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ABSTRACT

Convolutional Neural Networks (CNNs) have emerged as highly successful tools
for image generation, recovery, and restoration. This success is often attributed
to large amounts of training data. On the contrary, a number of recent experi-
mental results suggest that a major contributing factor to this success is that con-
volutional networks impose strong prior assumptions about natural images. A
surprising experiment that highlights this structural bias towards simple, natu-
ral images is that one can remove various kinds of noise and corruptions from a
corrupted natural image by simply fitting (via gradient descent) a randomly ini-
tialized, over-parameterized convolutional generator to this single image. While
this over-parameterized model can eventually fit the corrupted image perfectly,
surprisingly after a few iterations of gradient descent one obtains the uncorrupted
image, without using any training data. This intriguing phenomena has enabled
state-of-the-art CNN-based denoising as well as regularization in linear inverse
problems such as compressive sensing. In this paper we take a step towards de-
mystifying this experimental phenomena by attributing this effect to particular
architectural choices of convolutional networks, namely fixed convolutional oper-
ations. We then formally characterize the dynamics of fitting a two layer convo-
lutional generator to a noisy signal and prove that early-stopped gradient descent
denoises/regularizes. This results relies on showing that convolutional generators
fit the structured part of an image significantly faster than the corrupted portion.

1 INTRODUCTION

Convolutional neural networks are extremely popular for image generation: The majority of image
generating networks is convolutional, ranging from the Deep Convolutional Generative Adversarial
Networks (DC-GANs) Radford et al. (2015) to the U-Net (Ronneberger et al., 2015). It is well
known that convolutional neural networks incorporate implicit assumption about the signals they
generate, such as pixels that are close being related. This makes them particularly well suited for
representing sets of images or modeling distributions of images. It is less known, however, that
those prior assumptions build into the architecture are so strong that convolutional neural networks
are useful even without ever being exposed to training data.

The fact that convolutional networks are useful without ever being trained was first shown by the so
called Deep Image Prior (DIP) experiment in Ulyanov et al. (2018). This paper demonstrated that
over-paramterized convolutional neural networks can be used to perform image restoration tasks
such as denoising with state-of-the-art performance based on the observation that un-trained convo-
lutional auto-decoders fit a single natural image faster when optimized with gradient descent (i.e.,
with significantly fewer iterations) than pure noise. A more recent paper Heckel & Hand (2019)
proposed a much simpler image generating network, termed the deep decoder. This network can be
seen as the relevant part of a convolutional generator architecture to function as a prior, and can be
obtained from the convolutional autoencoder architectures used in the paper Ulyanov et al. (2018)
by removing the encoder, the skip connections, and the trainable convolutional filters of spacial ex-
tent larger than one. Crucially, the deep decoder does not use learned convolutional filters such as
conventional convolutional networks, but has convolutions with fixed convolutional kernels through
bi-linear upsampling operations, further high-lighting the importance of a particular architecture.
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Figure 1: Fitting an over-parameterized Deep Decoder (DD-O) and the deep image prior (DIP) to a
(a) noisy image, (b) clean image, and (c) pure noise. Here, MSE denotes Mean Square Error of the
network output with respect to the clean image in (a) and fitted images in (b) and (c). While the net-
work can fit the noise due to over-parameterization, it fits structured/natural images in significantly
fewer iterations. Hence, when fitting a noisy image, the image is fitted faster than the noise leading
to denoising via early stopping.

In this paper, we study a simple untrained convolutional network that only consists of convolutional-
like operations, such as the deep image prior and the deep decoder. We consider the over-
parameterized regime where the network has sufficiently many parameters to represent an arbitrary
image (including noise) perfectly and show that:

Fitting convolutional generators via early stopped gradient descent provably denoises “natural” images.

To prove this denoising capability we characterize how the network architecture governs the dynam-
ics of fitting over-parameterzed networks to a single (noisy) image. In particular we prove:

Randomly initialized convolutional generators optimized with
gradient descent fit natural images faster than complex ones.

Here, by complex images, we mean unstructured images that consist of a large number of edges or
variations such as noise.

We depict this phenomena in Figure 1 where we fit a randomly initialized over-parameterized convo-
lutional generator to a signal via running gradient descent on the objective L(C) = ‖G(C)− y‖22.
Here, G(C) is the convolutional generator with weight parameters C, and y is either a noisy im-
age, a clean image, or noise. This experiment demonstrates that over-parameterized convolutional
networks fit a structured/natural image (Figure 1b) much faster than pure noise (Figure 1c). Thus,
when fitting the noisy image (Figure 1a), early stopping the optimization enables image denoising.
Interestingly, this effect is so strong that it gives state-of-the-art denoising performance, outper-
forming the BM3D algorithm (Dabov et al., 2007), which is the next-best method that requires no
training data (see Figure 2). Beyond denoising, this effect also enables significant improvements in
regularizing a variety of inverse problems such as compressive sensing Veen et al. (2018); Heckel
(2019).

1.1 CONTRIBUTIONS AND OVERVIEW OF RESULTS

In this paper we take a step towards demystifying why fitting a convolutional generator via early
stopped gradient descent leads to such surprising denoising and regularization capabilities.

• We show experimentally that this denoising phenomena can be primarily attributed to fixed
convolutional filters, typically implicitly implemented by bi-linear upsampling operations
in the convolutional network.

• We then study over-parameterized convolutional networks (with fixed convolutional filters)
theoretically. Specifically, we show that fitting such a network via early stopped gradient
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Figure 2: Denoising with BM3D and various convolutional generators. The relative ranking of
algorithms is representative and maintained on a large test set of images. DIP and DD-O are over-
parameterized generators and with early stopping outperform the BM3D algorithm, the next best
method that does not require additional training data.
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Figure 3: The 0st, 1st, 5th, and 20th trigonometric basis functions in dimension n = 300.

descent to a signal provably denoises it. Specifically, let x ∈ Rn be a smooth signal
that can be represented exactly as a linear combination of the p orthogonal trigonometric
functions of lowest frequency (defined in equation (4), see Figure 3 for a depiction), and
suppose our goal is to obtain an estimate of this signal from a noisy signal y = x+z where
z ∼ N (0, ς

2

n I). Note that natural images are often smooth. Let ŷ = G(Ct) be the estimate
obtained from early stopping the fitting of a two-layer convolutional generator to y. We
prove this estimate achieves the denoising rate

‖ŷ − x‖22 ≤ c
p

n
ς2,

with c a constant. We note that this rate is optimal up to a constant factor.
• Our denoising result follows from a detailed analysis of gradient descent applied to fitting

a two-layer convolutional generator G(C) with fixed convolutional filters to a noisy signal
y = x + z with x representing the signal and z the noise. Specifically, let x̃ ∈ Rn and
z̃ ∈ Rn be the coefficients of the signal and noise in terms of trigonometric basis functions
w1, . . . ,wn ∈ Rn (precisely defined later, see Figure 3 for a depiction). We show that
there is a dual filter σ ∈ Rn, depending only on the convolutional filter used, whose entries
typically obey σ1 ≥ σ2 ≥ . . . ≥ σn > 0 and can be thought of as weights associated
with each of those basis function. These weights in turn determine the speed at which the
associated components of the signal are fitted. Specifically, we show that the dynamics of
gradient descent are approximately given by

G(Cτ )− x ≈
n∑
i=1

wix̃i(1− ησ2
i )τ︸ ︷︷ ︸

error in fitting signal

+

n∑
i=1

wiz̃i((1− ησ2
i )τ − 1)︸ ︷︷ ︸

fit of noise

.

The filters commonly used are typically such that the dual filter decays rather quickly,
implying that low-frequency components in the trigonometric expansion are fitted signifi-
cantly faster than high frequency ones. So when the signal mostly consists of low-frequency
components, we can choose an early stopping time such that the error in fitting the signal is
very low, and thus the signal part is well described, whereas at the same time only a small
part of the noise, specifically the part aligned with the low-frequency components has been
fitted.
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Figure 4: Left panel: Convolutional generators. The output is generated through repeated con-
volutional layers, channel normalization, and applying ReLU non-linearities. Right panel: Fitting
the phantom MRI and noise with different architectures of depth d = 5, for different number of
over-parameterization factors (1,4, and 16). Gradient descent on convolutional generators involving
fixed convolutional matrixes fit an image significantly faster than noise.

2 CONVOLUTIONAL GENERATORS

A convolutional generator maps an input tensor B0 to an image only using upsampling/no-
upsampling and convolutional operations, followed by channel normalization (a special case of
batch normalization) and applications of non-linearities, see Figure 4. All previously mentioned
convolutional generator networks Radford et al. (2015); Ronneberger et al. (2015) including the
networks considered in the DIP paper Ulyanov et al. (2018) primarily consist of those operations.
Before discussing the specifics of the convolutional generators studied in this paper we first demon-
strate in Section 2.1 that fixed convolutional generators are critical to the denoising performance
with early stopping. In particular, we empirically demonstrate that what makes them fit natural or
simple images significantly faster than complex images or noise are the presence of fixed convolu-
tional kernels. Then in Section 2.2 we formally introduce the convolutional generators studied in
this paper. Finally, in Section 2.3 we introduce a minimal convolutional architecture which will be
the focus of our theoretical results.

2.1 THE IMPORTANCE OF FIXED CONVOLUTIONAL FILTERS

In this section we demonstrate that using fixed convolutional kernel is critical for achieving good
denoising performance. To do this we begin by noting that the upsampling operation present in most
architectures actually implicitly incorporates a convolution with a fixed convolutional (interpolation)
filter. Precisely this operation is critical for the phenomena that structured/natural images are fitted
significantly faster than noise. To see this, consider the experiment in Figure 4 in which we fit an
image and noise by minimizing the least-squares loss via gradient descent with i) a convolutional
generator with only fixed convolutional filters (see Section 2.2 below for a precise description) and
ii) a conventional convolutional generator where the convolutional filters are also learned (essentially
the architecture from the popular DC-GAN generators, see Appendix A for details and additional
numerical evidence). These results show that a generator with fixed filters fits an image much faster
than noise, whereas the network with learned convolutional filters, only fits it slightly faster, and the
effect goes away as the network becomes highly overparameterized. Thus, fixed convolutional filters
are what enables un-trained convolutional networks to function as highly effective image priors.

