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ABSTRACT

While deep learning and deep reinforcement learning systems have demonstrated
impressive results in domains such as image classification, game playing, and
robotic control, data efficiency remains a major challenge, particularly as these
algorithms learn individual tasks from scratch. Multi-task learning has emerged as
a promising approach for sharing structure across multiple tasks to enable more
efficient learning. However, the multi-task setting presents a number of optimiza-
tion challenges, making it difficult to realize large efficiency gains compared to
learning tasks independently. The reasons why multi-task learning is so challenging
compared to single task learning are not fully understood. Motivated by the insight
that gradient interference causes optimization challenges, we develop a simple and
general approach for avoiding interference between gradients from different tasks,
by altering the gradients through a technique we refer to as “gradient surgery”. We
propose a form of gradient surgery that projects the gradient of a task onto the
normal plane of the gradient of any other task that has a conflicting gradient. On a
series of challenging multi-task supervised and multi-task reinforcement learning
problems, we find that this approach leads to substantial gains in efficiency and
performance. Further, it can be effectively combined with previously-proposed
multi-task architectures for enhanced performance in a model-agnostic way.

1 INTRODUCTION

While deep learning and deep reinforcement learning (RL) have shown considerable promise in
enabling systems to perform complex tasks, the data requirements of current methods make it difficult
to learn a breadth of capabilities particularly when all tasks are learned individually from scratch. A
natural approach to such multi-task learning problems is to train a single network on all tasks jointly,
with the aim of discovering shared structure across the tasks in a way that achieves greater efficiency
and performance than solving the tasks individually. However, learning multiple tasks all at once
results in a difficult optimization problem, sometimes leading to worse overall performance and data
efficiency compared to learning tasks individually (Parisotto et al., 2015; Rusu et al., 2016a). These
optimization challenges are so prevalent that multiple multi-task RL algorithms have considered
using independent training as a subroutine of the algorithm before distilling the independent models
into a multi-tasking model (Levine et al., 2016; Parisotto et al., 2015; Rusu et al., 2016a; Ghosh et al.,
2017; Teh et al., 2017), producing a multi-task model but losing out on the efficiency gains over
independent training. If we could tackle the optimization challenges of multi-task learning effectively,
we may be able to actually realize the hypothesized benefits of multi-task learning without the cost in
final performance.

While there has been a significant amount of research in multi-task learning (Caruana, 1997; Ruder,
2017), the optimization challenges are not well understood. Prior work has described varying learning
speeds of different tasks (Chen et al., 2017) and plateuas in the optimization landscape (Schaul et al.,
2019) as potential causes, while a range of other works have focused on the model architecture (Misra
et al., 2016b; Liu et al., 2018). In this work, we instead hypothesize that the central optimization
issue in multi-task learning arises from gradients from different tasks conflicting with one another. In
particular, we define two gradients to be conflicting if they point away from one another (i.e., have a
negative cosine similarity). As a concrete example, consider the 2D optimization landscapes of two
task objectives shown in Figure 1. The optimization landscape of each task consists of a deep valley,
as has been characterized of neural network optimization landscapes in the past (Goodfellow et al.,
2014). When considering the combined optimization landscape for multiple tasks, SGD produces
gradients that struggle to efficiently find the optimum. This occurs due to a gradient thrashing
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Figure 1: Visualization of gradient surgery’s effect on a 2D multi-task optimization problem. (a) A multi-task
objective landscape. (b) & (c) Contour plots of the individual task objectives that comprise the multi-task
objective. (d) Trajectory of gradient updates on the multi-task objective using the Adam optimizer. (e) Trajectory
of gradient updates on the multi-task objective using Adam with PCGrad. For (d) and (e), the optimization
trajectory goes from black to yellow.

phenomenon, where the gradient of one task destabilizes optimization in the valley. We can observe
this in Figure 1(d) when the optimization reaches the deep valley of task 1, but is prevented from
traversing the valley to an optimum. In Section 6.2, we find experimentally that this thrashing
phenomenon also occurs in a neural network multi-task learning problem.

The core contribution of this work is a method for mitigating gradient interference by altering
the gradients directly, i.e. by performing “gradient surgery”. If two gradients are conflicting, we
alter the gradients by projecting each onto the normal plane of the other, preventing the interfering
components of the gradient from being applied to the network. We refer to this particular form of
gradient surgery as projecting conflicting gradients (PCGrad). PCGrad is model-agnostic, requiring
only a single modification to the application of gradients. Hence, it is easy to apply to a range of
problem settings, including multi-task supervised learning and multi-task reinforcement learning, and
can also be readily combined with other multi-task learning approaches, such as those that modify
the architecture. We evaluate PCGrad on multi-task CIFAR classification, multi-objective scene
understanding, a challenging multi-task RL domain, and goal-conditioned RL. Across the board, we
find PCGrad leads to significant improvements in terms of data efficiency, optimization speed, and
final performance compared to prior approaches. Further, on multi-task supervised learning tasks,
PCGrad can be successfully combined with prior state-of-the-art methods for multi-task learning for
even greater performance.

2 PRELIMINARIES

The goal of multi-task learning is to find parameters θ of a model fθ that achieve high average
performance across all the training tasks drawn from a distribution of tasks p(T ). More formally, we
aim to solve the problem: min

θ
ETi∼p(T ) [Li(fθ)], where Li is a loss function for the i-th task Ti that

we want to minimize. To obtain a model that solves a specific task from the task distribution p(T ),
we define a task-conditioned model fθ(y|x, zi), with input x, output y, and encoding zi for task Ti,
which could be provided as a one-hot vector or in any other form.

