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ABSTRACT

We propose a new method Continual Density Ratio Estimation (CDRE), which
can estimate density ratios between a target distribution of real samples and a
distribution of samples generated by a model while the model is changing over
time and the data of the target distribution is not available after a certain time point.
This method perfectly fits the setting of continual learning, in which one model
is supposed to learn different tasks sequentially and the most crucial restriction
is that model has none or very limited access to the data of all learned tasks.
Through CDRE, we can evaluate generative models in continual learning using
f -divergences. To the best of our knowledge, there is no existing method that can
evaluate generative models under the setting of continual learning without storing
real samples from the target distribution.

1 INTRODUCTION

Density Ratio Estimation (DRE) (Sugiyama et al., 2012) is a methodology for estimating the den-
sity ratio between two probability distributions and it can be applied to two-sample tests in which
only samples of the two distributions are available. It has a wide range of applications in machine
learning, such as distribution comparison, mutual information estimation, outliers detection, etc..
However, under certain restrictive conditions in the real world, i.e. one distribution is changing over
time and the samples of the other distribution are not available after some time point (e.g. due to
privacy or limited cost budget), the existing methods of DRE are not applicable any more which
leads to the unavailability of those applications of DRE as well. In order to enable DRE under
such restrictive conditions, we propose a novel method Continual Density Ratio Estimation (CDRE)
which can estimate the density ratio between a target distribution and a model distribution without
storing any samples from target distribution while the model distribution is changing over time.

CDRE satisfies the problem setting of continual learning in which a single model that evolves over
time by learning new tasks sequentially and then is able to perform on all seen tasks. The most
crucial obstacle of continual learning is that a model tends to forget previous tasks while learning
a new task, which is a phenomenon called catastrophic forgetting (Kirkpatrick et al., 2017). Gen-
erative models play an important role in continual learning because they can be employed to help
other models with keeping memories by generating samples of previous tasks (Shin et al., 2017; Wu
et al., 2018), a method known as ‘generative replay’. A simplified scenario for generative models
in continual learning is depicted in Fig. 1, where the goal is to learn a generative model for one
category (digit) per task, but still be able to generate samples of all previous categories. The training
dataset of task i consists of real samples of category i and samples of task 1 · · · i−1 generated by the
previous model.

Despite the importance of generative models in continual learning, there is no effective way to
evaluate them under the restrictions of continual learning. The related works (Wu et al., 2018; Shin
et al., 2017; Lesort et al., 2018) either evaluate them by classification performance, or just displaying
some model samples to let readers judge them visually, or applying usual measures of generative
models in static learning by comparing with real samples from the target distribution. However,
the performance of generative models is not always tied to the performance of a classification task,
it may be decided by the fidelity of model samples as in many applications of generative models
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Figure 1: Demonstration of generative models in continual learning. At task i the training set consists
of samples of category i and samples generated by the model at the previous task, and the task is to
generate samples from all previously seen categories (figure reproduced from Lesort et al. (2018)).

(Brock et al., 2019; Karras et al., 2019; van den Oord et al., 2017). Moreover, it is questionable
how many real samples we can obtain to evaluate generative models in continual learning. A small
sample size (less than a few hundreds) as commonly used in episodic memories (Lopez-Paz et al.,
2017; Chaudhry et al., 2019) or coresets (Nguyen et al., 2018) cannot guarantee the accuracy of
measures for evaluating generative models.

The principal idea of evaluating generative models is estimating the difference between the target
distribution and the model distribution, for example, Fréchet Inception Distance (FID) (Heusel et al.,
2017) and Kernel Inception Distance (KID) (Bińkowski et al., 2018) estimate Wasserstein-2 distance
and Maximum Mean Discrepancy (MMD), respectively. Likewise, f -divergences is a well-studied
family of divergences that are commonly used to measure differences between two distributions,
more importantly, one can estimate f -divergences by estimating density ratios.

