting. The averaging function averages the output
probabilities of each model and identifies the class with the maximum average probability as the fi-
nal predicted class. On the other hand, max voting considers the predictions of each model as votes
and determines the class with the maximum number of votes to be the final class. In our experi-
ments, we found that averaging achieves better adversarial accuracies on ensembles of size 2 while
max voting achieves better adversarial accuracies on ensembles of size greater than 2.

In order to allow an ensemble model to work better than a single model, the individual models
should also be designed to be diverse (Hansen & Salamon (1990)). This ensures that the models
dont produce similar errors and hence, that the probability of two models misclassifying the same
input is lower. We introduce diversity in the individual models of EMPIR by training them with
different random initializations of weights.
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3.3 COMPUTATIONAL AND MEMORY COMPLEXITY OF EMPIR

The ensembling of multiple full-precision and low-precision models in EMPIR increases its com-
putational and storage requirements as these models need to be stored and evaluated. In this work,
we keep these memory and computational complexities within reasonable limits by restricting the
precision of weights and activations in the low-precision models of EMPIR to a maximum of 4 bits.

The increasing popularity of low-precision DNN models has prompted recent hardware platforms
including GPUs and neural network accelerators to add native hardware support for operating on low
precision data (Fleischer et al. (2018); Kilgariff et al. (2019)). These hardware platforms reconfigure
a common datapath to perform computations on full-precision data (32 or 64 bits) as well as low-
precision data (4, 8 or 16 bits). Low-precision operations can achieve higher throughputs than
full-precision operations on these platforms as the same number of compute elements and the same
amount of memory bandwidth can support a larger number of concurrent operations. Consequently,
the additional execution time required to evaluate the low-precision models in EMPIR is much less
than that of a full-precision model. Overall, we quantify the execution time and storage overhead of
an EMPIR model using the formula described by Equation 6.

TimeOverhead{EMPIR(M,N)} =M +

N∑
i=1

Ops per sec(FP )

Ops per sec(ki)

StorageOverhead{EMPIR(M,N)} =M +

N∑
i=1

ki
FP

(6)

where ki is the precision of the ith low-precision model, FP is the precision of the full-precision
models, Ops per sec(k) is the throughput of k bit operations on the accelerator platform.

4 EXPERIMENTS

In this section, we describe the experiments performed to evaluate the advantages of EMPIR models
over baseline full-precision models.

4.1 BENCHMARKS

We studied the robustness of EMPIR models across three different image recognition benchmarks,
namely, MNISTconv, CIFARconv and AlexNet. The individual full-precision and-low precision
networks within the EMPIR models were designed to have identical network topologies. The details
of the individual networks in these benchmarks are listed in Table 3 within Appendix A. The bench-
marks differ in the number of convolutional layers, fully connected layers as well as the datasets.
We consider three different datasets, namely, MNIST (Lecun et al. (1998)), CIFAR-10 (Krizhevsky
(2009)) and ImageNet (Deng et al. (2009)) which vary significantly in their complexity. The low
precision networks were obtained using the quantization scheme proposed in DoReFa-Net (Zhou
et al. (2016)). The full precision models were trained using 32 bit floating point representations for
all data-structures.

Network CW FGSM BIM PGD

MNISTconv
Attack

iterations = 50 ε= 0.3
ε= 0.3, α=0.01

No. of iterations = 40
ε= 0.3, α=0.01

No. of iterations = 40

CIFARconv
Attack

iterations = 50 ε= 0.1
ε= 0.1, α=0.01

No. of iterations = 40
ε= 0.1, α=0.01

No. of iterations = 40

AlexNet
Attack

iterations = 50 ε= 0.1
ε= 0.1, α=0.01

No. of iterations = 40
ε= 0.1, α=0.01

No. of iterations = 5

Table 1: Attack parameters

4.2 EVALUATION OF ROBUSTNESS

We implemented EMPIR within TensorFlow (Abadi et al. (2015)). The robustness of the EM-
PIR models were measured in terms of their adversarial accuracies under a variety of white-box
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attacks within the Cleverhans library (Papernot et al. (2018)). We specifically consider the four
adversarial attacks described in Section 2. The adversarial parameters for the attacks on the differ-
ent benchmarks are presented in Table 1. The attacks were generated on the entire test dataset for
each of the benchmarks. Generating these white-box attacks involves computation of the gradient
OxL(θ,X, Y ) (Section 2), which is not directly defined for ensembles. For the EMPIR models,
we compute this gradient as an average over all individual models for an averaging ensemble and
as an average over the individual models that voted for the final identified class for an max-voting
ensemble.