3 MULTI-TASK LEARNING VIA GRADIENT SURGERY

While the multi-task problem can in principle be solved by simply applying a standard single-task
algorithm with a suitable task identifier provided to the model or a simple multi-head or multi-output
model, a number of prior works (Parisotto et al., 2015; Rusu et al., 2016a; Sener & Koltun, 2018)
have found this learning problem to be difficult, especially in the reinforcement learning setting. We
hypothesize that one of the main challenges of multi-task learning can be characterized by conflicting
and thrashing gradients, and find that this can significantly impede learning progress, especially when
combined with iterative data collection. We identify possible causes for this problem and propose a
simple and general approach to mitigate it.

3.1 THRASHING GRADIENTS IN MULTI-TASK OPTIMIZATION LANDSCAPES

We hypothesize that a key optimization issue in multi-task learning arises when gradients from
multiple tasks are in conflict with one another, i.e. when gradients point away from one another. More
specifically, we hypothesize that such conflict may lead to gradient thrashing. Concretely, gradient
thrashing refers to the phenomenon where a large gradient for one task changes the parameter vectors
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Figure 2: Visual depiction of conflicting gradients and PCGrad. In (a), we see that tasks A and B have
conflicting gradient directions, which can lead to destructive interference and unstable learning. In (b), we
illustrate the PCGrad algorithm in cases where gradients are conflicting. PCGrad projects the gradient of task A
onto the normal vector of task B’s gradient. In (c), we show that tasks with non-conflicting gradients are not
altered under PCGrad, thereby keeping tasks with constructive interference.

in a way that substantially decreases performance on another task. Since worse performance typically
leads to larger gradients, this results in alternating gradient directions, where, at the next iteration,
the second task will have large gradients that dominate and reduce performance on the former task.
This issue can be particularly pronounced for neural network optimization, since neural network loss
landscapes are known to resemble long narrow valleys (Goodfellow et al., 2014), where the gradient
perpendicular to the direction of the valley will be small.

We aim to study this hypothesis through two toy examples. First, consider the two-dimensional
optimization landscape illustrated in Fig. 1a, where the landscape for each task objective corresponds
to a deep and curved valley (Fig. 1b and 1c). The optima of this multi-task objective correspond
to where the two valleys meet. More details on the optimization landscape are in Appendix B. We
observe that the gradient thrashing hypothesis is consistent with what we observe when running
Adam (Kingma & Ba, 2014) on this landscape in Fig. 1d, where we observe that Adam does not
traverse one valley towards the other, preventing it from reaching an optimum.

We also aim to detect if a similar phenomenon occurs in multi-task learning with a neural network
with thousands of parameters on a toy regression problem. To measure the extent of gradient thrashing,
we plot the cosine similarity between the gradients of two tasks throughout the beginning of learning
in Fig. 4 (left). We indeed observe a significant level of gradient thrashing at every iteration, where
the cosine similarity varies between −0.75 and 0.75 at a very high frequency.

Motivated by these observations, we develop an algorithm that aims to alleviate the optimization
challenges caused by gradient thrashing by preventing such gradient conflict between tasks.

3.2 PCGRAD: PROJECTING CONFLICTING GRADIENTS

We aim to prevent gradient thrashing by directly altering the gradients themselves, i.e. through
“gradient surgery.” To be maximally effective and maximally applicable, we must perform surgery in
a way that still allows for positive interactions between the task gradients and does not introduce any
assumptions on the form of the model.

We start by first detecting whether two gradients are in conflict, by measuring whether they point
away from one another. More concretely, we characterize two tasks as conflicting for the current
parameter setting if they yield a negative cosine similarity between their respective gradients. The
goal of PCGrad is to modify the gradients for each task so as to minimize negative conflict with other
task gradients, which will in turn mitigate gradient thrashing.

To deconflict gradients during optimization, PCGrad adopts a simple procedure: if the gradients
between two tasks are in conflict, i.e. their cosine similarity is negative, we project the gradient
from one task onto the normal plane of the gradient of the other task. This amounts to removing
the conflicting component of the gradient for the task, thereby reducing the amount of destructive
gradient interference between tasks. A pictorial description of this idea is shown in Fig. 2. Suppose
the gradient for task Ti is gi, and the gradient for task Tj is gj . PCGrad proceeds as follows: (1) First,
it determines whether gi conflicts with gj by computing the cosine similarity between vectors gi and
gj , where negative values indicate conflicting gradients. (2) If the cosine similarity is negative, we
replace gi by its projection onto the normal plane of gj : gi = gi− gi·gj

‖gj‖2gj . If the gradients are not in
conflict, i.e. cosine similarity is non-negative, the original gradient gi remains unaltered. (3) PCGrad
repeats this process across all of the other tasks sampled in the current batch Tj ∀ j 6= i, resulting in
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Algorithm 1 PCGrad Update Rule

Require: Current model parameters θ
1: Sample mini-batch of tasks B = {Tk} ∼ p(T )
2: for Ti ∼ B do
3: Compute gradient gi of Ti as gi = ∇θLi(fθ)
4: for Tj ∼ B do
5: Compute gradient gj of task Tj as gj = ∇θLj(fθ)
6: Compute cosine similarity between gi as gj as cos(φij) =

gi·gj
‖gi‖‖gj‖

.
7: if cos(φij) < 0 then
8: Set gi = gi − gi·gj

‖gj‖2
gj // Subtract the projection of gi onto gj

9: end if
10: end for
11: Store gproj

i = gi
12: end for
13: return update ∆θ =

∑
i g

proj
i

the gradient gproj
i that is applied for task Ti. We perform the same procedure for all tasks in the batch

to obtain their respective gradients. The full update procedure is described in Algorithm 1.

