
Under review as a conference paper at ICLR 2020

SELECTION VIA PROXY: EFFICIENT DATA SELECTION
FOR DEEP LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Data selection methods, such as active learning and core-set selection, are useful
tools for machine learning on large datasets, but they can be prohibitively expensive
to apply in deep learning. Unlike in other areas of machine learning, the feature
representations that these techniques depend on are learned in deep learning rather
than given, requiring substantial training times. In this work, we show that we can
greatly improve the computational efficiency of data selection in deep learning by
using a small proxy model to perform data selection (e.g., selecting data points
to label for active learning). By removing hidden layers from the target model
or training for fewer epochs, we create proxies that are an order of magnitude
faster to train. Although these small proxy models have higher error rates, we find
that they empirically provide useful signal for data selection. We evaluate this
“selection via proxy” (SVP) approach on several data selection tasks across five
datasets: CIFAR10, CIFAR100, ImageNet, Amazon Review Polarity, and Amazon
Review Full. For active learning, applying SVP can give an order of magnitude
improvement in data selection runtime (i.e., the time it takes to repeatedly train and
select points) without significantly increasing the final error. For core-set selection,
proxies that are over 10× faster to train than their larger, more accurate target
models can remove up to 50% of the data without harming the final accuracy of
the target, making end-to-end training time savings possible.

1 INTRODUCTION

Data selection methods, such as active learning and core-set selection, improve the data efficiency of
machine learning by identifying the most informative training examples. To quantify informativeness,
these methods depend on semantically meaningful features or a trained model to calculate uncertainty.
Concretely, active learning selects points to label from a large pool of unlabeled data by repeatedly
training a model on a small pool of labeled data and selecting additional examples to label based on
the model’s uncertainty (e.g., the entropy of predicted class probabilities) or other heuristics (Settles,
2011; 2012; Lewis & Gale, 1994). Conversely, core-set selection techniques start with a large labeled
or unlabeled dataset and aim to find a small subset that accurately approximates the full dataset by
selecting representative examples (Har-Peled & Kushal, 2007; Tsang et al., 2005; Huggins et al.,
2016; Campbell & Broderick, 2017; 2018; Sener & Savarese, 2018).

Unfortunately, classical data selection methods are often prohibitively expensive to apply in deep
learning (Shen et al., 2017; Sener & Savarese, 2018; Kirsch et al., 2019). Unlike other machine
learning methods, deep learning models learn complex internal semantic representations (hidden
layers) from raw inputs (e.g., pixels or characters) that enable them to achieve state-of-the-art
performance but result in substantial training times. Many core-set selection and active learning
techniques require this feature representation before they can accurately identify informative points.
As a result, new deep active learning methods request labels in large batches to avoid retraining the
model too many times (Shen et al., 2017; Sener & Savarese, 2018; Kirsch et al., 2019). However,
batch active learning still requires training a full deep model for every batch, which is costly for large
models (He et al., 2016b; Jozefowicz et al., 2016; Vaswani et al., 2017). Similarly, core-set selection
applications mitigate the training time of deep learning models by using bespoke combinations of
hand-engineered features and simple models (e.g., hidden Markov models) pretrained on auxiliary
tasks (Wei et al., 2013; 2014; Tschiatschek et al., 2014; Ni et al., 2015).

1

Under review as a conference paper at ICLR 2020

In this paper, we propose selection via proxy (SVP) as a novel way to make existing data selection
methods more computationally efficient for deep learning. SVP uses the feature representation from
a separate, less computationally intensive proxy model in place of the representation from the much
larger and more accurate target model we aim to train. SVP builds on the idea of heterogeneous
uncertainty sampling from Lewis & Catlett (1994), which showed that an inexpensive classifier
(e.g., naïve Bayes) can select points to label for a much more computationally expensive classifier
(e.g., decision tree). In our work, we show that small deep learning models can similarly serve as
an inexpensive proxy for data selection in deep learning, significantly accelerating active learning
and core-set selection techniques. To create these cheap proxy models, we can either scale down
deep learning models by removing layers or training them for fewer epochs. While these scaled-
down models achieve significantly lower accuracy than larger models, we surprisingly find that they
still provide useful representations to rank and select points (i.e., high Spearman’s and Pearson’s
correlations with much larger models on metrics such as uncertainty (Settles, 2012), forgetting
events (Toneva et al., 2019), and submodular algorithms such as greedy k-centers (Wolf, 2011)).
Because these proxy models are quick to train (often 10× faster), we can identify which points to
select nearly as well as the larger target model but significantly faster.