5 RESULTS

In this section, we present the results of our experiments highlighting the advantages of EMPIR mod-
els.

5.1 ROBUSTNESS OF EMPIR MODELS ACROSS ALL ATTACKS

Unperturbed Adversarial Accuracy (%)

Network Approach Accuracy (%) CW FGSM BIM PGD Average

MNISTconv

Baseline FP
EMPIR

Defensive Distill.
Inp. Grad. Reg.

FGSM Adv. Train
EMPIR (FGSM

Adv. Train)

98.87
98.96
98.12
99.01
99.06

99.09

3.69
89.44
2.34
6.83
3.09

90.54

14.32
67.66
40.22
30.15
76.56

75.98

0.9
18.60
7.61
1.14
0.87

33.16

0.77
18.34
3.28
1.20
0.39

5.17

4.92
48.51
13.36
9.83

20.23

51.21

CIFARconv

Baseline FP
EMPIR

FGSM Adv. Train
EMPIR (FGSM

Adv. Train)

74.53
72.56
72.36

73.62

13.37
48.51
14.36

45.73

10.00
20.61
41.58

31.67

11.97
24.59
12.92

29.55

10.69
13.34
11.24

14.74

11.51
26.76
20.03

30.42

AlexNet
Baseline FP

EMPIR
53.21
55.08

10.01
29.34

10.27
22.39

10.82
21.20

10.29
16.10

10.35
22.26

Table 2: Unperturbed and adversarial accuracies of the baseline and EMPIR models across different
attacks

Table 2 presents the results of our experiments across different benchmarks. The EMPIR mod-
els presented in the table are the ones exhibiting highest average adversarial accuracies under
the constraints of <25% compute and memory overhead and <2% loss in unperturbed accuracy.
We observed that across all the benchmarks, ensembles comprised of two low-precision and one
full-precision model combined with the max-voting ensembling technique satisfy these constraints.
However, the individual configurations of the low-precision models, i.e., the precisions of weights
and activations in the ensembles, differ across the benchmarks. For example, the two low-precision
models in the EMPIR model satisfying the accuracy constraints for the MNISTconv have weight
precisions of 4 bits, and activation precisions of 2 and 4 bits respectively. The corresponding weight
precisions for the two low-precision models in the AlexNet EMPIR model are 2 and 4 bits while the
activation precisions are 2 and 4 bits. Overall, we observe that the EMPIR models exhibit higher
substantially adversarial accuracies across all attacks for the three benchmarks.

We also compare the benefits of EMPIR with three other popular approaches for increasing robust-
ness, namely, defensive distillation (Papernot et al. (2015)), input gradient regularization (Ross &
Doshi-Velez (2017)) and FGSM based adversarial training (Goodfellow et al. (2014)). The distil-
lation process was implemented with a softmax temperature of T = 100, the gradient regulariza-
tion was realized with a regularization penalty of λ = 100, while the adversarial training utilized
FGSM adversarial examples generated with a maximum possible perturbation of ε = 0.3. Table 2
presents the results for the approaches that were able to achieve <5% loss in unperturbed accuracy
for a particular benchmark. We observe that adversarial training significantly boosts the adversar-
ial accuracies of the MNISTconv and CIFARconv models under the FGSM attack but is unable to
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increase the accuracies under the other three attacks, often hurting them in the process. A similar
result is observed for the MNISTconv model trained with defensive distillation and gradient regu-
larization. In contrast, EMPIR successfully increases the robustness of the models under all four
attacks. In fact, it can also be combined with the other approaches to further boost the robustness,
as evident from the adversarial accuracies of an EMPIR model comprising of adversarially trained
models for the MNISTconv and CIFARconv benchmarks.