This procedure, while simple to implement, ensures that the gradients that we apply for each task
per batch interfere minimally with the other tasks in the batch, mitigating the thrashing gradient
problem, producing a variant on standard first-order gradient descent in the multi-objective setting.
In practice, the PCGrad gradient surgery method can be combined with any gradient-based optimizer,
including commonly used methods such as SGD with momentum and Adam (Kingma & Ba, 2014),
by simply passing the computed update to the respective optimizer instead of the original gradient.
Our experimental results verify the hypothesis that this procedure reduces the problem of thrashing
gradients, and find that, as a result, learning progress is substantially improved.

Finally, we analyze the convergence of this procedure in Theorem 1 in the two-task setting, to ensure
that the procedure is sensible under the standard assumptions in optimization.
Theorem 1. Consider two task loss functions L1 : Rn → R and L2 : Rn → R which are convex
and differentiable. For all θ ∈ Rn, let L(θ) = L1(θ) + L2(θ), i.e. L is a multi-task objective. Let
φ be the angle between ∇L1(θ) and ∇L2(θ). Suppose L is differentiable and that its gradient is
Lipschitz continuous with constant L > 0, i.e. we have ||∇L(θ1)−∇L(θ2)||2 ≤ L||θ1 − θ2||2 for
any θ1, θ2. Then, the PCGrad update rule with step size t ≤ 1

L will converge to either (1) a location
in the optimization landscape where cos(φ) = −1 or (2) the optimal value L(θ∗).

Proof. See Appendix A.

Theorem 1 states that application of the PCGrad update in the two-task setting with a convex and
Lipschitz multi-task loss function L leads to convergence to either the minimizer of L or a potentially
sub-optimal objective value. A sub-optimal solution occurs when the cosine similarity between the
gradients of the two tasks is −1, i.e. the gradients directly conflict, leading to zero gradient after
applying PCGrad. However, in practice, since we are using SGD, which is a noisy estimate of the true
batch gradients, the cosine similarity between the gradients of two tasks in a minibatch is unlikely to
be −1, thus avoiding this scenario.

4 THE PRACTICAL OPERATIONS OF PCGRAD

We apply PCGrad to both supervised learning and reinforcement learning problem settings with
multiple tasks or goals. In this section, we discuss the practical instantiations of PCGrad in those
settings. Further implementation details are included in Section 6.

4.1 MULTI-TASK SUPERVISED LEARNING

In multi-task supervised learning, each task Ti ∼ p(T ) has a corresponding training dataset Di
consisting of Ni labeled training examples, i.e. Di = {(x, y)n}Nin=1. The objective for each task
in this supervised setting is then defined as Li(fθ) = E(x,y)∼Di [− log fθ(y|x, zi)], where zi is a
one-hot encoding of task Ti.
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At each training step, we randomly sample a batch of data points B from the whole dataset
⋃
iDi and

then group the sampled data with the same task encoding into small batches denoted as Bi for each Ti
represented in B. We denote the set of tasks appearing in B as BT . After sampling, we precompute
the gradient of each task in BT as

∇θLi(fθ) = E(x,y)∼Bi [−∇θ log fθ(y|x, zi)] . (1)

Given the set of precomputed gradients∇θLi(fθ), we also precompute the cosine similarity between
all pairs of the gradients in the set. Using the pre-computed gradients and their similarities, we
can obtain the PCGrad update by following Algorithm 1, without re-computing task gradients nor
backpropagating into the network.

Since the PCGrad procedure is only modifying the gradients of shared parameters in the optimization
step, it is model-agnostic and can be readily applied to any architecture designed for supervised
multi-task learning. In Section 6, we combine PCGrad with two state-of-the-art architectures for
multi-task learning, which leads to noticeable improvement over their original performance.

4.2 MULTI-TASK AND GOAL-CONDITIONED REINFORCEMENT LEARNING

For multi-task reinforcement learning, PCGrad can be readily applied to policy gradient methods by
directly updating the computed policy gradient of each task, following Algorithm 1, analogous to the
supervised learning setting. For actor-critic algorithms, it is also straightforward to apply PCGrad:
we simply replace the task gradients for both the actor and the critic by their gradients computed via
PCGrad. Hence, PCGrad can be readily incorporated into a variety of model-free RL algorithms.
When applying PCGrad to goal-conditioned RL, we represent p(T ) as a distribution of goals and let
zi be the encoding of a goal. Similar to the multi-task supervised learning setting discussed above,
PCGrad may be combined with various architectures designed for multi-task and goal-conditioned
RL (Fernando et al., 2017; Devin et al., 2016), where PCGrad operates on the gradients of shared
parameters, leaving task-specific parameters untouched.