We show that our new method CDRE can effectively estimate f -divergences under the setting of
continual learning. Consequently, we can evaluate generative models in continual learning using
f -divergences estimated by CDRE, which is supported by experiment results in comparison with
commonly used FID, KID. In the absence of prior work, we also provide empirical analysis of
differences between FID, KID and f -divergences in terms of evaluating generative models.

2 PRELIMINARIES

In this section we introduce the basic formulation of Density Ratio Estimation (DRE) as it is the
foundation of CDRE, and we discuss estimating f -divergences by DRE as well.

2.1 DENSITY RATIO ESTIMATION (DRE).

There are two principal methods for DRE introduced in Sugiyama et al. (2012): Kullback-Leibler
Importance Estimation Procedure (KLIEP) and Least-Squares Importance Fitting (LSIF), which
estimate the density ratio through Kullback-Leibler (KL) divergence and Pearson (χ2) divergence,
respectively. Here we review the formulation of KLIEP, which will form a building block of our
method. Let r∗(x) = p(x)

q(x) be the (unknown) true density ratio, then p(x) can be estimated by p̃(x) =
r(x)q(x), where r∗(x) is modeled by r(x). Hence, we can optimize r(x) by minimizing the KL-
divergence between p(x) and p̃(x):

DKL (p(x)||p̃(x)) =
∫

p(x) log
p(x)
p̃(x)

dx =
∫

p(x) logr∗(x)dx−
∫

p(x) logr(x)dx (1)

where r(x) satisfies r(x) > 0 and
∫

r(x)q(x)dx =
∫

p(x)dx = 1. The first term of the right side in
Eq. (1) is a constant w.r.t. r(x), then the objective of optimizing r(x) is as below:

Jr = max
1
N

N

∑
i=1

logr(xi), xi ∼ p(x), s.t.
1
M

M

∑
j=1

r(x j) = 1, x j ∼ q(x), and r(x)≥ 0, ∀x. (2)

One convenient way of parameterizing r(x) is by using a log-linear model with normalization, which
then automatically satisfies the constraints in Eq. (2):

r(x;β ) =
exp(ψβ (x))

1
M ∑

M
j=1 exp(ψβ (x j))

, x j ∼ q(x), ψβ : RD→ R, (3)
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where ψβ can be any deterministic function and we use a neural network as ψβ in our implementa-
tions, β representing parameters of the neural network.

2.2 ESTIMATING f -DIVERGENCES BY DENSITY RATIO ESTIMATION

The definition of f -divergences is given in Eq. (4), where f is a convex function and satisfies
f (1) = 0. Given a specified f , we can estimate the empirical divergence using density ratios without
knowing the density functions. For example, taking f (r) = r logr recovers the KL divergence.

D f (p(x)||q(x)) = Eq(x)

[
f
(

p(x)
q(x)

)]
≈ 1

N

N

∑
i=1

f (r(xi)), xi ∼ q(x), r(xi) =
p(xi)

q(xi)
(4)

Estimating f -divergences by density ratios has been well studied (Kanamori et al., 2011; Nguyen
et al., 2010). Although it can also be estimated by the density functions of distributions, that is
beyond the scope of this paper and density functions are often not available.

One concern of estimating f -divergences by DRE is from high dimensional data which might require
large sample size to achieve convergence (Rubenstein et al., 2019). One way to mitigate the problem
is to perform dimensionality reduction in combination with DRE, for which several methods have
been introduced in Sugiyama et al. (2012). A fundamental assumption of these methods is that
the difference between two distributions can be confined in a subspace, which means p(z)/q(z) =
p(x)/q(x) where z is a lower-dimensional representation of x. This is aiming for exact density ratio
estimation, in another word, if the difference is large in the original space, it is still large in the
subspace. Besides the expensive cost of searching such a subspace, significant differences between
distributions still cause unrealistic convergence rate of DRE methods. For example, the convergence
analysis of KLIEP is described in Sugiyama et al. (2008), as in short, the convergence rate depends
on the bounds of estimated ratios, as well as the bounds of the entropy of estimated ratios. Hence, it is
desirable to scale down the difference between high dimensional distributions and make ratios well
bounded for a easier convergence by dimensionality reduction, whilst ensuring that the estimated
divergence is still a faithful reflection of the true divergence. On the other hand, DRE can work with
high-dimensional data when the two distributions are close to each other. We demonstrate this by
experiments with high-fidelity model samples in a high-dimensional space (Appx. B).