2.2 ARCHITECTURE OF CONVOLUTIONAL GENERATOR WITH FIXED CONVOLUTIONS

In the previous section we found that convolutional generators with fixed convolutional operators
simple/structured images significantly faster than complex images or noise. In these architectures
(e.g. deep decoder Heckel & Hand (2019)), the channels in the (i+ 1)-th layer are given by

Bi+1 = cn(ReLU(UiBiCi)), i = 0, . . . , d− 1,
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and finally, the output of the d-layer network is formed as

x = BdCd+1.

Here, the coefficient matrices Ci ∈ Rk×k and Cd+1 ∈ Rk×kout contain the weights of the network.
Note the number of channels, k, determines the number of weight parameters of the network, given
by dk2 + koutk. Each column of the tensor BiCi ∈ Rni×k is formed by taking linear combinations
of the channels of the tensor Bi in a way that is consistent across all pixels. Then, cn(·) performs
the channel normalization operation which normalizes each channel individually and can be viewed
as a special case of the popular batch normalization operation (Ioffe & Szegedy, 2015).

The operator Ui ∈ Rni+1×ni is a tensor implementing an upsampling and most importantly a
convolution operation with a fixed kernel. This fixed kernel was chosen in all experiments above as
a triangular kernel so that U performs bi-linear 2x upsampling (this is the standard implementation
in the popular packages pytorch and tensorflow). As mentioned earlier this convolution with a fixed
kernel is critical for fitting natural images faster than complex ones.

2.3 TWO LAYER CONVOLUTIONAL GENERATOR STUDIED THEORETICALLY IN THIS PAPER

The simplest model to study the denoising capability of convolutional generators and the phenomena
that a natural image is fitted faster than a complex one theoretically is a network with only one hidden
layers and one output channel i.e., G(C) ∈ Rn. Then, the generator becomes

G(C) = ReLU(UB1C1)c2,

where U ∈ Rn×n is a circulant matrix that implements a convolution with a filter u. In this paper we
consider the highly over-parameterized regime where k ≥ n. In this regime, using that the input B1

is random, with probability one, the matrix B1 has full column rank and thus spans Rn. It follows
that optimizing over C1 and c2 is equivalent to optimizing over the parameter C ∈ Rn×k in

G(C) = ReLU(UC)v, (1)

where v = [1, . . . , 1,−1, . . . ,−1]/
√
k is fixed and C ∈ Rn×k is the new coefficient matrix we

optimize over. Figure ?? in the appendix shows that even for this simple model, the convolutional
generator fits a simple image faster than pure noise. This is the simplest model in which the phe-
nomena that a convolutional networks fits structure faster than noise can reliably observed. This is
consistent with our previous finding that fixed convolutional operations (for example due to upsam-
pling) are at the heart of the effect. As a consequence, the dynamics of training the model (1) is the
focus of the remainder of this paper.

3 WARMUP: DYNAMICS OF GRADIENT DESCENT ON LEAST SQUARES

As a prelude for fitting convolutional generators via a non-linear least square problem, in this section
we study the dynamics of gradient descent applied to a linear least squares problem which corre-
sponds to a linear network. We demonstrate how early stopping can lead to denoising capabilities
even in this simple linear model. Specifically, we consider a least-squares problem of the form

L(c) =
1

2
‖y − Jc‖22.

We study gradient descent with a constant step size η starting at c0 = 0. In this case the updates are
given by

cτ+1 = cτ − η∇L(cτ ), ∇L(c) = JT (Jc− y).

The following simple proposition characterizes the trajectory of gradient descent.

Proposition 1. Let J ∈ Rn×m whose left singular vectors are given by a matrix W ∈ Rn×n J and
the corresponding singular values given by σ1 ≥ σ2 ≥ . . . , σn. Then the residual after τ steps,
rτ = y − Jcτ , takes the form

rτ =

n∑
i=1

wi 〈wi,y〉 (1− ησ2
i )τ .
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Figure 5: Gradient descent on the least squares problem of minimizing ‖y − Jcτ‖2, where
J ∈ R100×100 has decaying singular values (left panel) and the observation is the sum of a signal
component, equal to the leading singular vector w1 of J, and a noisy component z ∼ N (0, (1/n)I),
i.e., y = w1 + z. The signal component w1 is fitted significantly faster than the other components
(right panel), thus early stopping enables denoising.

Suppose that the observation y lies in the column span of J, and that the stepsize is chosen suf-
ficiently small (η ≤ 1/ ‖J‖2). Then (by Proposition 1) gradient descent converges to a zero-loss
solution and thus fits the signal perfectly. More interestingly, the proposition shows that gradient
descent fits the components of y corresponding to large singular values faster than it fits the compo-
nents corresponding to small singular values.

To explicitly show how this simple observation enables regularization via early stopped gradient
descent, suppose our goal is to find a good estimate of a signal x from a noisy observation

y = x + z,

where the signal x lies in a signal subspace that is spanned by the p leading left-singular vectors of
J. In this case, by Proposition 1, the signal estimate after τ iterations, Jcτ , obeys

‖Jcτ − x‖2 ≤ (1− ησ2
p)τ ‖x‖2 + E(z), E(z) :=

√√√√ n∑
i=1

((1− ησ2
i )τ − 1)2 〈wi, z〉2 . (2)

Thus, after a few iterations most of the signal has been fitted (i.e., (1−ησp)τ is small). Furthermore,
if we assume that the ratio σp+1/σp is sufficiently large so that the spread between the two singular
values separating the signal subspace from the rest is sufficiently large, most of the noise outside the
signal subspace has not been fitted (i.e., ((1− ησ2

i )τ − 1)2 ≈ 0 for i = p+ 1, . . . , n). In particular
suppose the noise vector has a Gaussian distribution given by z ∼ N (0, ς

2

n I). Then E(z) ≈ ς
√

p
n

so that after order τ = log(ε)/ log(1− ησ2
p) iterations, with high probability,

‖Jcτ − x‖2 ≤ ε ‖x‖2 + cς

√
p

n
.

This demonstrates, that provided the signal lies in a subspace spanned by the leading singular vec-
tors, early stoped gradient descent reaches the optimal denoising rate of ς

√
p/n after a few itera-

tions. See Figure 5 for a numerical example demonstrating this phenomena.

4 DYNAMICS OF GRADIENT DESCENT ON CONVOLUTIONAL GENERATORS

In this section we study the implicit bias of gradient descent towards natural/structured images the-
oretically. Consider a two-layer decoder network (introduced in Section 2.3) of the form

G(C) = ReLU(UC)v,

with the ReLU activation function given by ReLU(t) = max(0, t), v = [1, . . . , 1,−1, . . . ,−1]/
√
k,

and with weight parameter C ∈ Rn×k, and recall that U is a circulant matrix implementing a
convolution with a kernel u ∈ Rn. We consider the least squares objective

L(C) =
1

2
‖y −G(C)‖22 (3)
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Figure 6: Triangular and Gaussian kernels and the weights associated to low-frequency trigono-
metric functions they induce for a generator network of output dimension n = 300. The wider the
kernels are, the more the weights are concentrated towards the low-frequency components of the
signal.

and study early-stopped gradient descent with a constant stepsize η starting at a random initialization
of the weights applied to this non-linear least squares problem.

In our warmup section on linear least squares we saw that the singular vectors and values of the
feature matrix J determine the speed at which different components of the noisy signal y are fitted
by gradient descent. The main insight that allows us to extend this intuition to the nonlinear case is
that the role of the feature matrix J can be replaced with the Jacobian of the generator defined as
J (C) := ∂

∂CG(C). Contrary to the linear least squares problem however, in the nonlinear case,
the Jacobian is not constant and changes across iterations. Nevertheless, we show that the eigen-
values/vectors of the Jacobian at the random initialization govern the dynamics of fitting the network
throughout the iterative updates. For the two layer convolutional generator of the form studied in
this paper the left eigenvectors of the Jacobian mapping can be well approximated throughout the
updates. Interestingly, the form of these eigenvectors only depends on the network architecture and
not the convolutional kernel used. We formalize these eigenvectors below.
Definition 1. Define the trigonometric basis functions w1, . . . ,wn

[wi]j =
1√
n


1 k = 0√

2 cos(2πji/n) k = 1, . . . , n/2− 1

(−1)j k = n/2√
2 sin(2πji/n) k = n/2 + 1, . . . , n− 1

. (4)

As mentioned earlier, Figure 3 depicts some of these eigenvectors.

In addition to the left eigenvectors we can also approximate the spectrum of the Jacobian throughout
the updates (for the purposes of denoising) by a dual filter/kernel that only depends on the original
filter/kernel used in the network architecture. We formalize this dual kernel below.
Definition 2 (Dual kernel). Associated with a kernel u ∈ Rn we define the dual kernel σ ∈ Rn as

σ = ‖u‖2

√√√√∣∣∣∣∣Fg
(

u ~ u

‖u‖22

)∣∣∣∣∣ with g(t) =
1

2

(
1− cos−1 (t)

π

)
t.

Here, for two vectors u,v ∈ Rn, u ~ v denotes their circular convolution, the scalar non-linearity
g is applied entrywise, and F is the discrete Fourier transform matrix.

In Figure 6, we depict two commonly used interpolation kernels u, namely a triangular and a Gaus-
sian kernel (recall that the standard upsampling operator is a convolution with a triangle), along with
the induced dual kernel σ. The figure shows that the dual filter σ induced by these kernels is concen-
trated with a few large values associated with the low frequency trigonometric functions, and with
the rest of the values being rather small. This in turn implies that the Jacobian spectrum throughout
training decreases rapidly.