In our experiments, we apply PCGrad to the soft actor-critic (SAC) algorithm (Haarnoja et al., 2018),
a recently proposed off-policy actor-critic algorithm that has shown significant gains in sample
efficiency and asymptotic performance across many different domains. In SAC, we employ a Q-
learning style gradient to compute the gradient of the Q-function network, Qφ(s, a, zi), often known
as the critic, and a reparameterization-style gradient to compute the gradient of the policy network
πθ(a|s, zi), often known as the actor. For sampling, we instantiate a set of replay buffers {Di}Ti∼p(T ).
Training and data collection are alternated throughout training. During a data collection step, we run
the policy πθ on all the tasks Ti ∼ p(T ) to collect an equal number of paths for each task and store
the paths of each task Ti into the corresponding replay buffer Di. At each training step, we sample an
equal amount of data from each replay buffer Di to form a stratified batch. For each task Ti ∼ p(T ),
the parameters of the critic θ are optimized to minimize the soft Bellman residual:

J
(i)
Q (φ) = E(st,at,zi)∼Di

[
Qφ(st, at, zi)− (r(st, at, zi) + γVφ̄(st+1, zi))

]
, (2)

Vφ̄(st+1, zi) = Eat+1∼πθ
[
Qφ̄(st+1, at+1, zi)− α log πθ(at+1|st+1, zi)

]
, (3)

where γ is the discount factor, φ̄ are the delayed parameters, and α is a learnable temperature that
automatically adjusts the weight of the entropy term. For each task Ti ∼ p(T ), the parameters of the
policy πθ are trained to minimize the following objective

J (i)
π (θ) = Est∼Di

[
Eat∼πθ(at|st,zi)) [α log πθ(at|st, zi)−Qφ(st, at, zi)]

]
. (4)

We compute ∇φJ (i)
Q (φ) and ∇θJ (i)

π (θ) for all Ti ∼ p(T ) and apply PCGrad to both following
Algorithm 1.

In the context of SAC specifically, we further study how the temperature α should be adjusted. If we
use a single learnable temperature for adjusting entropy of the multi-task policy πθ(a|s, zi), SAC
may stop exploring once all easier tasks are solved, leading to poor performance on tasks that are
harder or require more exploration. To address this issue, we propose to learn the temperature on a
per-task basis, i.e. using a parametrized model to represent αψ(zi) (which we abbreviate as PA for
per-task alpha). This allows the method to control the entropy of πθ(a|s, zi) per-task. We optimize
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the parameters of αψ(zi) using the same constrained optimization framework as in Haarnoja et al.
(2018).

5 RELATED WORK

Algorithms for multi-task learning typically consider how to train a single model that can solve a
variety of different tasks (Caruana, 1997; Bakker & Heskes, 2003; Ruder, 2017). The multi-task
formulation has been applied to many different settings, including supervised learning (Zhang et al.,
2014; Long & Wang, 2015; Yang & Hospedales, 2016; Sener & Koltun, 2018; Zamir et al., 2018)
and reinforcement-learning (Espeholt et al., 2018; Wilson et al., 2007), as well as many different
domains, such as vision (Bilen & Vedaldi, 2016; Misra et al., 2016a; Kokkinos, 2017; Liu et al., 2018;
Zamir et al., 2018), language (Collobert & Weston, 2008; Dong et al., 2015; McCann et al., 2018;
Radford et al., 2019) and robotics (Riedmiller et al., 2018; Wulfmeier et al., 2019; Hausman et al.,
2018). While multi-task learning has the promise of accelerating acquisition of large task repertoires,
in practice it presents a challenging optimization problem, which has been tackled in several ways in
prior work.

A number of architectural solutions have been proposed to the multi-task learning problem based
on multiple modules or paths (Fernando et al., 2017; Devin et al., 2016; Misra et al., 2016b; Rusu
et al., 2016b; Rosenbaum et al., 2018; Vandenhende et al., 2019; Rosenbaum et al., 2018), or using
attention-based architectures (Liu et al., 2018; Maninis et al., 2019). Our work is agnostic to the
model architecture and can be combined with prior architectural approaches in a complementary
fashion.

A different set of multi-task learning approaches aim to decompose the problem into multiple local
problems, often corresponding to each task, that are significantly easier to learn, akin to divide and
conquer algorithms (Levine et al., 2016; Rusu et al., 2016a; Parisotto et al., 2015; Teh et al., 2017;
Ghosh et al., 2017; Czarnecki et al., 2019). Eventually, the local models are combined into a single,
multi-task policy using different distillation techniques (outlined in (Hinton et al., 2015; Czarnecki
et al., 2019)). In contrast to these methods, we propose a simple and cogent scheme for multi-task
learning that allows us to learn the tasks simultaneously using a single, shared model without the
need for network distillation.

Similarly to our work, a number of prior approaches have observed the difficulty of optimization
in the multi-task learning setting (Hessel et al., 2019; Sener & Koltun, 2018; Chen et al., 2018;
Kendall et al., 2018b; Schaul et al., 2019). Our work, in contrast to many of these optimization
schemes, suggests that the challenge in multi-task learning can be attributed to the problem of gradient
thrashing, which we address directly by introducing a practical algorithm that de-conflicts gradients
from different tasks. Prior work has also used the cosine similarity between gradients to define when
an auxiliary task might be useful for single-task learning (Du et al., 2018). We similarly use cosine
similarity between gradients to determine if the gradients between a pair of tasks are in conflict.
Unlike (Du et al., 2018), we use this measure of gradient conflict as a part of gradient surgery in
the context of multi-task learning applications. Finally, our method is distinct from and solves a
different problem than the projected gradient method (Calamai & Moré, 1987), which is an approach
for constrained optimization that projects gradients onto the constraint manifold.

6 EXPERIMENTS

The goal of our experiments is to study the following questions: (1) Are conflicting gradients a
major factor in making optimization for multi-task learning challenging? (2) Does PCGrad make
the optimization problems easier for various multi-task learning problems including supervised,
reinforcement, and goal-conditioned reinforcement learning settings across different task families? (3)
Can PCGrad be combined with other multi-task learning approaches to further improve performance?