5.2 COMPARISON WITH INDIVIDUAL MODELS
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Figure 3: (a) Tradeoff between unperturbed and adversarial accuracies of the individual and EM-
PIR models across 2 benchmarks. (b) Confusion matrices of the baseline FP and EMPIR model for
the MNISTconv benchmark.

Figure 3(a) illustrates the tradeoff between the adversarial and unperturbed accuracies of the individ-
ual DNN models and EMPIR models for two of the benchmarks under the CW attack. The circular
blue points correspond to individual models with varying weight and activation precisions while the
red diamond points correspond to the EMPIR models presented in Section 5.1. The figure clearly
indicates that the EMPIR models in both the benchmarks are notably closer to the desirable top right
corner with high unperturbed as well as high adversarial accuracies. Among the individual mod-
els, the ones demonstrating higher adversarial accuracies but lower unperturbed accuracies (towards
the top left corner) correspond to lower activation and weight precisions while those demonstrating
lower adversarial accuracies and higher unperturbed accuracies (towards the bottom right corner)
correspond to higher activation and weight precisions.

5.3 ANALYSIS OF CONFUSION MATRICES

Figure 3(b) presents the confusion matrices of the baseline FP model and the EMPIR model for
the MNISTconv benchmark under the FGSM attack. The actual ground truth class labels are listed
vertically while the predicted labels are listed horizontally. The colors represent the number of
images in the test dataset that correspond to the combination of actual and predicted class labels.
The diagonal nature of EMPIR’s confusion matrix clearly illustrates its superiority over the FP
model, which frequently misclassifies the generated adversarial images.

5.4 IMPACT OF VARYING THE NUMBER OF LOW-PRECISION AND FULL-PRECISION MODELS

In this subsection, we vary the number of low-precision and full-precision models in EMPIR be-
tween 0 and 3 to observe its effect on the unperturbed and adversarial accuracies of the MNISTconv
benchmark under the FGSM attack. We also measure the execution time and memory footprint of
the EMPIR models to quantify their overheads with respect to a baseline single full-precision model.
We restrict the low-precision models to have weight and activation precisions between 2 and 4 bits
and choose the configurations that maximize the adversarial accuracies of the EMPIR models while
introducing <1% drop in unperturbed accuracies.

Figure 4 presents the results of this experiment. Figure 4(a) and (b) clearly indicates that a higher
number of low-precision models in EMPIR helps in boosting the adversarial accuracies while a
higher number of full-precision models help in boosting the unperturbed accuracies. For instance,
an EMPIR model comprising of only three low-precision models demonstrates unperturbed and ad-
versarial accuracies of 98.8% and 56.9% respectively while an EMPIR model comprising of only
three full-precision models demonstrates unperturbed and adversarial accuracies of 99.2% and 31%
respectively. The execution time and memory footprint associated with the former are only 0.38×
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Figure 4: Effects of varying the number of LP and FP models in EMPIR (a) Unperturbed accuracies,
(b) Adversarial accuracies, (c) Execution time overheads and (d) Storage overheads

and 0.25× over the baseline, as opposed to 3× in case of the latter. Overall, we observe that an EM-
PIR model comprising of a single full-precision model and two low-precision models (configuration
presented in Table 2) achieves a good balance between adversarial and unperturbed accuracies with
modest execution time and storage overheads.

6 RELATED WORK

Popular defense strategies against adversarial attacks include adversarial training, defensive distil-
lation and input gradient regularization. Adversarial training (Goodfellow et al. (2014)) involves
modifying the loss function to include the adversarial loss term, which tries to reduce the effect of
input perturbations. Defensive distillation (Papernot et al. (2015)), on the other hand, is based on
the technique of distillation that was originally proposed to efficiently transfer knowledge across
different DNN models. It involves training networks on the output probabilities of classes instead
of the conventional training on hard output class labels. As shown in Table 2, the benefits of these
techniques are limited to only one or a couple of adversarial attacks. In contrast, EMPIR is able to
boost the adversarial accuracies of DNNs across all four white-box attacks considered here.