With these definitions in place we are ready to state our main denoising results. We note that we
have slightly simplified the statement of this result for exposition purposes. The appendix contains
more detailed statements at the expense of easy interpretability.
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Theorem 1 (Denoising with early stopping). Consider a noisy signal y ∈ Rn given by y = x + z,
with x ∈ Rn denoting the signal and z ∈ Rn the noise. Assume that x lies in the span of the first p
trigonometric basis functions, and that the noise is Gaussian with distributionN (0, ς

2

n I). To denoise
this signal we fit a two layer generator network with k channels of the form G(C) = ReLU(UC)v
with U a circulant matrix obtained from a convolutional kernel u ∈ Rn. Let σ ∈ Rn denote the
associated dual kernel associated and û denote the discrete Fourier transform of u. Also assume
the number of channels obeys

k ≥ Cun (5)

with Cu a constant only depending on the convolutional kernel u. We fit the neural generator G(C)
to the noisy signal y ∈ Rn by minimizing the least-squares loss (3) via running gradient descent
iterations Cτ+1 = Cτ − η∇L(Cτ ), starting from C0 with i.i.d. N (0, ω2), entries, ω ∝ ‖y‖2√

n
,

and step size obeying η ≤ 1
‖û‖2∞

. Then, with probability at least 1 − e−k2 − 1
n2 , at stopping time

τ = log(1−√p/n)/ log(1− ησ2
p+1), the reconstruction error is bounded by

‖G(Cτ )− x‖2 ≤ (1− ησ2
p)τ ‖x‖2 + Cς

√
p

n
, (6)

for C a fixed numerical constant.

Note that for this choice of stopping time, provided that dual kernel decays sharply around the p-th
singular value, the first term in the bound (6) (i.e., (1−ησ2

p)τ ≈ 0) essentially vanishes and the error
bound becomes O(ς

√
p
n ). The dual kernel decays sharply around the leading eigenvalues provided

the kernel is for example a sufficiently wide triangular or Gaussian kernel (see Figure 6).

This result demonstrates that when the noiseless signal x is sufficiently structured (e.g. contains only
the p lowest frequency components in the trigonometric basis) and the convolutional generator has
sufficiently many channels, then early stopped gradient descent achieves a near optimal denoising
performance proportional to ς

√
p
n . This theorem is obtained from a more general result stated in the

appendix which characterizes the evolution of the reconstruction error obtained by the convolutional
generator.
Theorem 2 (Reconstruction dynamics of convolutional generators). Consider the setting and as-
sumptions of Theorem 1 but now with a fixed noise vector z, and without an explicit stopping time.
Then, for all iterates τ obeying τ ≤ 1

ησ2
p

and provided that k ≥ Cun/ε
4, for some ε > 0, with

probability at least 1− e−k2 − 1
n2 , the reconstruction error obeys

‖G(Cτ )− x‖2 ≤ (1− ησ2
p)τ ‖x‖2 +

√√√√ n∑
i=1

((1− ησ2
i )τ − 1)2 〈wi, z〉2 + ε.

This theorem characterizes the reconstruction dynamics of convolutional generators throughout the
updates. In particular, it helps explains why convolutional generators fit a natural signal significantly
faster than noise, and thus early stopping enables denoising and regularization. To see this note that
as mentioned previously each of the basis functions wi have a (positive) weight, singular value,
or dual kernel element σi > 0 associated with them that only depend on the convolutional kernel
used in the architecture (through the definition of the dual kernel). These weights determine how
fast the different components of the noisy signal is fitted by gradient descent. As we demonstrated
earlier in Figure 6 for typical convolutional filters those weights decay very quickly from low to
high frequency basis functions. As a result when the signal x is sufficiently structured (i.e. lies
in the range of the p trigonometric functions with lowest frequencies), after a few iterations most
of the signal is fitted (i.e., (1 − ησ2

p)τ is small), while most of the noise has not been fitted (i.e.,
((1− ησ2

i )τ − 1)2 ≈ 0 for i = p+ 1, . . . , n). Thus, early stopping achieves denoising.

4.1 THE SPECTRUM OF THE JACOBIAN FOR MULTILAYER NETWORKS

Our theoretical results show that for single hidden-layer networks, the leading singular vectors of the
Jacobian are the trigonometric functions throughout all iterations, and that the associated weights,
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Figure 7: The Singular value distribution of the Jacobian of a four-layer deep decoder after t =
50 and t = 3500 iterations of gradient descent (panel (f)), along with the corresponding singular
vectors/function. The singular functions corresponding to the large singular vectors are close to the
low-frequency Fourier modes and do not change significantly through training.

singular values, or dual kernel values are concentrated towards the low frequency components. In
this section, we show that for a multilayer network, the spectrum of the Jacobian is concentrated
towards singular vectors/functions that are similar to the low-frequency components. We also show
that throughout training those functions do vary, albeit the low frequency components do not change
significantly and the spectrum remains concentrated towards the low frequency components. This
shows that the implications of our theory continue to apply to muli-layer networks.

In more detail, we take a standard one dimensional deep decoder with d = 4 layers with output in
R512 and with k = 64 channels in each layer. Recall that the standard one dimensional decoder ob-
tains layer i+1 from layer i by linearly combining the channels of layer i with learnable coefficients
followed by linear upsampling (which involves convolution with the triangular kernel [1/2, 1, 1/2]).
The number of parameters is d× k2 = 32 · 512, so the network is over-parameterized by a factor of
32. In Figure 7, we display the singular values as well as the leading singular vectors/function of the
Jacobian at initialization (t = 1) and after t = 50 and t = 3500 iterations of gradient descent. As
can be seen the leading singular vectors (s = 1−6) are close to the trigonometric basis functions and
do not change dramatically throughout training. The singular vectors corresponding to increasingly
smaller singular values (s = 20, 50, 100, 150) contain increasingly higher frequency components
but are far from the high-frequency trigonometric basis functions.

5 RELATED LITERATURE

As mentioned before, the DIP paper Ulyanov et al. (2018) was the first to show that over-
parameterized convolutional network enable solving denoising, inpainting, and super-resolution
problems well even without any training data. Subsequently, the paper Heckel & Hand (2019)
proposed a much simpler image generating network, termed the deep decoder. Subsequently the
papers Veen et al. (2018); Heckel (2019); Jagatap & Hegde (2019) have shown that the DIP and
the deep decoder also enables solving/regularizing compressive sensing problems and other inverse
problems.

Since the convolutional generators considered here are image-generating deep networks, our work
is also related to methods that rely on trained deep image models. Deep learning based methods are
either trained end-to-end for tasks ranging from compression (Toderici et al., 2016; Agustsson et al.,
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2017; Theis et al., 2017; Burger et al., 2012; Zhang et al., 2017) to denoising (Burger et al., 2012;
Zhang et al., 2017), or are based on learning a generative image model (by training an autoencoder or
GAN (Hinton & Salakhutdinov, 2006; Goodfellow et al., 2014)) and then using the resulting model
to solve inverse problems such as compressed sensing (Bora et al., 2017; Hand & Voroninski, 2018),
denoising (Heckel et al., 2018), or phase retrieval (Hand et al., 2018; Shamshad & Ahmed, 2018),
by minimizing an associated loss. In contrast to the method studied here, where the optimization is
over the weights of the network, in all the aforementioned methods, the weights are adjusted only
during training and then are fixed upon solving the inverse problem.

Our technical proofs rely on showing that the dynamics of gradient descent on an over-parameterized
network can be related to that of a linear network or a kernel problem. This proof technique has been
utilized in a variety of recent publication Du et al. (2018); Oymak & Soltanolkotabi (2019); Arora
et al. (2019); Oymak et al. (2019). Two recent publication have used this proof technique to show
that functions are learned at different rates: Basri et al. (2019) have shown that functions of different
frequencies are learned at different speeds, and Arora et al. (2019) has provided a theoretical ex-
planation of the empirical observation that a simple 2-layer network fits random labels slower than
actual labels in the context of classification. None of these publications however study denoising,
convolutional generators, or focus on the effect of early stopping. A recent publication Li et al.
(2019) focuses on demonstrating how early stopping leads to robust classification in the presence of
label corruption under a cluster model for the input data. Neither of the aforementioned publication
however, does address denoising in a regression setting or fitting convolutional generators of the
form studied in this paper.
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A A NUMERICAL STUDY OF THE IMPLICIT BIAS OF CONVOLUTIONAL
NETWORKS

To demonstrate that fixed convolutional filters (such as those in the bi-linear upsampling operation)
are what matters for our effect, we study numerically the following four closely related architectural
choices, which differ in the upsampling/no-upsampling and convolutional operations which generate
the activations in the (i+ 1)-st layer, Bi+1, from the activations in the i-th layer, Bi:

i) Bilinear upsampling and linear combinations. Layer i+ 1 is obtained by linearly com-
bining the channels of layer i with learnable coefficients (i.e., performing one-times-one
convolutions), followed by bi-linear upsampling. This is the deep decoder architecture
from (Heckel et al., 2018).

ii) Fixed interpolation kernels and linear combinations. Layer i + 1 is obtained by lin-
early combining the channels of layer i with learnable coefficients followed by convolving
each channel with the same 4x4 interpolation kernel that is used in the linear upsampling
operator.

iii) Parameterized convolutions: Layer i+ 1 is obtained from layer i though a convolutional
layer.

iv) Deconvolutional network: Layer i + 1 is obtained from layer i though a deconvolution
layer. This is essentially the DC-GAN generator architecture.

To emphasize that architectures i)-iv) are structurally extremely similar operations, we recall that
each operation consists only of upsampling and convolutional operations. Let T(c) : Rn → Rn be
the convolutional operator with kernel c, let u the linear upsampling kernel (equal to u = [0.5, 1, 0.5]
in the one-dimensional case), and let U : Rn → R2n be an upsampling operator, that in the one
dimensional case transforms [x1, x2, . . . , xn] to [x1, 0, x2, 0, . . . , xn, 0]. In each of the architec-
tures i)-iv), the `-th channel of layer i + 1 is obtained from the channels in the i-th layer as:
bi+1,` = ReLU

(∑k
j=1 M(cij`)bi

)
, where the linear operator M is defined as follows for the

four architectures

i) M(c) = cT(u)U, ii) M(c) = cT(u), iii) M(c) = T(c), iv) M(c) = T(c)U .

The coefficients associated with the i-th layer are given by Ci = {cij`}, and all coefficients of the
networks are C = {cij`}. Note that here, the coefficients or parameters of the networks are the
weights and not the input to the network.

A.1 DEMONSTRATING IMPLICIT BIAS OF CONVOLUTIONAL GENERATORS

We next show that convolutional generators, in particular those with fixed convolutional operations,
fit natural or simple images significantly faster than complex images or noise. Throughout this
section, for each image or signal x∗ we fit weights by minimizing the loss

L(C) = ‖G(C)− x∗‖22
with respect to the network parameters C using plain gradient descent with a fixed stepsize.