We empirically evaluated SVP for active learning and core-set selection on five datasets: CIFAR10,
CIFAR100 (Krizhevsky & Hinton, 2009), ImageNet (Russakovsky et al., 2015), Amazon Review
Polarity, and Amazon Review Full (Zhang et al., 2015). For active learning, we considered both least
confidence uncertainty sampling (Settles, 2012; Shen et al., 2017; Gal et al., 2017) and the core-set
approach from Sener & Savarese (2018) with a variety of proxies. Across all datasets, we found that
SVP matches the accuracy of the traditional approach of using the same large model for both selecting
points and the final prediction task. Depending on the proxy, SVP yielded up to a 7× speed-up on
CIFAR10 and CIFAR100, 41.9× speed-up on Amazon Review Polarity and Full, and 1.6× speed-up
on ImageNet in data selection runtime (i.e., the time it takes to repeatedly train and select points). For
example, the Amazon Review results were achieved using fastText as a proxy for VDCNN29, which
takes less than 10 minutes to train instead of 16 hours. For core-set selection, we tried three methods
to identify a subset of points: max entropy uncertainty sampling (Settles, 2012), greedy k-centers as a
submodular approach (Wolf, 2011), and the recent approach of forgetting events (Toneva et al., 2019).
For each method, we found that smaller proxy models have high Spearman’s rank-order correlations
with models that are 10× larger and performed as well as these large models at identifying subsets of
points to train on that yield high test accuracy. Thus, core-set selection with SVP could be used to
reduce the size of large datasets before performing training. To illustrate, SVP applied to forgetting
events removed 50% of the data in CIFAR10 without impacting the accuracy of ResNet164 with
pre-activation (He et al., 2016b), using a 10× faster model to make the selection. This substitution
yielded an end-to-end training time improvement of about 1.6× for ResNet164 (including the time to
train and use the proxy). These results demonstrate that SVP is a promising, yet simple approach to
make data selection methods computationally feasible for deep learning.

2 METHODS

In this section, we describe SVP and show how it can be incorporated into active learning and core-set
selection. Figure 1 shows an overview of SVP: in active learning, we retrain a proxy model AP

k in
place of the target model AT

k after each batch is selected, and in core-set selection, we train the proxy
AP

L rather than the target AT
L over all the data to learn a feature representation and select points.

2.1 ACTIVE LEARNING

Pool-based active learning starts with a large pool of unlabeled data U = {xi}i∈[n] where [n] =
{1, . . . , n}. Each example is from the space X with an unknown label from the label space Y and is
sampled i.i.d. over the space Z = X × Y as {xi, yi} ∼ pZ . Initially, methods label a small pool of
points s0 = {s0j ∈ [n]}j∈[m] chosen uniformly at random. Given U , a loss function `, and the labels
{ys0j}j∈[m] for the initial random subset, the goal of active learning is to select up to a budget of b
points from U to label that will minimize the generalization error of a learning algorithm A.

Baseline. In this paper, we applied SVP to least confidence uncertainty sampling (Settles, 2012;
Shen et al., 2017; Gal et al., 2017) and the recent core-set approach to active learning from Sener

2

Under review as a conference paper at ICLR 2020

Traditional Approach

(a) Active Learning

Select
Subset
(!" ∪ !$)

Initial
Subset

(!")

Train
Target
(%"&)

Train
Target
(%'($&)

Select
Subset
(…∪ !')