6.1 EXPERIMENTAL SETUP

To evaluate our method experimentally, we consider both a multi-task supervised learning and a multi-
task reinforcement learning problem setup. For supervised learning, we consider the CIFAR-100
dataset (Krizhevsky et al., 2009) where each of the 20 label superclasses are treated as distinct tasks,
following Rosenbaum et al. (2018). We also conduct experiments on the NYUv2 dataset (Silberman
et al., 2012), which consists of RGB-D indoor scene images. Following Liu et al. (2018), we evaluate
our method on 3 tasks: 13-class semantic segmentation, depth estimation, and surface normal
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Figure 3: Visualization of 10 tasks used in MT10 from Meta-World (Yu et al., 2019), which we use for our
multi-task RL experiments.

prediction. In the case of multi-task reinforcement learning, we evaluate our algorithm on the recently
proposed Meta-World benchmark (Yu et al., 2019). This benchmark includes a variety of simulated
robotic manipulation tasks contained in a shared, table-top environment with a simulated Sawyer arm
(visualized as the ”Pushing” environment in Fig. 3). In particular, we use the multi-task benchmark
MT10, which consists of the 10 tasks depicted in Fig. 3 that require diverse strategies to solve them,
which makes them difficult to optimize jointly with a single policy. To evaluate goal-conditioned
RL scenarios, we consider goal-conditioned robotic pushing with a Sawyer robot. This domain is
representative of challenges in learning goal-conditioned policies over a wide distribution of goals.
For details on the experimental set-up and model architectures see Appendix C.

6.2 ANALYSIS OF CONFLICTING GRADIENTS

Figure 4: An analysis of the gradients during the first 1000 updates of training, on a toy 10-task sinusoid
regression problem. Left: The cosine similarity between the gradients of 2 of the 10 tasks (selected arbitrarily,
and fixed throughout this plot). We observe a substantial amount of thrashing with standard Adam training,
while Adam with PCGrad reduces the thrashing and leads to more closely aligned updates. Right: Adam with
PCGrad improves performance compared to standard Adam.

To answer question (1), we consider a simple regression problem, where each task is regressing
the input to the output of a sine function. The amplitude and the phase of each task are varied.
We construct 10 tasks with the amplitude uniformly sampled from the range [0, 5] and the phase
uniformly sampled from the range [0, π]. The input is also uniformly sampled from the range [0, 5]
and is concatenated with the one-hot task encoding. For training, we use a 3-layer fully-connected
neural network with 100 hidden units.

We compare the performance of the network trained with Adam and the network trained with Adam
with PCGrad-modified gradients while plotting the cosine similarity between a pair of tasks during
training as shown in Figure 4. The plot on the left in Figure 4 demonstrates that the cosine similarity
of Adam gradients between a pair of tasks has high variance, which leads to the gradient thrashing
problem, while the cosine similarity of the gradient projected by PCGrad yields positive values
diminishing the conflicting-gradients problem. As shown in the plot on the right in Figure 4, Adam
with PCGrad leads to faster learning over Adam, which implies that gradient thrashing is indeed a
problem in multi-task optimization and reducing it can result in considerable performance boost.

6.3 MULTI-TASK AND MULTI-OBJECTIVE SUPERVISED LEARNING WITH PCGRAD

To answer question (3), we perform experiments on two standard multi-task supervised learning
dataset: multi-task CIFAR-100 and NYUv2.

For CIFAR-100, we follow (Rosenbaum et al., 2018) to treat 20 coarse labels in the dataset as
distinct tasks and create a dataset with 20 tasks and 2500 training instances as well as 500 test
instances per task. We combine PCGrad with a powerful multi-task learning architecture, routing
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networks (Rosenbaum et al., 2018; 2019), by simply projecting gradients of the shared parameters
in routing networks. As shown in Table 1, combining PCGrad with routing networks leads to a
4.7% absolute improvement in test accuracy averaged over 3 runs, while also outperforming other
approachs such as training independent networks for each task and cross-stitch (Misra et al., 2016b).

We also combine PCGrad with another state-of-art multi-task learning algorithm, MTAN (Liu et al.,
2018), and evaluate the performance on a more challenging indoor scene dataset, NYUv2, which
contains 3 tasks as described in Section 6.1. We compare MTAN with PCGrad to a list of methods
mentioned in Section 6.1, where each method is trained with three different weighting schemes as
in (Liu et al., 2018), equal weighting, weight uncertainty (Kendall et al., 2018a), and DWA (Liu
et al., 2018). We only run MTAN with PCGrad with weight uncertainty as we find weight uncertainty
as the most effective scheme for training MTAN. The results comparing Cross-Stitch, MTAN and
MTAN + PCGrad are presented in Table 2 while the full comparison can be found in Table 3 in the
Appendix C.3. MTAN with PCGrad is able to achieve the best scores in 8 out of the 9 categories
where there are 3 categories per task.

Our multi-task supervised learning results demonstrate that PCGrad can be seamlessly combined
with state-of-art multi-task learning architectures and further improve their results on established
supervised multi-task learning benchmarks.

% accuracy

task specific-1-fc (Rosenbaum et al., 2018) 42
task specific-all-fc (Rosenbaum et al., 2018) 49
cross stitch-all-fc (Misra et al., 2016b) 53
routing-all-fc + WPL (Rosenbaum et al., 2019) 64.1
independent 64.3

routing-all-fc + WPL + PCGrad (ours) 69

Table 1: CIFAR-100 multi-task results. We apply PCGrad to the routing networks and achieve a significant
improvement in classfication accuracy.