In order to exemplify the effect, we fit the phantom MRI image as well as noise for each of the
architectures above for a 5-layer network. We choose the number of channels, k, such that the
over-parameterization factor (i.e., the ratio of number of parameters of the network over the output
dimensionality) is 1, 4, and 16, respectively. The results show that for architectures i) and ii) in-
volving fixed convolutional operations, gradient descent requires more than one order of magnitude
fewer iterations to obtain a good fit of the phantom MRI image relative to noise. For architectures
ii) and iii), with trainable convolutional filters, we see a smaller effect, but the effect essentially
vanishes when the network is highly over-parameterized.

This effect continues to exist for natural images in general, as demonstrated by Figure 10 which
depicts the average and standard deviation of the loss curves of 100 randomly chosen images from
the imagenet dataset.

12



Under review as a conference paper at ICLR 2020

0

0.05

0.1

0.15

bilinear

1

4

16

fixed kernels

1

4

16

param. convs

1

4

16

deconvolutions

1

4

16

102 104 106
0

0.02
0.04
0.06
0.08

optimizer steps

102 104 106

optimizer steps

102 104 106

optimizer steps

102 104 106

optimizer steps

Figure 8: Fitting the phantom MRI and noise with different architectures of depth d = 5, for
different number of over-parameterization factors (1,4, and 16). Gradient descent on convolutional
generators involving fixed convolutional matrixes fit an image significantly faster than noise.

0 50,000 1 · 105

0

0.002

0.004

0.006

0.008

optimizer steps

re
la

tiv
e

di
st

an
ce

natural image

0 50,000 1 · 105

0

0.2

0.4

0.6

optimizer steps

noise

Figure 9: The relative distances of the weights in each layer from its random initialization. The
weights need to change significantly more to fit the noise, compared to an image, thus a natural
image lies closer to a random initialization than noise.

We also note that the effect continues to exist in the sense that highly structured images with a huge
number of discontinuities are difficult to fit. An example is the checkerboard image in which each
pixel alternates between 1 and 0; this image leads to the same loss curves as noise.

In our next experiment, we highlight that the distance between final and initial network weights is
a key feature that determines the difference of fitting a natural image and noise. Towards this goal,
we again fit the phantom MRI image and noise for the architecture i) and an over-parameterization
factor of 4 and record, for each layer i the relative distance ‖C(t)

i −C
(0)
i ‖/‖C

(0)
i ‖, where C

(0)
i are

the weights at initialization (we initialize randomly), and C
(t)
i are the weights at the optimizer step

t. The plot shows that to fit the noise, the weights have to change significantly, while for fitting a
natural image they only change very slightly.

B THE SPECTRUM OF THE JACOBIAN OF THE DEEP DECODER AND DEEP
IMAGE PRIOR

Our theoretical results predict that for over-parameterized networks, the parts of the signal that is
aligned with the leading singular vectors of the Jacobian at initialization is fitted fastest. In this
section we briefly show that natural images are much more aligned with the leading singular vectors
than with Gaussian noise, which is equally aligned with each of the singular vectors.

Towards this goal, we compute the norm of the product of the Jacobian at a random initalization, C0,
with a signal y as this measures the extent to which the signal is aligned with the leading singular
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Figure 10: The loss curves for architecture i), a convolutional generator with linear upsampling
operations, averaged over 100 3×512×512 (color) images from the Imagenet dataset. Convolutional
generators fit natural images significantly faster than noise.
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Figure 11: The distribution of the norm of the product of the Jacobian at initialization, J (θ0), with
an image and noise of equal norm. For both the deep decoder and the deep image prior, the norm
of product of the Jacobian and the noise (i.e.,

∥∥J T (θ0)z
∥∥) is significantly smaller than that with

a natural image (i.e.,
∥∥J T (θ0)y∗

∥∥), it follows that a structured image is much better aligned with
the leading singular vectors of the Jacobian than the noise. Thus, the Jacobian has an approximate
low-rank structure, with natural images lying in the space spanned by the leading singularvectors.

vectors, due to ∥∥J T (C0)y
∥∥2

=
∥∥VΣWTy

∥∥2
=
∑
i

σ2
i 〈wi,y〉2 ,

where J (C0) = WΣVT is the singular value decomposition of the Jacobian.

Figure 11 depicts the distribution of the norm of the product of the Jacobian at initialization, J (C0),
with an image y∗ or noise z of equal norm (‖y∗‖ = ‖z‖). Since for both the deep decoder and
the deep image prior, the norm of product of the Jacobian and the noise (i.e.,

∥∥J T (C0)z
∥∥) is

significantly smaller than that with a natural image (i.e.,
∥∥J T (C0)y∗

∥∥), it follows that a structured
image is much better aligned with the leading singular vectors of the Jacobian than the Gaussian
noise, which is approximately equally aligned with any of the singular vectors. Thus, the Jacobian
at random initialization has an approximate low-rank structure, with natural images lying in the
space spanned by the leading singularvectors.
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C PROOFS AND FORMAL STATEMENT OF RESULTS

The results stated in the main text are obtained from a slightly more general result which applies
beyond convolutional networks. Specifically, we consider neural network generators of the form

G(C) = ReLU(UC)v, (7)

with C ∈ Rn×k, and U ∈ Rn×n an arbitrary fixed matrix, and v ∈ Rk, with half of the entries of v
equal to +1/

√
k and the other half equal to −1/

√
k.

The (transposed) Jacobian of σ(Uc) is UTdiag(σ′(Uc)). Thus the Jacobian of G(C) is given by

J T (C) =

v1U
Tdiag(ReLU′(Uc1))

...
vkU

Tdiag(ReLU′(Uck))

 ∈ Rnk×n, (8)

where ReLU′ is the derivative of the activation function. Next we define the neural tangent kernel
associated with this generator.

Definition 3 (Neural Tangent Kernel (NTK)). Associated with a generator G(C) we define the
neural tangent kernel

Σ(U) := E
[
J (C)J T (C)

]
,

where expectation is over C with iid N (0, 1) entries.

Consider the eigenvalue decomposition of the NTK given by

Σ(U) =

n∑
i=1

σ2
iwiw

T
i .

Our results depend on the largest and smallest eigenvalue of the NTK, defined throughout as

α = σ2
n, β = σ2

1 = ‖U‖.

With these definitions in place we are now ready to state our result about neural generators.

Theorem 3. Consider a noisy signal y ∈ Rn given by

y = x + z,

where x ∈ Rn is assumed to lie in the signal subspace spanned by the p leading singular vectors
w1, . . . ,wn of Σ(U), and z ∈ Rn is an arbitrary noise vector. Suppose that the number of channels
obeys

k ≥ 234n(β/α)28ξ−4(β/α+ ξΓ)2 (9)

for an error tolerance 0 < ξ ≤
√

8 log
(

2n
δ

)
and for a constant Γ obeying 1 ≤ Γ ≤ 32 β6

ξα6 . We fit
the neural generator G(C) to the noisy signal y ∈ Rn by minimizing a loss of the form

L(C) =
1

2
‖G(C)− y‖22 . (10)

via running gradient descent iterations Cτ+1 = Cτ − η∇L(Cτ ), starting from C0 with
i.i.d. N (0, ω2), entries, ω =

‖y‖2√
nβ
ξ α

2

β2 , and step size obeying η ≤ 1/β2. Then, with probability

at least 1− e−k2 − δ, for all iterations τ ≤ Γ
ηα2 ,

‖x−G(Cτ )‖ ≤ (1− ησ2
p)τ ‖x‖2 +

√√√√ n∑
i=1

((1− ησ2
i )τ − 1)2 〈wi, z〉2 + 2ξ

α2

β2

√
8 log(2n/δ)‖y‖2.

(11)
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C.1 PROOF OF THEOREMS 1 AND 2

Theorems 1 and 2 stated in the main text follow directly from the theorem above as follows. We first
note that for a convolutional generator (where U implements a convolution and thus is circulant)
the eigenvectors of the NTK are given by the trigonometric basis functions per Definition 1 and the
eigenvalues are the square of the entries of the dual kernel (Definition 2). To see this, we note that
as detailed in Section G, the neural tangent kernel is given by

[Σ(U)]ij =
1

2

(
1− cos−1

(
〈ui,uj〉
‖ui‖‖uj‖

)
/π

)
〈ui,uj〉 . (12)

Since the matrix U implements a convolution with a kernel u that is equal to its first column, the
neural tangent kernel Σ(U) is again a circulant matrix and is also Hermitian. Thus its spectrum is
given by the Fourier transform of the first column of the circulant matrix, and its left-singular vectors
are given as cosines and sines of different frequencies, as depicted in Figure 3.

Furthermore, using the fact that the eigenvalues of a circulant matrix are given by its discrete Fourier

transform we can substitute β = ‖U‖ = ‖û‖∞ and α = σn to conclude that Cu ∝
(
‖û‖∞
σn

)30

.
This yields Theorem 2.

Finally, we note that to obtain the simplified final expression in Theorem 1 we also used the fact
that for a Gaussian vector z, the vector WT z is also Gaussian. Furthermore, by the concentration
of Lipschitz functions of Gaussians with high probability we have

n∑
i=1

((1− ησ2
i )τ − 1)2 〈wi, z〉2 ≈ E

[ n∑
i=1

((1− ησ2
i )τ − 1)2 〈wi, z〉2

]
(i)
=
ς2

n

n∑
i=1

((1− ησ2
i )τ − 1)2

(ii)
≤ ς2

2p

n
.

Here, (i) follows from 〈wi, z〉 being zero mean Gaussian with variance ς2/n (since z ∼
N (0, (ς2/n)I), and ‖wi‖2 = 1). Finally, (ii) follows by choosing the early stop time so that it
obeys τ ≤ log(1−√p/n)/ log(1− ησp+1) which in turn implies that (1− ησ2

i )τ ≥ 1−√p/n, for
all i > p, yielding that ((1− ησ2

i )τ − 1)2 ≤ p/n2, for all i > p.

D THE DYNAMICS OF LINEAR AND NONLINEAR LEAST-SQUARES

The results stated in the main text for convolutional generators build on a more general result on
the dynamics of a non-linear least squares problem which applies beyond convolutional networks.
We start by proving this result and then derive our main result on neural network-based denois-
ing, specifically Theorem 3. We then show how Theorems 1 and 2 in the main body follow from
Theorem 3.