Train
Target
(%'&)…

Data Selection

Select
Subset
(!" ∪ !$)

Initial
Subset

(s0)

Select
Subset
(…∪ !')

Train
Target
(%'&)…

Data Selection

Train
Proxy
(%"*)

Train
Proxy
(%'($*)

Our Approach: Selection Via Proxy

(b) Core-Set Selection

Select
Subset

(!)

Train
Target
(%+&)

Train
Proxy
(%,*)

Data
(-)

Data Selection

Our Approach: Selection Via Proxy

Figure 1: SVP applied to active learning (left) and core-set selection (right). In active learning,
we followed the same iterative procedure of training and selecting points to label as traditional
approaches but replaced the target model with a cheaper-to-compute proxy model. For core-set
selection, we learned a feature representation over the data using a proxy model and used it to select
points to train a larger, more accurate model. In both cases, we found the proxy and target model
have high rank-order correlation, leading to similar selections and downstream results.

& Savarese (2018). Like recent work for deep active learning (Shen et al., 2017; Sener & Savarese,
2018; Kirsch et al., 2019), we considered a batch setting with K rounds where we selected b

K points
in every round. Following Gal et al. (2017); Sener & Savarese (2018); Kirsch et al. (2019), we
reinitialized the target model and retrained on all of the labeled data collected over previous rounds
(denoted as AT

s0∪...∪sk or AT
k) to avoid any correlation between selections (Frankle & Carbin, 2018;

Kirsch et al., 2019). Then using AT
k , we either calculated the model’s confidence as:

fconfidence(x;AT
k) = 1−max

ŷ
P (ŷ|x;AT

k)

and selected the examples with the lowest confidence or extracted a feature representation from the
model’s final hidden layer and computed the distance between examples (i.e., ∆(xi,xj ;A

T
k)) to

select points according to the greedy k-centers method from Wolf (2011); Sener & Savarese (2018)
(Algorithm 1). The same model was trained on the final b labeled points to yield the final model, AT

K ,
which was then tested on a held-out set to evaluate error and quantify the quality of the selected data.

Although other selection approaches exist, least confidence uncertainty sampling and core-set selec-
tion cover the spectrum of uncertainty-based and representativeness-based approaches for deep active
learning. Other uncertainty metrics such as entropy or margin were highly correlated with confidence
when using the same trained model (i.e., above a 0.96 Spearman’s correlation in our experiments on
CIFAR). Query-by-committee (Seung et al., 1992) can be prohibitively expensive in deep learning,
where training a single model is already costly. BALD (Houlsby et al., 2011) has seen success in
deep learning (Gal et al., 2017; Shen et al., 2017) but is restricted to Bayesian neural networks or
networks with dropout (Srivastava et al., 2014) as an approximation (Gal & Ghahramani, 2016).

Algorithm 1 GREEDY K-CENTERS
(WOLF, 2011; SENER & SAVARESE, 2018)
Input: data xi, existing pool s0, trained model

AT
0 , and a budget b

1: Initialize s = s0

2: repeat
3: u = arg maxi∈[n]\s minj∈s ∆

(
xi,xj ;A

T
0

)
4: s = s ∪ {u}
5: until |s| = b + |s0|
6: return s \ s0

Algorithm 2 FORGETTING EVENTS
(TONEVA ET AL., 2019)

1: Initialize prev_acci = 0, i ∈ [n]
2: Initialize forgetting_eventsi = 0, i ∈ [n]
3: while training is not done do
4: Sample mini-batch B from L
5: for example i ∈ B do
6: compute acci
7: if prev_acci > acci then
8: forgetting_eventsi += 1
9: prev_acci = acci