According to the information monotonicity of f -divergences (Amari, 2009), we can estimate a lower
bound of the f -divergence on an arbitrary surrogate feature space: D f (q(z)||p(z))≤D f (q(x)||p(x)),
where p(z) =

∫
p(x)p(z|x)dx,q(z) =

∫
q(x)p(z|x)dx and p(z|x) is an arbitrary transition probability.

Using a surrogate feature space is a widely applied technique in measurements of generative models.
For instance, the inception feature defined for Inception Score (IS) (Salimans et al., 2016) can be
viewed as from a surrogate feature space and it is widely applied in other measures of generative
models (such as FID, KID, Precision and Recall for Distributions (PRD)) as well. Analogously, we
introduce Continual Variational Auto Encoder (CVAE) as a solution of generating lower dimensional
features for CDRE in the later section.

3 CONTINUAL DENSITY RATIO ESTIMATION

In this section we describe technical details of our method Continual Density Ratio Estimation
(CDRE) for estimating density ratios in the setting of continual learning.

Let X denote the data from the target distribution, which is not available at time t when t > 1,
Gt denotes a generative model at time t, X̂t denotes samples generated by Gt . Let p(x) denote
the density function of X and qt(x) denote the density function of model samples X̂t , which are
both unknown. The goal of CDRE is to estimate the density ratio p(x)/qt(x),∀t, which can be
decomposed as follows:

rt(x) =
p(x)
qt(x)

=
qt−1(x)
qt(x)

p(x)
qt−1(x)

= rst (x)rt−1(x), (5)

where rst (x) = qt−1(x)/qt(x) represents the empirical density ratio of model samples obtained at
two adjacent time steps. This decomposition gives a method to estimate p(x)/qt(x) iteratively,
without the needs of keeping raw data samples from p(x) as t increases. The key point is that we
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can optimize rt(x) by optimizing rst (x) when rt−1(x) is known. Existing methods for DRE, such as
KLIEP introduced in Sec. 2, can be applied to estimating r1(x) and rst (x) as the basic ratio estimator
of CDRE. Furthermore, only one extra constraint is required:∫

rst (x)qt(x)dx =
∫ rt(x)

rt−1(x)
qt(x)dx = 1 (6)

For instance, when rt(x) is defined by using the log-linear form as in Eq. (3), rst can be expressed as
follows, where βt represents parameters of rt(x):

rst =
rt(x)

rt−1(x)
= exp{ψβt (x)−ψβt−1(x)}×

1
Nt−1

∑
Nt−1
j=1 exp{ψβt−1(xt−1, j)}

1
Nt

∑
Nt
i=1 exp{ψβt (xt,i)}

,

xt,i ∼ qt (x), xt−1, j ∼ qt−1(x)

(7)

When rst satisfies the constraint in Eq. (6), we have following equality by replacing Eq. (7) into
Eq. (6) and approximating the expectation using Monte Carlo integration:

1
Nt

∑
Nt
i=1 exp{ψβt (xt,i)}

1
Nt−1

∑
Nt−1
j=1 exp{ψβt−1(xt−1, j)}

=
1
Nt

Nt

∑
i=1

exp{ψβt (xt,i)−ψβt−1(xt,i)}, (8)

rst can then be rewritten as:

rst =
exp{ψβt (x)−ψβt−1(x)}

1
Nt

∑
Nt
i=1 exp{ψβt (xt,i)−ψβt−1(xt,i)}

, (9)

In this manner, rst is in the same log-linear form of Eq. (3). We can directly apply KLIEP to optimize
βt , which gives the following loss function:

Lt(x;βt) =−
1

Nt−1

Nt−1

∑
j=1

logrst (xt−1, j)+λc(Ψ
t−1
t (Xt)×Ψt−1(Xt−1)/Ψt(Xt)−1)2,

where Ψt(Xt) =
1
Nt

Nt

∑
i=1

exp{ψβt (xt,i)}, Ψ
t−1
t (Xt) =

1
Nt

Nt

∑
i=1

exp{ψβt (xt,i)−ψβt−1(xt,i)}

(10)

where βt−1 can be viewed as constant since it has been learned at task t−1. The equality constraint
of Eq. (8) has been transformed and put into the objective using a Lagrange multiplier λc. We
observe there is a trade-off between bias and variance controlled by λc. Larger value of λc results in
smaller bias but larger variance. Relevant experimental results are demonstrated in Fig. 3.

It has been discussed in Mohamed & Lakshminarayanan (2016) that the discriminator of some type
of Generative Adversarial Networks (GANs) can be viewed as a density ratio estimator. We have
also applied the formulation of discriminators of f -GAN (Nowozin et al., 2016) to the basic ratio
estimator in CDRE. Nonetheless, we found it is less robust than KLIEP and may not satisfy the
constraint of density ratios as it is not defined for the purpose of estimating ratios. For example, the
ratio can be negative by the formulation of χ2-divergence in f -GAN. Therefore, we stick to KLIEP
as the basic ratio estimator of CDRE in our experiments.

CDRE in continual learning. Now we consider the full setting in continual learning, in which
the model needs to learn a new distribution at each time step t and we refer to it as task t. Let
Xτ denote the raw data from task τ , which is not available at task t when t > τ . X̂τ,t denotes
samples of task τ generated by Gt . Similarly, p(x|τ) denotes the density function of Xτ and qt(x|τ)
denotes the density function of X̂τ,t . We optimize the estimator at time t by an average objective
Lt(βt) = Ep(τ)[Lt(x|τ;βt)], where Lt(x|τ;βt) is as the same as Lt(x;βt) in Eq. (10) for a given τ ,
and rst (x|τ) is the same as Eq. (9) except ψβt (x) has been replaced by ψβt (x,τ). In order to avoid
learning T separate ratio estimators for T tasks, we concatenate the task index to each data sample
as the input of a ratio estimator.

In our implementation, we set the output of ψβt (·) as a t-dimensional vector {o1, . . . ,ot} where
oτ corresponds to the output of ψβt (x,τ). We found that this improves the accuracy of the ratio
estimation when t increases because the model capacity increases as well.
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Estimating f -divergences by CDRE We evaluate a generative model in continual learning by
estimating the averaged f -divergences over all learned tasks:

D̄t =
1
t

t

∑
τ=1

[D f (pτ(x)||qt(x|τ))] (11)

It is noteworthy that estimation error obtained at each task will accumulate in CDRE as shown below,
where r∗st denotes the true ratio and ∆rst denotes the estimation error:

rt = rst rt−1 = r1

t

∏
τ=2

rsτ
=

t

∏
τ=1

r∗sτ
∆rsτ

, where rs1 = r1. (12)

We observe that larger errors produced in CDRE result in larger variances of the estimated f -
divergences, which itself can be informative because larger errors are often caused by greater dif-
ferences between two distributions. The experimental results of GANs trained on Fashion-MNIST
(Fig. 4) demonstrate this phenomenon: the largest variance of estimated f -divergences is from the
worst performance of GANs. Consequently, the variance of estimated f -divergences can also be a
criterion for comparing generative models.