In this section we discuss results for gradient descent applied to a nonlinear least-squares problem.
Specifically, we focus on denoising/removing corruption from a corrupted image/signal y ∈ Rn via
a nonlinear least-squares fitting problem of the form

L(θ) =
1

2
‖f(θ)− y‖22 .

Here, f : Rp → Rn is a non-linear model with parameters θ ∈ Rp. To solve this problem, we run
gradient descent with a fixed stepsize η, starting from an initial point θ0 with updates of the form

θτ+1 = θτ − η∇L(θτ ) where ∇L(θ) = J T (θ)(f(θ)− y). (13)

Here, J (θ) ∈ Rn×p is the Jacobian associated with the nonlinear map f with entries given by
[J (θ)]i,j = ∂fi(θ)

∂θj
. To study the properties of the gradient descent iterates (13) we will connect

the non-linear least squares problem with a linear one around the initialization. We note that sim-
ilar strategies have been utilized in a variety of recent publications Du et al. (2018); Oymak &
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Soltanolkotabi (2019); Oymak et al. (2019). In particular, we will associate the following linearized
least-squares problem with the non-linear least squares problem

Llin(θ) =
1

2
‖f(θ0) + J(θ − θ0)− y‖22 . (14)

Here, J ∈ Rn×p, refered to as the reference Jacobian, is a fixed matrix independent of θ that
approximates the Jacobian mapping at initialization, J (θ0), and will be formally defined later on
in this section. Starting from the same initial point θ0, gradient descent updates of this linearized
problem take the form

θ̃τ+1 = θ̃τ − ηJT
(
f(θ0) + J(θ̃τ − θ0)− y

)
= θ̃τ − ηJTJ

(
θ̃τ − θ0

)
− ηJT (f(θ0)− y) . (15)

To show that the non-linear updates (13) are close to the linearized iterates (15), we make the fol-
lowing assumptions:
Assumption 1 (Bounded spectrum). We assume the singular values of the reference Jacobian obey

α ≤ σn ≤ σ1 ≤ β. (16)
Furthermore, we assume that the Jacobian mapping associated with the nonlinear model f obeys

‖J (θ)‖ ≤ β for all θ ∈ Rp. (17)
Assumption 2 (Closeness of the reference and initialization Jacobians). We assume the reference
Jacobian and the Jacobian of the nonlinearity at initialization J (θ0) are ε0-close in the sense that∥∥J (θ0)J T (θ0)− JJT

∥∥ ≤ ε20, and ‖J (θ0)− J‖ ≤ ε0. (18)
Assumption 3 (Bounded variation of Jacobian around initialization). We assume that within a radius
R around the initialization, the Jacobian varies by no more than ε in the sense that

‖J (θ)− J (θ0)‖ ≤ ε

2
, for all θ ∈ BR(θ0), (19)

where BR(θ0) := {θ : ‖θ − θ0‖ ≤ R} is the ball with radius R around θ0.

Our first result shows that under these assumptions the nonlinear iterative updates (13) are inti-
mately related to the linear iterative updates (15). Specifically, we show that the misfit or residuals
associated with these two problems defined below

nonlinear residual: rτ := f(θτ )− y (20)

linear residual: r̃τ :=
(
I− ηJJT

)τ
r0. (21)

are close in the proximity of the initialization.
Theorem 4 (Closeness of linear and nonlinear least-squares problems). Assume the Jacobian map-
pingJ (θ) ∈ Rn×p associated with the function f(θ) obeys Assumptions 1, 2, and 3 around an initial
point θ0 ∈ Rp with respect to a reference Jacobian J ∈ Rn×p and with parameters α, β, ε0, ε, and
R. Furthermore, assume the parameter R is given by

R

2
:=
∥∥J†r0

∥∥
2

+
κ

2

(
1

α2
+ ηT

)
‖r0‖2 (22)

with κ and T constants obeying κ > 0 and T ≥ 1. Also assume that α, β, ε0, ε, and κ obey

ε ≤ 1

8

κα2

β2
and ε0 ≤ min

(
1

4
κ,

√
1

8

κα2

β

)
. (23)

We run gradient descent on the linear and non-linear least squares problem, starting from the same
initialization θ0, and with stepsize obeying η ≤ 1

β2 . Then, for all τ ≤ T ≤ 1
2ηε2 the iterates of the

original and the linearized problems and their corresponding residuals obey

‖rτ − r̃τ‖ ≤
1

2

κ

β
‖r0‖2 (24)∥∥∥θτ − θ̃τ∥∥∥ ≤ κ

2

(
1

α2
+ ητ

)
‖r0‖2 (25)

Moreover, for all iterates τ ≤ T ,

‖θτ − θ0‖ ≤
R

2
. (26)
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The above theorem formalizes that in a (small) radius around the initialization, the non-linear prob-
lem behaves similarly as its linearization. Thus to characterize the performance of the nonlinear
problem for denoising it suffices to characterize the denoising capability of the linearized problem.
This is the subject of our next theorem.

Theorem 5. Consider a linearized denoising reference problem of the form (14) with a reference
Jacobian J ∈ Rn×p. Let J = WΣVT ∈ Rn×p =

∑n
i=1 σiwiv

T
i be the singular value decomposi-

tion of this Jacobian with the singular values defined in decreasing order. Then using the linearized
updates (15) the linearized residual iterates r̃τ can be written as

r̃τ =

n∑
i=1

(
1− ησ2

i

)τ
wi 〈wi, r0〉 . (27)

Moreover, using a step size satisfying η ≤ 1
σ2
1

, the linearized iterates (15) obey

∥∥∥θ̃τ − θ0

∥∥∥2

2
≤ η2

n∑
i=1

(
〈wi, r0〉

1− (1− ησ2
i )τ

ησi

)2

. (28)

In the next section we will show we can combine these two general theorems to provide guarantees
for denoising using general neural networks.

D.1 PROOF OF THEOREM 4 (CLOSENESS OF LINEAR AND NON-LINEAR LEAST-SQUARES)

The proof is by induction. We suppose the statement, in particular the bounds (24), (25), and (26)
hold for iterations t ≤ τ − 1. We then show that they continue to hold for iteration τ in four steps.
We begin by showing that a weaker version of (26) holds. In particular, in Step I we show that
‖θτ − θ0‖2 ≤ R. Then in Steps II and III we show that the bounds (24) and (25) hold, respectively.
Finally, in Step IV we utilize Steps I-III to complete the proof of equation (26).

Step I: Next iterate obeys θτ ∈ BR(θ0). To prove θτ ∈ BR(θ0), first note that by the triangle
inequality and the induction assumption (26) we have

‖θτ − θ0‖2 ≤‖θτ − θτ−1‖2 + ‖θτ−1 − θ0‖2 ,

≤‖θτ − θτ−1‖2 +
R

2
.

So to prove ‖θτ − θ0‖2 ≤ R it suffices to prove ‖θτ − θτ−1‖2 ≤ R/2. To this aim note that

‖θτ − θτ−1‖2 = η ‖∇L(θτ−1)‖2
= η

∥∥J T (θτ−1)rτ−1

∥∥
2

≤ η
(∥∥J T (θτ−1)r̃τ−1

∥∥
2

+ ‖J (θτ−1)‖ ‖rτ−1 − r̃τ−1‖2
)

≤ η
(∥∥JT r̃τ−1

∥∥
2

+ ‖J (θτ−1)− J‖ ‖r̃τ−1‖2 + ‖J (θτ−1)‖ ‖rτ−1 − r̃τ−1‖2
)

(i)
≤ η

∥∥JT r̃τ−1

∥∥
2

+ η(ε+ ε0) ‖r̃τ−1‖2 + ηβ ‖rτ−1 − r̃τ−1‖2
(ii)
≤ η

∥∥JT r̃τ−1

∥∥
2

+ η
1

2
κ ‖r̃τ−1‖2 + η

1

2
κ ‖r0‖2

(iii)
≤ η

∥∥J†r0

∥∥
2

+ ηκ ‖r0‖2

≤ R

2
. (29)

In the above (i) follows from Assumptions 1, 2, and 3, (ii) from ε0 +ε ≤ 1
2κ (which is a consequence

of (23)) combined with with the induction hypothesis (24), and (iii) follows from ‖r̃τ−1‖ ≤ ‖r0‖

18
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as well as from the bound ∥∥JT r̃τ−1

∥∥
2

=
∥∥JT (I− ηJJT )τ−1r0

∥∥
2

=
∥∥Σ(I− ηΣ2)τ−1WT r0

∥∥
2

≤

√√√√ n∑
j=1

σ2
j 〈wj , r0〉2

=
∥∥J†r0

∥∥
2
.

Finally, the last inequality follows by definition of R in (22) together with the fact that T ≥ 1.

Step II: Original and linearized residuals are close: In this step, we bound the deviation of the
residuals of the original and linearized problem defined as

eτ := rτ − r̃τ .

This step relies on the following lemma from Oymak et al. (2019).

Lemma 1 (Bound on growth of perturbations, (Oymak et al., 2019, Lem. 6.7)). Suppose that As-
sumptions 1, 2, and 3 hold and that θτ , θτ+1 ∈ BR(θ0). Then, provided the stepsize obeys η ≤ 1/β2,
the deviation of the residuals obeys

‖eτ+1‖2 ≤ η
(
ε20 + εβ

)
‖r̃τ‖2 +

(
1 + ηε2

)
‖eτ‖2 . (30)

By the previous step, θτ , θτ+1 ∈ BR(θ0). We next bound the two terms on the right hand side
of (30). Regarding the first term, we note that an immediate consequence of Theorem 5 is the
following bound on the residual of the linearized iterates:

‖r̃τ‖2 ≤
(
1− ηα2

)τ ‖r0‖2 . (31)

In order to bound the second term in (30), namely, ‖eτ‖2, we used the following lemma, proven
later in Section D.1.1.