10: gradient update classifier on B
11: return forgetting_events

3

Under review as a conference paper at ICLR 2020

2.2 CORE-SET SELECTION

Core-set selection can be broadly defined as techniques that find a subset of data points that maintain
a similar level of quality (e.g., generalization error of a trained model or minimum enclosing ball) as
the full dataset. Specifically, we start with a labeled dataset L = {xi, yi}i∈[n] sampled i.i.d. from Z
with pZ and want to find a subset of m ≤ n points s = {sj ∈ [n]}j∈[m] that achieves comparable
quality to the full dataset: mins:|s|=m Ex,y∼pZ [`(x, y;As)]− Ex,y∼pZ [`(x, y;AL)]

Baseline. To find s for a given m, we implemented three core-set selection techniques: greedy
k-centers (Wolf, 2011; Sener & Savarese, 2018), forgetting events (Toneva et al., 2019), and max
entropy uncertainty sampling (Lewis & Gale, 1994; Settles, 2012). Greedy k-centers is described
above and in Algorithm 1. Forgetting events are defined as the number of times an example is
incorrectly classified after having been correctly classified earlier during training a model as described
in Algorithm 2. To select points, we followed the same procedure as Toneva et al. (2019): we kept
the points with the m highest number of forgetting events. Points that were never correctly classified
were treated as having an infinite number of forgetting events. Similarly, we ranked examples based
on the entropy from a trained target AT

L as:

fentropy(x;AT
L) = −

∑
ŷ

P (ŷ|x;AT
L) logP (ŷ|x;AT

L)

and kept the m with the highest entropy. To evaluate core-set quality, we compared the performance
of training the large target model on the selected subset AT

s compared to training the target model on
the entire dataset AT

L by measuring error on a held-out test set.

2.3 APPLYING SELECTION VIA PROXY

In general, SVP can be applied by replacing the models used to compute data selection metrics such
as uncertainty with proxy models. In this paper, we applied SVP to the active learning and core-set
selection methods described in Sections 2.1 and 2.2 as follows:

• For active learning, we replaced the model trained at each batch (AT
k) with a proxy (AP

k),
but then trained the same final model AT

K once the budget b was reached.
• For core-set selection, we used a proxy AP

L instead of AT
L to compute metrics and select s.

We explored two main methods to create our proxy models:

Creating a proxy by scaling down the target model. For deep models with many layers, reducing
the dimension or the number of hidden layers reduces training times considerably with only a small
drop in accuracy. For example, in image classification, the accuracy of deep ResNet models only
slightly diminishes as layers are dropped from the network (He et al., 2016b;a). As a result, a
ResNet20 model achieves a top-1 error of 7.6% on CIFAR10 in 26 minutes, while a larger ResNet164
model only reduces error by 2.5%, but takes 3 hours and 50 minutes (Figure 4b in the Appendix).
Similar results have been shown for a variety of model architectures (Xie et al., 2017; Huang
et al., 2017) and many other tasks including language modeling, neural machine translation, text
classification, and recommendation (Conneau et al., 2016; He et al., 2017; Jozefowicz et al., 2016;
Vaswani et al., 2017). We exploit these diminishing returns to scale down a given target to a proxy
that can be trained quickly but still provides a good approximation of the target’s decision boundary.

Training for a smaller number of epochs. Similarly, a significant amount of training is spent on a
relatively small reduction in error. While training ResNet20, almost half of the training time (i.e., 12
minutes out of 26 minutes) is spent on a 1.4% improvement in test error, as shown in Figure 4a in the
Appendix. Based on this observation, we also explored training proxy models for a smaller number
of epochs to get good approximations of the decision boundary of the target model even faster.

3 RESULTS

To demonstrate the effectiveness of SVP, we applied SVP to data selection methods from active
learning and core-set selection on five datasets. After a brief description of the datasets and models in
Section 3.1, Section 3.2 evaluates SVP’s impact on active learning and shows that across labeling
budgets SVP achieved similar or higher accuracy and up to a 41.9× improvement in data selection

4

Under review as a conference paper at ICLR 2020

runtime (i.e., the time it takes to repeatedly train and select points). Next, we applied SVP to the
core-set selection problem (Section 3.3). For all selection methods, the target model performed nearly
as well as or better with SVP than the oracle baseline that trained the target model on all of the data
before selecting examples. On CIFAR10, a small proxy model trained for 50 epochs instead of 181
epochs took only 7 minutes compared to the 3 hours 50 minutes for training the target model for
all 181 epochs, making SVP feasible for end-to-end training time speed-ups. Finally, Section 3.4
illustrates why proxy models performed so well by evaluating how varying models and methods rank
examples. Despite substantially different error rates, the correlation across varying depths was nearly
as high as between runs of the same architectures.