Feature generation for CDRE As discussed in Sec. 2.2, we perform dimensionality reduction as
a preprocessing of CDRE for extracting features from high dimensional data. A pre-trained classifier
is often used to generate surrogate features for image data (e.g. inception features (Salimans et al.,
2016)). However, we consider using Variational Auto Encoder (VAE) without pre-training in our
experiments for two reasons: (a) it may be difficult to obtain an homogeneous dataset for pre-train-
ing; (b) it may not be able to train a classifier when there are no labels available. In order to cope
with the setting of continual learning, we introduce Continual Variational Auto Encoder (CVAE) for
feature generation in a pipeline with CDRE. The loss function of CVAE is accordingly adjusted by
the principle of Variational Continual Learning (VCL) (Nguyen et al., 2018):

Lcvae =−Ep(x)[Eqt (z)[log p(x|z)]]+DKL(qt(z)||qt−1(z)), qt(z) = N (µθt (x),σθt (x)) (13)

where θt denotes parameters of the VAE at task t. It is different with VAEs of continual learning
described in Nguyen et al. (2018) because the posteriors of adjacent tasks in the KL divergence is
w.r.t. latent codes z rather than parameters θ of the VAE. In our case, we expect the encoder gives
similar z for a same x at different time t for the consistency with learned tasks. The CVAE performs
as a preprocessing pipeline of CDRE so we replace ψβt (·) and ψβt−1(·) in Eq. (10) by ψβt (νθt (·))
and ψβt−1(νθt−1(·)), respectively, where νθt represents the output of the encoder of CVAE at task t.
Note that CVAE is trained separately with CDRE since its objective does not relate to CDRE. We
prefer to provide a general solution of feature generation in practical situations, nevertheless, other
commonly used methods (i.e. pre-trained classifiers) are also applicable to CDRE.

4 EXPERIMENTS

In the absence of prior work on evaluating generative models by f -divergences, we first compare
f -divergences with FID (Heusel et al., 2017), KID (Bińkowski et al., 2018) and PRD (Sajjadi et al.,
2018) in a few toy experiments. Through these experiments, we show that f -divergences can also
be alternative measures of generative models and one may obtain richer criteria by f -divergences.
We then conduct experiments on synthetic data to show that CDRE can effectively estimate f -
divergences in the setting of continual learning. Finally, we evaluate WGAN (Arjovsky et al., 2017),
WGAN-GP (Gulrajani et al., 2017) and several members of f -GAN (Nowozin et al., 2016) on two
bench-mark datasets in continual learning: Fashion-MNIST (Xiao et al., 2017) and MNIST (LeCun
et al., 2010). All GANs tested in continual learning are conditional GANs (Mirza & Osindero, 2014)
with task indices as conditioners, and one task includes a single class of the dataset.

We have deployed two feature generators for experiments with MNIST and Fashion-MNIST: 1) A
classifier which is a Convolutional Neural Network (CNN) trained on real samples of all classes,
the extracted features are the activations of the last hidden layer (a similar setting is suggested
in Bińkowski et al. (2018) for testing KID on MNIST); 2) A CVAE trained incrementally in the
procedure of continual learning, and the features are the output of the encoder. The dimension of
features are 64 for both classifier and CVAE. More details of the experimental settings are described
in Appx. A. We use the classifier as the feature generator for FID,KID and PRD and use the CVAE
as the feature generator for CDRE in all experiments except specified explicitly.
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4.1 EVALUATING GENERATIVE MODELS USING f -DIVERGENCES

We first present toy experiments to show the differences between f -divergences and FID, KID in
terms of evaluating generative models. We demonstrate the experiment results through two most
popular members of f -divergences: KL-divergence and reverse KL-divergence.

In the first experiment, We have two cases: (i) the target distribution P contains half of the classes
of MNIST, and the evaluated distribution Q includes all classes of MNIST; (ii) the reverse of (i).
We obtain density ratios by KLIEP and then estimate f -divergences by density ratios. The results
are shown in Tab. 1, with PRD curves displayed beside the table. Since the KLIEP objective is not
symmetric (Eq. (2)), the estimated KL divergences are not symmetric when switching the two sets
of samples. As expected, DKL(P||Q) prefers Q with larger recall and vice versa. Neither FID nor
KID are able to discriminate between these two scenarios.
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Table 1: Results of the toy experiment. P = Q1/2 implies case (i),
Q = P1/2 implies case (ii). Standard deviations are from 5 runs.