Lemma 2. Suppose that for positive scalars α, η, ρ, ξ > 0, η ≤ 1/α2, the sequences r̃τ and eτ obey

r̃τ ≤
(
1− ηα2

)τ
ρ

eτ ≤
(
1 + ηε2

)
eτ−1 + ηξr̃τ−1

Then, for all τ ≤ 1
2ηε2 , we have that

eτ ≤ 2ξ
Γ

α2
. (32)

With these lemmas in place we now have all the tools to prove that the original and linear residuals
are close. In particular, from Step I, we know that θτ ∈ BR(θ0) so that the assumptions of Lemma 1
are satisfied. Thus, combining Lemmas 1, equation (31), and Lemma 2 above we conclude that for
all τ ≤ min

(
1

2ηε2 ,Γ
1
ηα2

)
‖eτ‖2 ≤ 2

(
ε20 + εβ

)
α2

‖r0‖2 ≤
κ

2β
‖r0‖2 , (33)

where in the last inequality we used the assumption that 2(ε20+εβ)
α2 ≤ κ

2β . This concludes the proof
of (24).

Step III: Original and linearized parameters are close: First note that by the triangle inequality
and Assumption 3 we have

‖J (θτ )− J‖ ≤ ‖J (θτ )− J (θ0)‖ + ‖J (θ0)− J‖ ≤ ε0 + ε. (34)
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The difference between the parameter of the original iterate θ and the linearized iterate θ̃ obey

1

η

∥∥∥θτ − θ̃τ∥∥∥
2
≤

∥∥∥∥∥
τ−1∑
t=0

∇L(θt)−∇Llin(θ̃t)

∥∥∥∥∥
2

=

∥∥∥∥∥
τ−1∑
t=0

J T (θt)rt − JT r̃t

∥∥∥∥∥
2

≤
τ−1∑
t=0

∥∥(J T (θt)− JT )r̃t
∥∥

2
+
∥∥J T (θt)(rt − r̃t)

∥∥
2

(i)
≤
τ−1∑
t=0

(ε0 + ε) ‖r̃t‖2 + β ‖et‖2

(ii)
≤ (ε0 + ε)

τ−1∑
t=0

(
1− ηα2

)τ−1 ‖r0‖2 + β

τ−1∑
t=0

‖et‖2

= (ε0 + ε)
1− (1− ηα2)τ

ηα2
‖r0‖2 + β

τ−1∑
t=0

‖et‖2

(iii)
≤ (ε0 + ε)

ηα2
‖r0‖2 +

κτ

2
‖r0‖2

(iv)
≤ κ

2ηα2
‖r0‖2 +

κτ

2
‖r0‖2

where (i) follows from (34) combined with Assumption 1, (ii) from (31), (iii) from η ≤ 1/β2 which
implies (1− ηα2) ≥ 0 and (33). Finally, where (iv) follows from the fact that ε ≤ 1

8κ and ε0 ≤ 1
4κ

per (23). This concludes the proof of (25).

Step IV: Completing the proof of (26): By the triangle inequality

‖θτ − θ0‖2 ≤
∥∥∥θ̃τ − θ0

∥∥∥
2

+
∥∥∥θτ − θ̃τ∥∥∥

2

(i)
≤
∥∥J†r0

∥∥
2

+
κ

2

(
1

α2
+ ητ

)
‖r0‖2

(ii)
≤ R/2,

where inequality (i) follows from the bound (25), which we just proved, and the fact that, from
equation (35) in Theorem 5,∥∥∥θ̃τ − θ0

∥∥∥2

2
=

n∑
i=1

〈wi, r0〉2
(1− (1− ησ2

i )τ )2

σ2
i

≤
n∑
i=1

〈wi, r0〉2 /σ2
i

=
∥∥J†r0

∥∥2
.

Moreover, inequality (ii) follows from τ ≤ T , by assumption as well as from the definition of R in
equation (22).

D.1.1 PROOF OF LEMMA 2

We prove the result by induction. Assume equation (32) holds true for some τ . We prove that then
it also holds true for τ + 1. By the two assumptions,

eτ+1 − eτ ≤ ηε2eτ + ηξr̃τ

≤ ηε2eτ + ηξ(1− ηα2)τρ

(i)
≤ ηξ

(
ε2

2ρ

α2
+ (1− ηα2)τρ

)
,
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where (i) follows from the induction assumption (32). Summing up the difference of the errors gives

eτ
ξ

=

τ−1∑
t=0

(et+1 − et)
ξ

≤ τηε2 2ρ

α2
+ ηρ

τ−1∑
t=0

(1− ηα2)t

= τηε2
2ρ

α2
+ ηρ

1− (1− ηα2)τ

ηα2

≤ ρ

α2
(η2τε2 + 1)

≤ 2
ρ

α2
,

where the last inequality follows from the assumption that τ ≤ 1
ηε2 .

D.2 PROOF OF THEOREM 5

The proof of identity (27) is equivalent to the proof of Proposition (1). Regarding inequality (28),
note that

θ̃τ − θ̃0 = −η
τ−1∑
t=0

∇Llin(θ̃t) = −η
τ−1∑
t=0

JT r̃t = −ηV

(
τ−1∑
t=0

Σ
(
I− ηΣ2

)t)〈u1, r0〉
...

〈un, r0〉

 .
Thus〈

vi, θ̃τ − θ̃0

〉
= −ησi 〈ui, r0〉

(
τ−1∑
t=0

(1− ησ2
i )t

)
= −ησi 〈ui, r0〉

1− (1− ησ2
i )τ

ησ2
i

. (35)

This in turn implies that ∥∥∥θ̃τ − θ̃0

∥∥∥2

2
≤

n∑
i=1

(
〈ui, r0〉

1− (1− ησ2
i )τ

σi

)2

.

E PROOFS FOR NEURAL NETWORK GENERATORS (PROOF OF THEOREM 3)

In the previous sections we proved general results for the trajectory of gradient descent applied
to a non-linear least-squares problem, and for a linear least squares problem. In this section, we
build on those results (specifically Theorems 4 and 5) by proving general result for denoising via
early stopping neural network generators. The proof of Theorem 3 relies on the fact (as formalized
below) that the Jacobian of the non-linear least squares problem around the initialization behaves
like a linearized problem related to the expected value of the Jacobian at initialization. In particular,
we utilize the fact that in a ball around the initialization, by Theorem 4, the trajectory of the non-
linear least squares problem is close to that of the linear least-squares problem whose convergence
behavior is characterized in Theorem 5.

We apply Theorem 4 with the nonlinearity G(C) = ReLU(UC)v with the parameter given by
θ = C, and v a fixed vector with half of the entries 1/

√
k, and the other half −1/

√
k. Similarly,

we shall apply Theorem 5 with the reference Jacobian matrix J :=
(
E
[
J (C)J T (C)

]) 1
2 so that it

obeys JJT = E
[
J (C)J T (C)

]
. To apply these theorems we need to show the conditions of these

theorems hold. To this aim we state a few lemmas proven in Appendix H. The first lemma controls
the perturbation of the Jacobian matrix around a random initialization.
Lemma 3 (Jacobian perturbation around initialization). Consider G(C) = ReLU(UC)v. Let C0

be a matrix with i.i.d. N(0, ω2) entries. Then, for all C obeying

‖C−C0‖ ≤ ωR̃ with R̃ ≤ 1

2

√
k,
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the Jacobian mapping associated with this generator (given by (8)) obeys

‖J (C)− J (C0)‖ ≤ ‖v‖∞ 2(kR̃)1/3 ‖U‖ ,

with probability at least 1− ne− 1
2 R̃

4/3k7/3 .

In the next lemma we show that the Jacobian has bounded spectrum.
Lemma 4 (Spectral norm of Jacobian). Consider G(C) = ReLU(UC)v with the associated Ja-
cobian J (C) given by (8), and let J be any matrix obeying JJT = E

[
J (C)J T (C)

]
, where the

expectation is over a matrix C with iid N (0, ω2) entries. Then

‖J (C)‖ ≤ ‖v‖2 ‖U‖ and ‖J‖ ≤ ‖v‖2 ‖U‖ .

The next lemma shows that the Jacobian times Jacobian transpose at initialization is close to its
expected value, which is the neural tangent kernel (see Definition 3). Using the formula for the
Jacobian 8, this can be written as

Σ(U) = ‖v‖22 Ec∼N (0,ω2)

[
ReLU′(Uc)ReLU′(Uc)

T
]
�UUT ,

where � ist the entrywise product of two vectors/matrices.
Lemma 5 (Concentration lemma). Consider G(C) = ReLU(UC)v with the associated Jacobian
J (C) given by (8). Also let C ∈ Rn×k be generated at random with i.i.d. N (0, ω2) entries. Then,

∥∥J (C)J T (C)−Σ (U)
∥∥ ≤ ‖U‖2

√√√√log

(
2n

δ

) k∑
`=1

v4
` ,

holds with probability at least 1− δ.

Note that Lemma 5 only ensures the first condition in (18). To see that it also implies the second
condition in (18), we used the following lemma which establishes that the first condition implies the
second.
Lemma 6 ((Oymak et al., 2019, Lem. 6.4)). Let X ∈ Rn×p, p ≥ n and let B be n× n psd matrix
obeying

∥∥XXT −B
∥∥ ≤ ε2, for a scalar ε ≥ 0. Then there exists a matrix Y ∈ Rn×p obeying

B = YYT such that
‖Y −X‖ ≤ 2ε.

Finally, we need the following lemma which bounds the initial misfit/residual.
Lemma 7 (Initial residual). Consider G(C) = ReLU(UC)v, and let C ∈ Rn×k be generated at
random with i.i.d. N (0, ω2) entries. Suppose half of the entries of v are ν/

√
k and the other half

are −ν/
√
k, for some constant ν > 0. Then, with probability at least 1− δ,

‖G(C)‖2 ≤ νω
√

8 log(2n/δ) ‖U‖F .

With these lemmas in place we now have all the elements to verify the conditions of Theorem 4.
We thus turn our attention to verifying Assumptions 1, 2, 3, and conditions of (23) with parameters
given by ν = 1 and

α = σn (Σ(U)) , β = ‖U‖ , κ = ξ
α2

β
, ε0 = 2 ‖U‖

(
log(2n/δ)

k

)1/4

, ω =
‖y‖2√
nβ

ξ
α2

β2
.

First note that with those choices, the initial residual can be upper bounded as

‖r0‖2 ≤ ‖y‖2 + ‖G(C0)‖2 ≤ 2‖y‖2, (36)

where we used that, by Lemma 7,

‖G(C0)‖2 ≤ ω
√

8 log(2n/δ) ‖U‖F ≤ ‖y‖2ξ
α2

β2

√
8 log(2n/δ), (37)
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together with the bound ξ ≤ 1/
√

8 log(2n/δ) and α/β ≤ 1.