3.1 EXPERIMENTAL SETUP

Datasets. We performed experiments on three image classification datasets: CIFAR10, CI-
FAR100 (Krizhevsky & Hinton, 2009), and ImageNet (Russakovsky et al., 2015); and two text
classification datasets: Amazon Review Polarity and Full (Zhang & LeCun, 2015; Zhang et al., 2015).
CIFAR10 is a coarse-grained classification task over 10 classes, and CIFAR100 is a fine-grained task
with 100 classes. Both datasets contain 50,000 images for training and 10,000 images for testing.
ImageNet has 1.28 million training images and 50,000 validation images that belong to 1 of 1,000
classes. Amazon Review Polarity has 3.6 million reviews split evenly between positive and negative
ratings with an additional 400,000 reviews for testing. Amazon Review Full has 3 million reviews
split evenly between the 5 stars with an additional 650,000 reviews for testing.

Models. For CIFAR10 and CIFAR100, we used ResNet164 with pre-activation from He et al.
(2016b) as our large target model. The smaller, proxy models are also ResNet architectures with pre-
activation, but they use pairs of 3×3 convolutional layers as their residual unit rather than bottlenecks.
For ImageNet, we used the original ResNet architecture from He et al. (2016a) implemented in
PyTorch 1 (Paszke et al., 2017) with ResNet50 as the target and ResNet18 as the proxy. For
Amazon Review Polarity and Amazon Review Full, we used VDCNN (Conneau et al., 2017) and
fastText (Joulin et al., 2016) with VDCNN29 as the target and fastText and VDCNN9 as proxies. In
general, we followed the same training procedure as the original papers (more details in Section A.1).
Creating a proxy by training for a smaller number of epochs was only used for core-set selection
experiments CIFAR10 and CIFAR100, where the rankings of points converged quickly.

3.2 ACTIVE LEARNING

CIFAR10 and CIFAR100. For least confidence uncertainty sampling and greedy k-centers, SVP
sped-up data selection by up to 7× and 3.8× respectively without impacting data efficiency (see
Table 1) despite the proxy achieving substantially higher top-1 error than the target ResNet164 model
(see Figure 6 in the Appendix). The speed-ups for least confidence were a direct reflection of the
difference in training time between the proxy in the target models. As shown in Figures 4 and 5 in the
Appendix, ResNet20 was about 8× faster to train than ResNet164, taking 30 minutes to train rather
than 4 hours. Larger budgets required more rounds of selection and, in turn, more training, which
led to larger speed-ups as training became a more significant fraction of the total time. For greedy
k-centers, the speed-ups increased more slowly because executing the selection algorithm added more
overhead. The differences between the proxies’ and the target’s rankings also accumulated as more
selections were made, causing an increase in the final target model’s error for smaller proxies.

ImageNet. For least confidence uncertainty sampling, SVP sped-up data selection by up to 1.6×
(Table 1) despite ResNet18’s higher error compared to ResNet50 (Figure 6g in the Appendix). Greedy
k-centers was too slow on ImageNet due to the quadratic complexity of Algorithm 1.