#P. Architecture Weighting

Segmentation Depth Surface Normal

(Higher Better) (Lower Better)
Angle Distance Within t◦
(Lower Better) (Higher Better)

mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

Equal Weights 14.71 50.23 0.6481 0.2871 33.56 28.58 20.08 40.54 51.97
≈3 Cross-Stitch‡ Uncert. Weights∗ 15.69 52.60 0.6277 0.2702 32.69 27.26 21.63 42.84 54.45

DWA†, T = 2 16.11 53.19 0.5922 0.2611 32.34 26.91 21.81 43.14 54.92

Equal Weights 17.72 55.32 0.5906 0.2577 31.44 25.37 23.17 45.65 57.48
1.77 MTAN† Uncert. Weights∗ 17.67 55.61 0.5927 0.2592 31.25 25.57 22.99 45.83 57.67

DWA†, T = 2 17.15 54.97 0.5956 0.2569 31.60 25.46 22.48 44.86 57.24

1.77 MTAN†+ PCGrad (ours) Uncert. Weights∗ 20.17 56.65 0.5904 0.2467 30.01 24.83 22.28 46.12 58.77

Table 2: We present the results on three tasks on the NYUv2 dataset: 13-class semantic segmentation, depth
estimation, and surface normal prediction results. #P shows the total number of network parameters. We
highlight the best performing combination of multi-task architecture and weighting in bold. The top validation
scores for each task are annotated with boxes. The symbols indicate prior methods: ∗: (Kendall et al., 2018a), †:
(Liu et al., 2018), ‡: (Misra et al., 2016b). Performance of other methods as reported in (Liu et al., 2018).

6.4 MULTI-TASK REINFORCEMENT LEARNING

To answer question (2), we test all methods on 10 manipulation tasks shown in Figure 3. At each
data collection step, we collect 600 samples for each task, and at each training step, we sample
128 datapoints per task from corresponding replay buffers. The results are shown in the plot on the
left in Figure 5. We measure success according to the metrics used in the Meta-World benchmark
where the reported the success rates are averaged across tasks. For all methods, we apply PA as
discussed in Section 4 to learn a separate alpha term per task as the task encoding in MT10 is just
a one-hot encoding. PCGrad combined with SAC learns all tasks with the best data efficiency and
successfully solves all of the 10 tasks. Training a single SAC policy and a multi-head policy turns
out to be unable to acquire half of the skills, suggesting that eliminating gradient interference across
tasks can significantly boost performance of multi-task RL. Training independent SAC agents is able

8
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Figure 5: Learning curve on MT10 and goal-conditioned pushing. PCGrad outperforms the other methods in
the two settings in terms of both success rates / average distance to the goal and data efficiency.

to eventually solve all tasks, but requires about 2 millions more samples than PCGrad with SAC,
implying that applying PCGrad can result in leveraging shared structure among tasks that expedites
multi-task learning.

As noted by Yu et al. (2019), these tasks involve fairly distinct behavior motions, which makes
learning all of them with a single policy challenging as demonstrated by poor baseline performance.
The ability to learn these tasks together opens the door for a number of interesting extensions to
meta-learning, goal conditioned RL and generalization to novel task families. We present the results
of PCGrad on goal-conditioned RL in the following subsection.

6.5 GOAL-CONDITIONED REINFORCEMENT LEARNING

For our goal-conditioned RL evaluation, we use the robot-pushing environment described in Sec. 6.1
where the goals are represented as the concatenations of the initial positions of the puck to be pushed
and the its goal location, both of which are uniformly sampled (details in Appendix C.2). We also
apply PA as discussed in Section 4 to predict the temperature for entropy term given the goal. We
summarize the results in the plot on the right in Figure 5. PCGrad with SAC and PA achieves the best
performance in terms of average distance to the goal position, while PCGrad with SAC improves
over the baseline and a vanilla SAC agent is struggling to successfully accomplish the task. This
suggests that PCGrad is able to ease the RL optimization problem also when the task distribution is
continuous.

7 CONCLUSION

In this work, we identified one of the major challenges in multi-task optimization: conflicting
gradients across tasks. We proposed a simple algorithm (PCGrad) to mitigate the challenge of
conflicting gradients via “gradient surgery”. PCGrad provides a simple way to project gradients to be
orthogonal in a multi-task setting, which substantially improves optimization performance, since the
task gradients are prevented from negating each other. We provide some simple didactic examples
and analysis of how this procedure works in simple settings, and subsequently show significant
improvement in optimization for a variety of multi-task supervised learning and reinforcement
learning problems. We show that, once some of the optimization challenges of multi-task learning
are alleviated by PCGrad, we can obtain the hypothesized benefits in efficiency and asymptotic
performance that are believed to be possible in multi-task settings.

While we studied multi-task supervised learning and multi-task reinforcement learning in this work,
we suspect the problem of conflicting gradients to be prevalent in a range of other settings and
applications, such as meta-learning, continual learning, multi-goal imitation learning (Codevilla et al.,
2018), and multi-task problems in natural language processing applications (McCann et al., 2018).
Due to its simplicity and model-agnostic nature, we expect that applying PCGrad in these domains to
be a promising avenue for future investigation. Further, the general idea of gradient surgery may be an
important ingredient for alleviating a broader class of optimization challenges in deep learning, such
as the challenges in the stability challenges in two-player games (Roth et al., 2017) and multi-agent
optimizations (Nedic & Ozdaglar, 2009). We believe this work to be a step towards simple yet general
techniques for addressing some of these challenges.
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A PROOF OF THEOREM 1

Proof. We will use the shorthand || · || to denote the L2-norm and ∇L = ∇θL, where θ is the
parameter vector. Let g1 = ∇L1, g2 = ∇L2, and φ be the angle between g1 and g2.