FID KID DKL(P||Q) DKL(Q||P)
P = Q1/2 50.39 ± 0.00 2.04 ± 0.01 0.67 ± 0.00 3.78 ± 1.22
Q = P1/2 50.39 ± 0.00 2.03 ± 0.02 2.49 ± 0.30 2.38 ± 1.78

FID KID (×103) KL rv_KL
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10%-50dim-noise

Figure 2: Toy experiments with dif-
ferent types of noise injected into
MNIST (error bars from 5 runs).

In the second experiment, we show that f -divergences may
provide different opinions with FID and KID in certain cir-
cumstances because FID and KID are based on Integral Prob-
ability Metrics (IPM) (Sriperumbudur et al., 2012) which fo-
cus on parts of the distribution with most mass whereas f -
divergences are based on density ratios which may give more
attention on parts with most differences between the two dis-
tributions (due to the ratio of two small values can be very
large). To show this, we simulate two sets of model samples
by injecting two different types of noise into MNIST data and
evaluate them on the original feature space (which is 784 di-
mensions). Regarding the first type of noise, we randomly
choose 50% samples and 1 dimension to be corrupted (set the
pixel value to 0.5); for the second one, we randomly choose 10% samples and 50 dimensions to
be corrupted. The results are shown in Fig. 2, in which KL-divergence and reverse KL-divergence
disagree with FID and KID regarding which set of samples is better than the other.

4.2 EXPERIMENTS WITH SYNTHETIC DATA
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(b) single task (100-dim)
λc = 100
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Figure 3: Synthetic experiments of estimating KL-divergence by CDRE (error bars from 5 runs).
The x-axis is the index of time steps. Figs. 3a and 3b compare the true KL-divergence with estimated
KL-divergence for a single task, Figs. 3c and 3d compare the average KL divergence of t tasks at
time t. KL∗ and KLcdre denote the true value and estimated value of KL-divergence, respectively.

In the experiments with synthetic data, we first simulate a Gaussian distribution drifting over time
and estimate the KL-divergence between the current distribution pt(x) at time t and the original
distribution p1(x) at time t = 1. The distribution pt = N (µt ,σ

2
t I) where µt = µ1 + ∆µ × (t −
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1),σt = σ1 +∆σ × (t− 1). We set µ1 = 0,σ1 = 1, ∆µ = −∆σ = 0.05 for 2-dimensional data and
∆µ =−∆σ = 0.02 for 100-dimensional data. We set ∆σ to be negative, simulating underestimated
variance as it is a common issue in generative models. The sample size of each distribution is 10000.
The results are shown in Figs. 3a and 3b. We then simulate the scenario of continual learning, adding
a new distribution at each time step as learning a new task. In this case, real samples of task τ are
drawn from a Gaussian distribution p(x|τ) = N (µτ ,σ

2
τ I), and the model samples are drawn from

qt(x|τ) = N (µτ +∆µ × k,(στ +∆σ × k)2I), where µτ = 2τ,στ = 1,k = t− τ + 1,τ ≤ t. Figs. 3c
and 3d display the estimated average KL-divergence over all learned tasks in comparison with the
true value of averaged KL-divergence.

We see that the estimated value are very close to the true value of KL-divergence. In all cases
the variance of estimated value is increasing while the difference between two distributions getting
larger (i.e. while t increasing), and it is more obvious in higher dimensional data. This phenomenon
relates to the convergence conditions as we discussed in Sec. 2.2. We can also see smaller λc leading
to smaller variance but larger bias. The model capacity of the estimator may affect the performance
as t increases; however, note that with CDRE we have the flexibility to extend the model architecture
since the latest estimator only needs the output of the previous one.
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Figure 4: Evaluating GANs in continual learning on Fashion-MNIST, features for FID and KID are
extracted from the classifier, features for f -divergences are generated by the CVAE. The dimension
of generated features is 64. The sample size is 6000 for each class. The shaded area are plotted by
standard deviation of 10 runs. The y-axis in the right side of Fig. 4b is the y-axis of the purple line
( f -GAN-rvKL), which is in a much larger scale than others.