Amazon Review Polarity and Amazon Review Full. On Amazon Review Polarity, SVP with a
fastText proxy for VDCNN29 led to up to a relative error reduction of 14% over random sampling for
large budgets, while being up to 41.9× faster at data selection than the baseline approach (Table 1).
Despite fastText’s architectural simplicity compared to VDCNN29 and higher error (Figure 6e), the
calculated confidences signaled which examples would be the most informative. For all budgets,
VDCNN9 was within 0.1% top-1 error of VDCNN29, giving a consistent 1.8× speed-up. On Amazon
Review Full, neither the baseline least confidence uncertainty sampling approach nor the application

1https://pytorch.org/docs/stable/torchvision/models.html

5

https://pytorch.org/docs/stable/torchvision/models.html

Under review as a conference paper at ICLR 2020

Table 1: SVP performance on active learning. Average (± 1 std.) top-1 error and data selection
speed-ups from 3 runs of active learning with varying proxies, methods, and labeling budgets on
five datasets. Bold speed-ups indicate settings that are within 1 std. of the mean top-1 error for the
baseline approach (B) of using the same model for selection and the final predictions. Across datasets
and methods, SVP sped up selection without significantly increasing the error of the final target.

Top-1 Error of Target Model (%) Data Selection Speed-up
Budget (b/n) 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

Dataset Method Proxy
CIFAR10 Random - 20.3± 0.51 12.9± 0.37 10.1± 0.24 8.5± 0.22 7.5± 0.11 - - - - -

Least ResNet164 (B) 18.7± 0.31 10.4± 0.38 7.4± 0.16 6.1± 0.32 5.3± 0.06 1.0× 1.0× 1.0× 1.0× 1.0×
Confidence ResNet110 18.1± 0.41 10.5± 0.06 7.5± 0.11 5.9± 0.33 5.3± 0.05 1.8× 1.9× 1.9× 1.8× 1.8×

ResNet56 18.2± 0.73 10.3± 0.28 7.4± 0.10 6.1± 0.06 5.5± 0.08 2.6× 2.9× 3.0× 3.1× 3.1×
ResNet20 18.1± 0.28 10.5± 0.42 7.4± 0.23 5.9± 0.19 5.4± 0.41 3.8× 5.8× 6.7× 7.0× 7.2×

Greedy ResNet164 (B) 20.1± 0.39 11.3± 0.40 8.1± 0.22 6.6± 0.24 5.6± 0.04 1.0× 1.0× 1.0× 1.0× 1.0×
k-Centers ResNet110 19.4± 0.55 11.6± 0.16 8.1± 0.16 6.4± 0.10 5.7± 0.13 2.1× 1.8× 1.7× 1.7× 1.6×

ResNet56 19.8± 0.49 11.6± 0.16 8.4± 0.21 6.3± 0.17 5.7± 0.19 3.0× 2.9× 2.8× 2.8× 2.8×
ResNet20 19.5± 0.76 12.1± 0.44 8.8± 0.31 7.2± 0.19 6.1± 0.18 3.8× 4.6× 5.0× 5.3× 5.5×

CIFAR100 Random - 60.7± 0.81 42.5± 0.55 36.0± 0.42 31.9± 0.48 29.3± 0.16 - - - - -
Least ResNet164 (B) 61.2± 1.09 42.2± 0.67 33.9± 0.33 29.9± 0.18 26.9± 0.21 1.0× 1.0× 1.0× 1.0× 1.0×
Confidence ResNet110 60.2± 0.84 42.3± 0.95 34.1± 0.38 29.7± 0.41 27.2± 0.25 1.5× 1.6× 1.6× 1.6× 1.6×

ResNet56 61.5± 0.93 42.0± 0.17 33.7± 0.33 29.7± 0.08 26.4± 0.13 2.4× 2.7× 3.0× 2.9× 3.1×
ResNet20 62.4± 1.07 41.4± 0.25 33.8± 0.37 29.8± 0.10 26.6± 0.14 4.0× 5.8× 6.6× 7.0× 7.2×

Greedy ResNet164 (B) 60.4± 1.30 42.4± 0.57 34.5± 0.40 30.2± 0.33 27.3± 0.24 1.0× 1.0× 1.0× 1.0× 1.0×
k-Centers ResNet110 59.6± 0.78 42.2± 0.76 34.9± 0.40 30.3± 0.46 27.4± 0.21 2.3× 1.9× 1.8× 1.7× 1.6×