At each PCGrad update, we have two cases: cos(φ) ≥ 0 or cos(φ < 0).

If cos(φ) ≥ 0, then we apply the standard gradient descent update using t ≤ 1
L , which leads to a

strict decrease in the objective function value L(φ) unless ∇L(φ) = 0, which occurs only when
θ = θ∗ (Boyd & Vandenberghe, 2004).

In the case that cos(φ) < 0, we proceed as follows:

Our assumption that ∇L is Lipschitz continuous with constant L implies that ∇2L(θ) − LI is a
negative semidefinite matrix. Using this fact, we can perform a quadratic expansion of L around L(θ)
and obtain the following inequality:

L(θ+) ≤ L(θ) +∇L(θ)T (θ+ − θ) +
1

2
∇2L(θ)||θ+ − θ||2

≤ L(θ) +∇L(θ)T (θ+ − θ) +
1

2
L||θ+ − θ||2

Now, we can plug in the PCGrad update by letting θ+ = θ − t(∇L(θ)− g1·g2

||g1||2g1 − g1·g2

||g2||2g2). We
then get:

L(θ+) ≤ L(θ) + t(∇L(θ))T (−∇L(θ) +
g1 · g2

||g1||2
g1 +

g1 · g2

||g2||2
g2)

+
1

2
Lt2||∇L(θ)− g1 · g2

||g1||2
g1 −

g1 · g2

||g2||2
g2||2

(Expanding, using the identity∇L(θ) = g1 + g2)

= L(θ) + t(−||g1||2 − ||g2||2 + 2g1 · g2 +
(g1 · g2)2

||g1||2
+

(g1 · g2)2

||g2||2
)

+
1

2
Lt2||g1 + g2 −

g1 · g2

||g1||2
g1 −

g1 · g2

||g2||2
g2||2

(Expanding further and re-arranging terms)

= L(θ)− (t− 1

2
Lt2)(||g1||2 + ||g2||2 −

(g1 · g2)

||g1||2
− (g1 · g2)

||g2||2
)

− Lt2(g1 · g2 −
(g1 · g2)2

||g1||2||g2||2
g1 · g2)

(Using the identity cos(φ) =
g1 · g2

||g1||||g2||
)

= L(θ)− (t− 1

2
Lt2)[(1− cos2(φ))||g1||2 + (1− cos2(φ))||g2||2]

− Lt2(1− cos2(φ))||g1||||g2|| cos(φ)

(Note that cos(φ) < 0 so the final term is non-negative)

Using t ≤ 1
L , we know that −(1− 1

2Lt) = 1
2Lt− 1 ≤ 1

2L(1/L)− 1 = −1
2 and Lt2 ≤ t.
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Plugging this into the last expression above, we can conclude the following:

L(θ+) ≤ L(θ)− 1

2
t[(1− cos2(φ))||g1||2 + (1− cos2(φ))||g2||2]

− t(1− cos2(φ))||g1||||g2|| cos(φ)

= L(θ)− 1

2
t(1− cos2(φ))[||g1||2 + 2||g1||||g2|| cos(φ) + ||g2||2]

= L(θ)− 1

2
t(1− cos2(φ))[||g1||2 + 2g1 · g2 + ||g2||2]

= L(θ)− 1

2
t(1− cos2(φ))||g1 + g2||2

= L(θ)− 1

2
t(1− cos2(φ))‖∇L(θ)‖2

If cos(φ) > −1, then 1
2 t(1 − cos2(φ))‖∇L(θ)‖2 will always be positive unless ∇L(θ) = 0. This

inequality implies that the objective function value strictly decreases with each iteration where
cos(φ) > −1.

Hence repeatedly applying PCGrad process can either reach the optimal value L(θ) = L(θ∗) or
cos(φ) = −1, in which case 1

2 t(1− cos2(φ))‖∇L(θ)‖2 = 0. Note that this result only holds when
we choose t to be small enough, i.e. t ≤ 1

L .

B 2D OPTIMIZATION LANDSCAPE DETAILS

To produce the 2D optimization visualizations in Figure 1, we used a parameter vector θ = [θ1, θ2] ∈
R

2 and the following task loss functions:

L1(θ) = 20 log(max(|.5θ1 + tanh(θ2)|, 0.000005))

L2(θ) = 25 log(max(|.5θ1 − tanh(θ2) + 2|, 0.000005))

The multi-task objective is L(θ) = L1(θ) + L2(θ). We initialized θ = [0.5,−3] and performed
500,000 gradient updates to minimize L using the Adam optimizer with learning rate 0.001. We
compared using Adam for each update to using Adam in conjunction with the PCGrad method
presented in Section 3.2.

C EXPERIMENT DETAILS

C.1 DETAILED EXPERIMENT SET-UP

For our CIFAR-100 multi-task experiment, we adopt the architecture used in Rosenbaum et al. (2019),
which is a convolutional neural network that consists of 3 convolutional layers with 160 3× 3 filters
each layer and 2 fully connected layers with 320 hidden units. As for experiments on the NYUv2
dataset, we follow Liu et al. (2018) to use SegNet (Badrinarayanan et al., 2017) as the backbone
architecture.

Our reinforcement learning experiments all use the SAC (Haarnoja et al., 2018) algorithm as the
base algorithm, where the actor and the critic are represented as 6-layer fully-connected feedforward
neural networks for all methods. The numbers of hidden units of each layer of the neural networks
are 160 and 200 for MT10 and goal-conditioned RL respectively.