Verifying Assumption 1: To verify Assumption 1 note that by definition JJT = Σ(U) thus trivially
σn (Σ(U)) ≥ α holds. Furthermore, Lemma 4 combined with the fact that ‖v‖2 = 1 implies that
‖J‖ ≤ β and ‖J (C)‖ ≤ β for all C. This completes the verification of Assumption 1.

Verifying Assumption 2: We begin by verifying the first condition of the assumption, inequal-
ity (18). To this aim note that using the fact that

∑k
` v

4
` = ν4

k by Lemma 5 we have

∥∥J (C0)J T (C0)−Σ(U)
∥∥ ≤ ‖U‖2

√
log
(

2n
δ

)
k

≤ ε20, (38)

holds with probability at least 1 − δ. Thus, the first condition in (18) is satisfied. Furthermore,
combining the first inequality in (38) with Lemma 6 we conclude that the second condition in (18)
also holds for the chosen value of ε0.

Verifying Assumption 3: First, note that the radius in the theorem, defined in equation (22), obeys

R = 2
∥∥J†r0

∥∥
2

+ κ

(
1

α2
+ ηT

)
‖r0‖2

(i)
≤
(

2

α
+

κ

α2
+ ηκT

)
‖r0‖2

(ii)
≤ 4

(
1

α
+
ξ

β
T

)
‖y‖2

(iii)
≤ ω

ξ3

215

α12

β12

√
k

:= ωR̃.

Here, (i) follows from the fact that
∥∥∥J†Sr0

∥∥∥
2
≤ 1

α ‖r0‖2, (ii) from the bound on the initial resid-
ual (36), and finally (iii) follows from the assumption (9).

Note that since ∆ = ξ3

215
α12

β12 ≤ 1
2 for this choice of radius by Lemma 3 we have

‖J (C)− J (C0)‖ ≤ ‖v‖∞ 2(kR̃)1/3 ‖U‖ =
ξ

16
‖U‖ α

4

β4
,

holds with probability at least

1− ne−
1

221
ξ4 α

16

β16
k25/6 (i)

≥ 1− δ,

where in (i) we used (9) together with ξ ≤
√

8 log
(

2n
δ

)
. Therefore, Assumption 3 holds with high

probability by choosing

ε =
ξ

8
‖U‖ α

4

β4
.

Verifying the conditions of (23): We now turn our attention to verifying that the bounds on ε and
ε0 in (23) are satisfied. We begin by showing the bound on ε holds. To this aim note that our choice
of ε can alternatively be written as ε = ξ

8
α4

β3 so that the condition ε ≤ 1
8
κα2

β2 on ε is satisfied. To
verify the second condition in (23) note that

ε0 = 2ν‖U‖ 4

√
log(2n/δ)

k
= 2β

4

√
log(2n/δ)

k

(i)
≤ 1

4
κ

(ii)
= min

(
1

4
κ,

√
1

8

κα2

β

)
,

where inequality (i) holds by (9) which implies 8 4
√

log(2n/δ)/k ≤ ξ α
2

β2 = κ
β (ii) holds by the

assumption ξ ≤ 2.

Verifying the bound on number of iterations: Finally we note that the constraint on the number
of iterations, T , T ≤ 1

2ηε2 , from Theorem 4 is satisfied under the number of constraints of Theorem

3 by 1
2ηε2 = 32 β6

ηξ2α8 .
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Now that we have verified the conditions of Theorem 4 we can apply this theorem. This allows us
to conclude that

‖G(Cτ )− x‖2 = ‖G(Cτ ) + z− y‖2
= ‖rτ + z‖2
= ‖r̃τ + z + rτ − r̃τ‖2
(i)
≤ ‖r̃τ + z‖2 + ‖rτ − r̃τ‖2
(ii)
≤ ‖r̃τ + z‖2 +

1

2
ξ
α2

β2
‖r0‖2

(iii)
=
∥∥∥W (

I− ηΣ2
)τ

WT r0 + z
∥∥∥

2
+

1

2
ξ
α2

β2
‖r0‖2

(iv)
=
∥∥∥W (

I− ηΣ2
)τ

WT (G(C0)− x)−
(
W
(
I− ηΣ2

)τ
WT − I

)
z
∥∥∥

2
+

1

2
ξ
α2

β2
‖r0‖2

(v)
≤
∥∥∥(I− ηΣ2

)τ
WTx

∥∥∥
2

+
∥∥∥((I− ηΣ2

)τ − I
)

WT z
∥∥∥

2
+ ‖G(C0)‖2 +

1

2
ξ
α2

β2
‖r0‖2

(vi)
≤ (1− ησ2

r)τ ‖x‖2 +

√√√√ n∑
i=1

((1− ησ2
i )τ − 1)2 〈wi, z〉2 + 2‖y‖2ξ

α2

β2

√
8 log(2n/δ).

Here, (i) follows from the triangular inequality, (ii) from Theorem 4 equation (24), (iii) from Theo-
rem 5, (iv) from r0 = G(C0) − y = G(C0) − x − z, (v) from the triangular inequality, (vi) from
the fact that x ∈ span{w1,w2, . . . ,wr} combined with the fact that

∥∥W (
I− ηΣ2

)τ
WT

∥∥ ≤ 1.
Finally, (vi) follows by bounding the last two terms with the bounds (36) and (37), respectively. This
proves the final bound (11), as desired.

F PROOF OF PROPOSITION 1 AND EQUATION (2)

The residual of gradient descent at iteration τ is

rτ = y −Axτ

= y −A(xτ−1 − ηAT (Axτ−1 − y))

= (I− ηAAT )(y −Axτ−1)

= (I− ηAAT )τ (y −Ax0)

= (I− ηAAT )τy

= (I− ηUΣ2UT )τy

where we used that x0 = 0 and the SVD A = UΣVT . Expanding y in terms of the singular
vectors ui (i.e., the columns of U), as y =

∑
i ui 〈ui,y〉, and noting that (I − ηUΣ2UT )τ =∑

i(1− ασ2
i )τuiu

T
i we get

rτ =
∑
i

(1− ησ2
i )τui 〈ui,y〉 ,

as desired.

Proof of equation (2): By proposition 1 and using that y∗ and lies in the signal subspace

y∗ −Axτ =

p∑
i=1

ui(1− ησ2
i )τ 〈ui,y∗〉+

n∑
i=1

ui((1− ησ2
i )τ − 1) 〈ui, z〉 .
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By the triangle inequality,

‖y∗ −Axτ‖ ≤

∥∥∥∥∥
p∑
i=1

ui(1− ησ2
i )τ 〈ui,y∗〉

∥∥∥∥∥ +

∥∥∥∥∥
n∑
i=1

ui((1− ησ2
i )τ − 1) 〈ui, z〉

∥∥∥∥∥
≤ (1− ησ2

p)τ‖y∗‖ +

√√√√ n∑
i=1

((1− ησ2
i )τ − 1)2 〈ui, z〉2 ,

where the second inequality follows by using orthogonality of the ui and by using (1 − ησ2
i ) ≤ 1,

from η ≤ 1/σ2
max. This concludes the proof of equation (2).

G THE NEURAL TANGENT KERNEL FOR CONVOLUTIONAL GENERATORS

We first prove the closed form expression of the neural tangent kernel, i.e., equation (12). By the
expression for the Jacobian in equation (8), we have that

J (C)J T (C) =

k∑
`=1

v2
`diag(σ′(Uc`))UUTdiag(σ′(Uc`))

=

k∑
`=1

v2
`σ
′(Uc`)σ

′(Uc`)
T �UUT

= σ′(UC)diag(v2
1 , . . . , v

2
k)σ′(UC)

T �UUT ,

where � denotes the entrywise product of the two matrices. Then,

E
[
J (C)J T (C)

]
=

k∑
`=1

v2
`E
[
σ′(Uc`)σ

′(Uc`)
T
]
�UUT . (39)

Next, we have with (Daniely et al., 2016, Sec. 4.2) and using that the derivative of the ReLU function
is the step function,[

E
[
σ′(Uc`)σ

′(Uc`)
T
]]
ij

=
1

2

(
1− cos−1

(
〈ui,uj〉
‖ui‖‖uj‖

)
/π

)
.

Using that ‖v‖2 = 1, we get[
E
[
J (C)J T (C)

]]
ij

=
1

2

(
1− cos−1

(
〈ui,uj〉
‖ui‖‖uj‖

)
/π

)
〈ui,uj〉 ,

where ui are the rows of U. This concludes the proof of equation (12).

We next briefly comment on the singular value decomposition of a circulant matrix and explain
that the singular vectors are given by Definition 1. Recall, that U ∈ Rn×n is a circulant matrix,
implementing the convolution with a filter. Assume for simplicity that n is even. It is well known
that the discrete Fourier transform diagonalizes U, i.e.,

U = F−1ÛF,

where F ∈ Cn×n is the DFT matrix with entries

[F]jk = ei2πjk/n, j, k = 0, . . . , n− 1,

and Û is a diagonal matrix with diagonal Fu, where u is the first column of the circulant matrix
U. From this, we can compute the singular value decomposition of U by using that û = Fu is
conjugate symmetric (since u is real) so that

[û]n−k+2 = û∗, k = 2, . . . , n/2.

Let U = WΣVT be the singular value decomposition of U. The entries of the left singular vectors
are given by the trigonometric basis functions defined in (4), and the singular values are given by
the absolute values of û.
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H PROOFS OF LEMMAS FOR NEURAL NETWORK DENOISERS (PROOFS OF
AUXILIARY LEMMAS IN SECTION E)

H.1 PROOF OF LEMMA 3: JACOBIAN PERTURBATION AROUND INITIALIZATION

The proof follows that of (Oymak & Soltanolkotabi, 2019, Lem. 6.9).

1. We start by relating the perturbation of the Jacobian to a perturbation of the activation
patterns. For any C,C′, we have that

‖J (C)− J (C′)‖ ≤ ‖v‖∞‖U‖max
j

∥∥σ′(uTj C)− σ′(uTj C′)
∥∥2
. (40)

To see this, first note that, by (8),

J (C)− J (C′) = [. . . vj(diag(σ′(Ucj))− diag(σ′(Ucj))
′)U . . .].