ResNet56 60.9± 1.08 42.6± 0.47 35.2± 0.40 30.8± 0.25 27.8± 0.23 3.3× 3.2× 3.1× 3.1× 3.0×
ResNet20 60.2± 1.27 42.9± 0.52 35.8± 0.45 31.6± 0.31 28.5± 0.48 4.5× 5.5× 5.9× 6.1× 6.2×

ImageNet Random - 48.5± 0.04 37.5± 0.34 32.5± 0.12 29.9± 0.42 27.8± 0.13 - - - - -
Least ResNet50 (B) 48.2± 0.37 35.9± 0.22 31.0± 0.10 28.3± 0.32 26.3± 0.16 1.0× 1.0× 1.0× 1.0× 1.0×
Confidence ResNet18 48.3± 0.31 36.1± 0.19 31.1± 0.12 28.2± 0.13 26.4± 0.02 1.2× 1.3× 1.4× 1.5× 1.6×

Amazon Random - 6.5± 0.03 5.6± 0.07 5.2± 0.07 4.9± 0.01 4.7± 0.03 - - - - -
Review Least VDCNN29 (B) 5.8± 0.08 4.8± 0.04 4.5± 0.01 4.3± 0.02 4.2± 0.02 1.0× 1.0× 1.0× 1.0× 1.0×
Polarity Confidence VDCNN9 5.8± 0.11 4.9± 0.01 4.5± 0.02 4.3± 0.04 4.3± 0.03 1.9× 1.8× 1.8× 1.8× 1.8×

fastText 6.9± 0.81 5.2± 0.17 4.6± 0.01 4.3± 0.01 4.3± 0.02 10.6× 20.6× 32.2× 41.9× 51.3×
Amazon Random - 41.7± 0.19 39.9± 0.05 39.0± 0.09 38.4± 0.14 37.9± 0.10 - - - - -
Review Least VDCNN29 (B) 41.9± 0.54 39.7± 0.22 38.6± 0.10 38.2± 0.03 37.6± 0.01 1.0× 1.0× 1.0× 1.0× 1.0×
Full Confidence VDCNN9 42.0± 0.44 39.8± 0.23 38.7± 0.09 38.1± 0.09 37.7± 0.10 2.0× 1.9× 1.8× 1.8× 1.8×

fastText 42.7± 0.77 39.8± 0.02 38.7± 0.05 38.1± 0.06 37.7± 0.05 8.7× 17.7× 26.7× 35.1× 43.1×

of SVP outperformed random sampling, so the data selection speed-ups were uninteresting even
though they were similar to Amazon Review Polarity. For both datasets, greedy k-centers was too
slow as mentioned above in the ImageNet experiments.

3.3 CORE-SET SELECTION

CIFAR10 and CIFAR100. For all methods on both CIFAR10 and CIFAR100, SVP proxy models
performed as well as or better than an “oracle” baseline where ResNet164 itself is used as the core-set
selection model, as shown in Figure 2 (and Figure 7 in the Appendix). Using forgetting events on
CIFAR10, SVP with ResNet20 as the proxy removed 50% of the data without a significant increase
in error from ResNet164. The entire process of training ResNet20 on all the data, selecting which
examples to keep, and training ResNet164 on the subset only took 2 hours and 20 minutes (see
Table 2 in the Appendix), which was a 1.6× speed-up compared to training ResNet164 over all of the
data. If we stopped training ResNet56 early and removed 50% of the data based on forgetting events
from the first 50 epochs, SVP achieved an end-to-end training time speed-up of 1.8× with only a
slightly higher top-1 error from ResNet164 (5.4% vs. 5.1%) as shown in Table 3 in the Appendix.
In general, training the proxy for fewer epochs also maintained the accuracy of the target model
on CIFAR10 because the ranking quickly converged (Figure 11a and 12a in the Appendix). On
CIFAR100, partial training did not work as well for proxies at large subset sizes because the ranking
took longer to stabilize and were less correlated (Figure 11b and Figure 12b in the Appendix). On
small 30% subsets with forgetting events, partial training improved accuracy on CIFAR100.