One previous effort has also proposed the use of ensembles of full precision models for defending
DNNs against adversarial attacks (Strauss et al. (2017)). However, the presence of 10 full-precision
models in these ensembles increases the compute and memory requirements by 10×, which prevents
the application of this approach to larger state-of-the art models. In contrast, with the use of low
precision models in the ensemble, we are able to reduce the overhead significantly and restrict it
to <25%. Also, as shown in Figure 4, mixed-precision ensembles demonstrate higher adversarial
accuracies than the full-precision ensembles for identical number of models in the ensemble.

In addition to the above effort, there have been a parallel set of efforts studying the robustness of
low-precision or quantized DNNs. For example, binary neural networks with single bit precisions
for weights and activations have been shown to exhibit higher adversarial accuracies than their full-
precision counterparts on different white-box attacks (Galloway et al. (2017); Panda et al. (2019)).
Stochastic quantization of activations has also been proposed as an approach to make DNNs more
robust (Siraj Rakin et al. (2018)). However, as shown in Figure 1, the individual quantized models
in these efforts often demonstrate lower accuracies on unperturbed or clean test examples due to the
loss in information associated with the quantization process. On the other hand, the inclusion of
full-precision models in EMPIR along with low-precision models helps to overcome this limitation
achieving the best of both worlds — higher robustness combined with high unperturbed accuracy.

7 CONCLUSION

As deep neural networks get deployed in an increasing number of machine learning tasks with
stricter safety requirements, there is a dire need to identify new approaches of making them more
robust to adversarial attacks. In this work, we boost the robustness of DNNs by designing ensembles
of mixed-precision DNNs. In its most generic form, EMPIR comprises of M full-precision DNNs
and N low-precision DNNs combined through ensembling techniques like max voting or averaging.
EMPIR is able to combine the high robustness of low-precision DNNs with the high unperturbed
accuracies of the full-precision models. Our experiments on 3 different image recognition bench-
marks subjected to 4 different white-box attacks reveal that EMPIR is able to significantly increase
the robustness of DNNs when compared to baseline full precision models, without sacrificing the
accuracies of the models on unperturbed inputs.
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A BENCHMARK DETAILS

Network Dataset Configuration

MNISTconv MNIST
Conv(8×8×64), ReLU, Conv(6×6×128), ReLU,

Conv(5×5×128), ReLU, Fully Connected(10), SoftMax

CIFARconv CIFAR-10
Conv(5×5×32), ReLU, MaxPool(3×3), Conv(8×8×64), ReLU

AvgPool(3×3), Conv(8×8×64), ReLU, AvgPool(3×3),
Fully Connected(64), Fully Connected(10), SoftMax

AlexNet ImageNet

Conv(12×12×96), ReLU, Conv(5×5×256), BatchNorm,
ReLU, MaxPool(3×3), Conv(3×3×384), BatchNorm, ReLU,

MaxPool(3×3), Conv(3×3×384), BatchNorm, ReLU,
Conv(3×3×256), BatchNorm, ReLU, MaxPool(3×3),

Fully Conn(4096), BatchNorm, ReLU, Fully Conn(4096),
BatchNorm, ReLU, Fully Conn(1000), SoftMax

Table 3: Benchmarks

B ROBUSTNESS TO ATTACKS OF VARYING STRENGTHS

To further illustrate the superiority of EMPIR, we observed its robustness under the attacks of vary-
ing strength. We specifically varied the ε value in the FGSM attack between 0.1 and 0.8 and the
number of attack iterations in the CW attack between 10 and 90 and measured the adversarial ac-
curacies of the EMPIR model as well as the baseline FP model for the MNISTconv benchmark.
Figure 5 clearly illustrates that EMPIR exhibits higher adversarial accuracies across attacks of dif-
ferent strengths for both FGSM and CW.
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Figure 5: (a) Adversarial accuracies under FGSM attack of varying strength (b) Adversarial accura-
cies under CW attack of varying strength
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