4.3 EXPERIMENTS WITH IMAGE DATA

Fig. 4 compares several GANs trained on Fashion-MNIST in continual learning using FID, KID and
a few f -divergences. In general, these measures have a consensus that f -GAN-rvKL gives the worst
performance during the whole process. They also agree that f -GAN-JS is the second worst before
task 6 and WGAN-GP is the second worst after task 7. We display randomly chosen model samples
of those GANs in Fig. 5. The experiment results of MNIST are shown in the Appx. C.

And not surprisingly, there are several disagreements between these measures. Regarding f -GAN-
JS, FID and KID are decreasing from task 3 to 10 whereas members of f -divergences are more like a
plateau from task 4 to 10. According to Fig. 5c, we would argue that there is no notable improvement
observed from task 3 to 10, which indicates the decreasing trend of FID and KID is suspicious (it
may be caused by using the pre-trained classifier as the feature generator). Moreover, KID of WGAN
and WGAN-GP fluctuate around an approximately horizontal line whilst other measures show an
increasing trend. Visually, samples from WGAN and WGAN-GP (Figs. 5a and 5b) are obviously
losing fidelity while learning more tasks, which matches the increasing trend in all measures except
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(a) WGAN (b) WGAN-GP

(c) f -GAN-JS (d) f -GAN-rvKL

Figure 5: Fashion-MNIST samples generated by GANs in continual learning. In each figure, each
row displays images generated by the model at each task,the order is from the top to bottom (task 1
to 10). The displayed samples are randomly chosen from generated samples of each class.

KID. Another disagreement is that WGAN and f -GAN-JS perform almost equally well from task
8 to 10 according to the evaluation given by f -divergences whereas FID and KID prefer f -GAN-JS
more than WGAN. In Figs. 5a and 5c, We observe that f -GAN-JS generates more images with
darker color and lower fidelity than WGAN, however, images with brighter color generated by it
show higher fidelity than those samples from WGAN. This may be the reason of the disagreement,
which is analogous to the second toy experiment (Fig. 2) we have demonstrated and implies these
measures focus on different parts of the two distributions in this case. All in all, the experiment
results show that f -divergences estimated by CDRE do provide meaningful evaluations and may
have different opinions with other measures which could be beneficial in various occasions.

5 DISCUSSION

We show that CDRE is capable of estimating f -divergences in the setting of continual learning.
It provides an alternative approach for model selection when other measures are not possible in
continual learning. The results also demonstrate CDRE can work with a simple CVAE for feature
generation when a pre-trained classifier is not available. Moreover, our experiments show that CDRE
can work well when the differences between model samples and real samples are significant, which
is a rather difficult situation for estimating density ratios. We consider a more sophisticated method
of dimensionality reduction for CDRE as a future work, making it work more stably with high-
dimensional data.

In our experiments we use KLIEP to perform ratio estimation which is based on log ratios. It may
be preferable to use LSIF when estimating Pearson χ2 divergence, since a small deviation in log-
ratio can result in large differences. Also, since LSIF itself is based on Pearson χ2 divergence, it
appears to be a more natural choice. It is also possible to estimate the Bregman divergence by ratio
estimation (Uehara et al., 2016), giving even more options of divergences for evaluating generative
models. DRE also has many other applications other than estimating f -divergences, such as change
detection (Liu et al., 2013), mutual information estimation (Sugiyama et al., 2012), etc.. Likewise,
CDRE may be useful for more applications in continual learning which we would like to explore in
the future.
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A EXPERIMENTAL SETTINGS

We elaborate the experimental settings of our experiments here and all implementations 1 are based
on Python 3 and TensorFlow 1.10 (Abadi et al., 2015).