We use five algorithms as baselines in the CIFAR-100 multi-task experiment: task specific-1-fc
(Rosenbaum et al., 2018): a convolutional neural network shared across tasks except that each
task has a separate last fully-connected layer, task specific-1-fc (Rosenbaum et al., 2018) : all the
convolutional layers shared across tasks with separate fully-connected layers for each task, cross
stitch-all-fc (Misra et al., 2016b): one convolutional neural network per task along with cross-stitch
units to share features across tasks, routing-all-fc + WPL (Rosenbaum et al., 2019): a network that
employs a trainable router trained with multi-agent RL algorithm (WPL) to select trainable functions
for each task, independent: training separate neural networks for each task.
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For comparisons on the NYUv2 dataset, we consider 5 baselines: Single Task, One Task: the vanilla
SegNet used for single-task training, Single Task, STAN (Liu et al., 2018): the single-task version
of MTAN as mentioned below, Multi-Task, Split, Wide / Deep (Liu et al., 2018): the standard
SegNet shared for all three tasks except that each task has a separate last layer for final task-specific
prediction with two variants Wide and Deep specified in Liu et al. (2018), Multi-Task Dense: a
shared network followed by separate task-specific networks, Multi-Task Cross-Stitch (Misra et al.,
2016b): similar to the baseline used in CIFAR-100 experiment but with SegNet as the backbone,
MTAN (Liu et al., 2018): a shared network with a soft-attention module for each task.

On the multi-task and goal-conditioned RL domain, we apply PCGrad to the vanilla SAC algorithm
with task encoding as part of the input to the actor and the critic as described in Section 4 and
compare our method to the vanilla SAC without PCGrad and training actors and critics for each task
individually (Independent).

C.2 GOAL-CONDITIONED EXPERIMENT DETAILS

We use the pushing environment from the Meta-World benchmark (Yu et al., 2019) as shown in
Figure 3. In this environment, the table spans from [−0.4, 0.2] to [0.4, 1.0] in the 2D space. To
construct the goals, we sample the intial positions of the puck from the range [−0.2, 0.6] to [0.2, 0.7]
on the table and the goal positions from the range [−0.2, 0.85] to [0.2, 0.95] on the table. The goal
is represented as a concatenation of the initial puck position and the goal position. Since in the
goal-conditioned setting, the task distribution is continuous, we sample a minibatch of 9 goals and
128 samples per goal at each training iteration and also sample 600 samples per goal in the minibatch
at each data collection step.

C.3 FULL NYUV2 RESULTS

We provide the full comparison on the NYUv2 dataset in Table 3.

Type #P. Architecture Weighting

Segmentation Depth Surface Normal

(Higher Better) (Lower Better)
Angle Distance Within t◦
(Lower Better) (Higher Better)

mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

Single Task 3 One Task n.a. 15.10 51.54 0.7508 0.3266 31.76 25.51 22.12 45.33 57.13
4.56 STAN† n.a. 15.73 52.89 0.6935 0.2891 32.09 26.32 21.49 44.38 56.51

Multi Task

Equal Weights 15.89 51.19 0.6494 0.2804 33.69 28.91 18.54 39.91 52.02
1.75 Split, Wide Uncert. Weights∗ 15.86 51.12 0.6040 0.2570 32.33 26.62 21.68 43.59 55.36

DWA†, T = 2 16.92 53.72 0.6125 0.2546 32.34 27.10 20.69 42.73 54.74

Equal Weights 13.03 41.47 0.7836 0.3326 38.28 36.55 9.50 27.11 39.63
2 Split, Deep Uncert. Weights∗ 14.53 43.69 0.7705 0.3340 35.14 32.13 14.69 34.52 46.94

DWA†, T = 2 13.63 44.41 0.7581 0.3227 36.41 34.12 12.82 31.12 43.48

Equal Weights 16.06 52.73 0.6488 0.2871 33.58 28.01 20.07 41.50 53.35
4.95 Dense Uncert. Weights∗ 16.48 54.40 0.6282 0.2761 31.68 25.68 21.73 44.58 56.65

DWA†, T = 2 16.15 54.35 0.6059 0.2593 32.44 27.40 20.53 42.76 54.27

Equal Weights 14.71 50.23 0.6481 0.2871 33.56 28.58 20.08 40.54 51.97
≈3 Cross-Stitch‡ Uncert. Weights∗ 15.69 52.60 0.6277 0.2702 32.69 27.26 21.63 42.84 54.45

DWA†, T = 2 16.11 53.19 0.5922 0.2611 32.34 26.91 21.81 43.14 54.92

Equal Weights 17.72 55.32 0.5906 0.2577 31.44 25.37 23.17 45.65 57.48
1.77 MTAN† Uncert. Weights∗ 17.67 55.61 0.5927 0.2592 31.25 25.57 22.99 45.83 57.67

DWA†, T = 2 17.15 54.97 0.5956 0.2569 31.60 25.46 22.48 44.86 57.24

1.77 MTAN† + PCGrad (ours) Uncert. Weights∗ 20.17 56.65 0.5904 0.2467 30.01 24.83 22.28 46.12 58.77

Table 3: We present the full results on three tasks on the NYUv2 dataset: 13-class semantic segmen-
tation, depth estimation, and surface normal prediction results. #P shows the total number of network
parameters. We highlight the best performing combination of multi-task architecture and weighting
in bold. The top validation scores for each task are annotated with boxes. The symbols indicate prior
methods: ∗: (Kendall et al., 2018a), †: (Liu et al., 2018), ‡: (Misra et al., 2016b). Performance of
other methods taken from (Liu et al., 2018).
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