This in turn implies that

‖J (C)− J (C′)‖2 =
∥∥∥(J (C)− J (C′))(J (C)− J (C′))

T
∥∥∥

=
∥∥∥(σ′(UC)− σ′(UC′))diag(v2

1 , . . . , v
2
k)(σ′(UC)− σ′(UC′))

T �UUT
∥∥∥2

(i)
≤ ‖U‖2 max

j

∥∥(σ′(uTj C)− σ′(uTj C′))diag(v)
∥∥2

≤ ‖v‖2∞‖U‖
2

max
j

∥∥σ′(uTj C)− σ′(uTj C′)
∥∥2
,

where for (i) we used that for two positive semidefinite matrices A,B, λmax(A � B) ≤
λmax(A) maxi Bii. This concludes the proof of equation (40).

2. Step one implies that we only need to control σ′(Ucj) around a neighborhood of c′j . Since
σ′ is the step function, we need to count the number of sign flips between the matrices UC
and UC′. Let |v|π(q) be the q-th smallest entry of v in absolute value.
Lemma 8. Suppose that, for all i, and q ≤ k,

‖C−C′‖ ≤ √q
|uTi C′|π(q)

‖ui‖
.

Then
max
i

∥∥σ′(uTi C)− σ′(uTi C′)
∥∥ ≤√2q

Proof. Suppose that σ′(uTi C) and σ′(uTi C′) have 2q many different entries, then the con-
clusion of the statement would be violated. We show that this implies the assumption is
violated as well, proving the statement by contraction. By the contradiction hypothesis,

‖C−C′‖2 ≥
∥∥uTi (C−C′)

∥∥2
/‖ui‖2

≥ q
|uTi C′|2π(q)

‖ui‖2
,

where the last inequality follows by noting that at least 2q many entries have different
signs, thus their difference is larger than their individual magnitudes, and at least q many
individual magnitudes are lower bounded by the q-th smallest one.

3. Next, we note that, with probability at least 1−ne−kq2/2, the q-th smallest entry of uTi C′ ∈
Rk obeys

|uTi C′|π(q)

‖ui‖
≥ q

2k
ν for all i = 1, . . . , n. (41)

We note that it is sufficient to prove this result for ν = 1. This follows from anti-
concentration of Gaussian random variables. Specifically, with the entries of C′ being
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iid N (0, 1) distributed, the entries of g = uTi C′/‖ui‖ ∈ Rk are iid standard Gaussian
random variables as well. We show that with probability at least 1 − e−kq2/2, at most q
entries are larger than q

2k . Let γδ be the number for which P [|g`| ≤ γδ] ≤ δ, where g is
a standard Gaussian random variable. Note that γδ ≥

√
π/2δ ≥ δ. Define the random

variable

δ` =

{
1 if |g`| ≤ γδ,
0 otherwise.

with δ = q
2k . With E [δ`] = δ, by Hoeffding’s inequality,

P

[
k∑
`=1

δ` ≥ m

]
= P

[
k∑
`=1

δ` − E [δ`] ≥ m/2

]
≤ e−2k(m/2)2 = e−km

2/2. (42)

Thus, with probability at least 1− ke−kq2/2 no more than m entries are smaller than γδ ≥
δ = q

2k . The results now follows by taking the union bound over all i = 1, . . . , n.

We are now ready to conclude the proof of the lemma. By equation (40),

‖J (C)− J (C′)‖ ≤ ‖v‖∞‖U‖max
j

∥∥σ′(uTj C)− σ′(uTj C′)
∥∥

≤ ‖v‖∞‖U‖
√

2q

provided that
‖C−C′‖ ≤ √q q

2k
ν,

with probability at least 1 − ne−kq2/2. Setting q = (2kR)2/3 concludes the proof (note that the
assumption R ≤ 1

2

√
k ensures q ≤ k).

H.2 PROOF OF LEMMA 4: BOUNDED JACOBIAN

By the expression of the Jacobian in equation (8),

‖J (C)‖2 =
∥∥∥J (C)J (C)

T
∥∥∥

=
∥∥∥σ′(UC)diag(v2

1 , . . . , v
2
k)σ′(UC)

T �UUT
∥∥∥2

(i)
≤ ‖U‖2 max

j

∥∥σ′(uTj C)diag(v)
∥∥2

2

≤ ‖v‖22 ‖U‖
2
,

where for (i) we used that for two positive semidefinite matrices A,B, λmax(A � B) ≤
λmax(A) maxi Bii. To prove the second inequality note that∥∥JJT

∥∥ = ‖Σ(U)‖

= ‖v‖22
∥∥∥Ec∼N (0,1)

[
ReLU′(Uc)ReLU′(Uc)

T
]
�
(
UUT

)∥∥∥
(i)
≤‖v‖22

∥∥UUT
∥∥

= ‖v‖22
∥∥UUT

∥∥ .
Here, (i) follows from the fact that for two positive semidefinite matrices A,B, λmax(A � B) ≤
λmax(A) maxi Bii.

H.3 PROOF OF LEMMA 5: CONCENTRATION LEMMA

We begin by defining the zero-mean random matrices

S` = v2
`

(
σ′(Ũc`)σ

′(Ũc`)
T − E

[
σ′(Ũc`)σ

′(Ũc`)
T
])
�
(
ŨŨT

)
.
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With this notation,

J (C)J T (C)−Σ(Ũ) =

k∑
`=1

v2
`

(
σ′(Ũc`)σ

′(Ũc`)
T − E

[
σ′(Ũc`)σ

′(Ũc`)
T
])
�
(
ŨŨT

)
=

k∑
`=1

S`.

To show concentration we use the matrix Hoeffding inequality. To this aim note that the summands
are centered in the sense that E

[
S`
]

= 0. Next note that(
σ′(Ũc`)σ

′(Ũc`)
T − E

[
σ′(Ũc`)σ

′(Ũc`)
T
])
�
(
ŨŨT

)
�
(
σ′(Ũc`)σ

′(Ũc`)
T
)
�
(
ŨŨT

)
=diag

(
σ′(Ũc`)

T
)

ŨŨT diag
(
σ′(Ũc`)

)
�B2ŨŨT

Similarly,(
σ′(Ũc`)σ

′(Ũc`)
T − E

[
σ′(Ũc`)σ

′(Ũc`)
T
])
�
(
ŨŨT

)
�− E

[
σ′(Ũc`)σ

′(Ũc`)
T
]
�
(
ŨŨT

)
�−B2ŨŨT .

Thus,

−v2
`B

2ŨŨT � S` � v2
`B

2ŨŨT .

Therefore, using A` := v2
`B

2ŨŨT we have

S2
` � A2

` ,

and

σ2 :=

∥∥∥∥∥
k∑
`=1

A2
`

∥∥∥∥∥ ≤ B4

(
k∑
`=1

v4
`

)∥∥∥Ũ∥∥∥4

To continue we will apply matrix Hoeffding inequality stated below.
Theorem 6 (Matrix Hoeffding inequality, Theorem 1.3 Tropp (2011)). Consider a finite sequence
S` of independent, random, self-adjoint matrices with dimension n, and let {A`} be a sequence of
fixed self-adjoint matrices. Assume that each random matrix satisfies

E[S`] = 0 and S2
` � A2

` almost surely.

Then, for all t ≥ 0,

P

[∥∥∥∥∥
k∑
`=1

S`

∥∥∥∥∥ ≥ t
]
≤ 2ne−

t2

8σ2 where σ2 :=

∥∥∥∥∥
k∑
`=1

A2
`

∥∥∥∥∥ .
Therefore, applying matrix Hoeffding inequality we get that

P

[∥∥∥∥∥
k∑
`=1

S`

∥∥∥∥∥ ≥ t
]
≤ 2ne

− t2

B4‖v‖44‖Ũ‖
4
,

which concludes the proof.

H.4 PROOF OF LEMMA 7 (BOUND ON INITIAL RESIDUAL)

Proof. Without loss of generality we prove the result for ν = 1. First note that by the triangle
inequality

‖r0‖2 = ‖σ(UC)v − y‖2 ≤ ‖σ(UC)v‖2 + ‖y‖2 .
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We next bound ‖σ(UC)v‖2. Consider the i-th entry of the vector σ(UC)v ∈ Rn, given by
σ(uTi C)v, and note that qj = (σ(uTi cj) − σ(uTi cn−j))/ ‖ui‖2 is sub-Gaussian with parameter
2, i.e., P [|qj | ≥ t] ≤ 2e−2t2 . It follows that

P

∣∣∣∣∣∣
k/2∑
j=1

qj

∣∣∣∣∣∣ ≥ β√k
 ≤ 2e−

β2

8 .

Thus,
P
[∣∣σ(uTi C)v

∣∣ ≥ ‖ui‖2 ξβ] ≤ 2e−
β2

8 ,

where we used that |vj | = ξ/
√
k. Taking a union bound over all n entries,

P
[
‖σ(UC)v‖22 ≥ ‖U‖

2
F ξ

2β2
]
≤ 2ne−

β2

8 .

Choosing β =
√

8 log(2n/δ) concludes the proof.

29


	Introduction
	Contributions and overview of results

	Convolutional generators
	The importance of fixed convolutional filters
	Architecture of convolutional generator with fixed convolutions
	Two layer convolutional generator studied theoretically in this paper

	Warmup: Dynamics of gradient descent on least squares
	Dynamics of gradient descent on convolutional generators
	The spectrum of the Jacobian for multilayer networks

	Related literature
	A numerical study of the implicit bias of convolutional networks
	Demonstrating implicit bias of convolutional generators

	The spectrum of the Jacobian of the deep decoder and deep image prior
	Proofs and formal statement of results
	Proof of Theorems 1 and 2

	The dynamics of linear and nonlinear least-squares
	Proof of Theorem 4 (closeness of linear and non-linear least-squares)
	Proof of Lemma 2

	Proof of Theorem 5

	Proofs for Neural Network Generators (Proof of Theorem 3)
	Proof of Proposition 1 and equation (2)
	The neural tangent kernel for convolutional generators
	Proofs of Lemmas for neural network denoisers (Proofs of auxiliary lemmas in Section E)
	Proof of Lemma 3: Jacobian perturbation around initialization
	Proof of Lemma 4: Bounded Jacobian
	Proof of Lemma 5: Concentration lemma
	Proof of Lemma 7 (bound on initial residual)