A.1 CONFIGURATION OF FEATURE GENERATORS

The classifier used to extract features on both datasets has two convolutional layers with filter shape
[4,4,1,64], [4,4,64,128] respectively, strides are all [1,2,2,1], and two dense layers with hidden units
[6272, 64]. Batch normalization is performed on the second conv layer and first dense layer.

The encoder of the VAE has two dense layers with hidden units [512, 256], output dimension is
64, and decoder has two dense layers with hidden units [256, 256], output dimension is 784. The
variance of noise is set to 0.1. It’s trained with L2 regularization and the Lagrange multiplier is
0.001.

Both the classifier and VAE are trained with batch size = 100, learning rate = 0.001 and 100 epochs.
Activation function of all hidden layers is ReLU. The optimizer is Adam (Kingma & Ba, 2014) for
all training runs.

A.2 CONFIGURATION OF RATIO ESTIMATORS

The ratio estimator we used in all experiments is the log-linear model as defined in Equation 3 and
Equation 12, and ψ(·) is a neural network with two dense layers, each having 256 hidden units. It is
trained by Adam optimizer and batch size = 2000. On toy data in continual learning, learning rate =
2e-5, λc are shown in Figure 4, sample size is 10000 per task. On MNIST and Fashion-MNIST in
continual learning, λc = 1., learning rate = 1e-5, sample size of each class is 1000, validation sample
size of each class is also 1000. Maximum number of epochs is 1000 for DRE and 2000 for CDRE at
each task, the training process could be early stopped when validation loss increasing. λc increases
linearly with the number of tasks in continual learning, which means at task t, λc,t = λc,0× t.

A.3 CONFIGURATION OF GANS

All GANs are trained with a discriminator having the same architecture as the classifier described
above, except the last dense layer has 1024 hidden unites; a generator having two convolutional
layers with filter shape [4,4,64,128],[4,4,1,64] respectively and two dense layers with hidden units
[1024,6272], applied batch normalization on two dense layers. Activation function is leaky ReLu
(Xu et al., 2015) for all hidden layers. The optimizers are Adam, batch size is 64 and learning rate is
0.0002 and 0.001 for discriminator and generator respectively. f -GAN-rvKL is trained by 6 epochs
as longer training makes it worse, all others trained by 15 epochs. The random input of generators
has dimension 64 for both MNIST and Fashion-MNIST.

B EXPERIMENT RESULTS ON HIGH-DIMENSIONAL FEATURES

Table 2: Evaluating StyleGAN using f -
divergences estimated by DRE

StyleGAN Real samples

KL 2.47±0.02 0.02±9.1e−4
rv KL 3.29±0.18 0.02±9.3e−4
JS 0.86±0.01 0.01±4.5e−4
Hellinger 1.04±0.02 0.01±4.6e−4

In order to show that DRE can work with high dimen-
sional data with high fidelity, We also conducted an ex-
periment with samples generated by StyleGAN on FFHQ
dataset (Karras et al., 2019). We obtain model samples by
the pre-trained StyleGAN2 and estimate f -divergences on
the inception feature space with 2048 dimensions. The
sample size is 50000 and we compare the model sam-
ples with real samples. We see that the f -divergences
estimated by DRE giving reasonable results with small
variance (Tab. 2), which indicates it can be an alternative
measure for those state-of-the-art generative models.

1Source code can be found on www.github.com/revealedafterreview
2https://github.com/NVlabs/stylegan
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Figure 6: Evaluating GANs in continual learning on MNIST, features for FID and KID are extracted
from the classifier, features for f -divergences are generated by CVAE. The shaded area are plotted
by standard deviation of 10 runs.

C EXPERIMENT RESULTS ON MNIST

We show experiment results on MNIST in Figs. 6 and 7, the settings of these experiments are the
same as experiments with Fashion-MNIST.
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(a) WGAN (b) WGAN-GP

(c) f -GAN-JS (d) f -GAN-rvKL

Figure 7: MNIST samples generated by evaluated GANs in continual learning. In each figure, each
row displays figures generated at each task,the order is from the top to bottom.
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