ImageNet. Neither the baseline approach nor SVP was able to remove a significant percentage of the
data without increasing the final error of ResNet50, as shown in Table 4 in the Appendix. However,
the selected subsets from both ResNet18 and ResNet50 outperformed random sampling with up to a
1% drop in top-1 error using forgetting events. Note, due to the quadratic computational complexity
of Algorithm 1, we were unable to run greedy k-centers in a reasonable amount of time.

Amazon Review Polarity and Amazon Review Full. On Amazon Review Polarity, we were able
to remove 20% of the dataset with only a 0.1% increase in VDCNN29’s top-1 error using fastText
as the proxy (see Table 4). In comparison to VDCNN29, which took 16 hours and 40 minutes to
train over the entire dataset on a Titan V GPU, fastText was two orders of magnitude faster, taking
less than 10 minutes on a CPU to train over the same data and compute output probabilities. This

6

Under review as a conference paper at ICLR 2020

Full Dataset Random ResNet164 (Baseline) ResNet56 (SVP) ResNet20 (SVP)

30 40 50 60 70
Subset of Data Used (%)

5.0

7.5

10.0
To

p-
1

Er
ro

r (
%

)

(a) CIFAR10 forgetting events

30 40 50 60 70
Subset of Data Used (%)

5.0

7.5

10.0

(b) CIFAR10 entropy

30 40 50 60 70
Subset of Data Used (%)

5.0

7.5

10.0

(c) CIFAR10 greedy k-centers

Figure 2: SVP performance on core-set selection. Average (± 1 std.) top-1 error of ResNet164 over
5 runs of core-set selection with different selection methods, proxies, and subset sizes on CIFAR10.
We found subsets using forgetting events (left), entropy (middle), and greedy k-centers (right) from a
proxy model trained over the entire dataset. Across datasets and selection methods, SVP performed
as well as an oracle baseline where ResNet164 trained on the full dataset selected the subset.

R20 R56 R110 R164

R20

R56

R110

R164

0.91

0.91 0.91

0.90 0.91 0.91

0.90 0.90 0.90 0.91
1.0

0.5

0.0

0.5

1.0

(a) CIFAR10 forgetting events

R20 R56 R110 R164

R20

R56

R110

R164

0.67

0.39 0.41

0.29 0.37 0.36

0.45 0.42 0.38 0.52
1.0

0.5

0.0

0.5

1.0

(b) CIFAR10 entropy

R20 R56 R110 R164

R20

R56

R110

R164

0.38

0.38 0.47

0.37 0.46 0.46

0.40 0.46 0.45 0.50
1.0

0.5

0.0

0.5

1.0

(c) CIFAR10 greedy k-centers

Figure 3: Comparing selection across model sizes and methods on CIFAR10. Average Spear-
man’s correlation between different runs of ResNet (R) models and a varying depths. We computed
rankings based on forgetting events (left), entropy (middle), and greedy k-centers (right). We saw
a similarly high correlation across model architectures (off-diagonal) as between runs of the same
architecture (on-diagonal), suggesting that small models are good proxies for data selection.

difference allowed us to train VDCNN29 to nearly the same error in 13 and a half hours. However,
on Amazon Review Full, both the baseline approach and SVP failed to outperform random sampling.
Similar to ImageNet, we were unable to run greedy k-centers in a reasonable amount of time, and
additionally, Facebook’s fastText implementation 2 did not allow us to compute forgetting events.

3.4 RANKING CORRELATION BETWEEN MODELS

Models with fewer layers. Figure 3 (and Figure 9 in the appendix) shows the Spearman’s rank-order
correlation between ResNets of varying depth for three selection methods on CIFAR. For greedy
k-centers, we started with 1,000 randomly selected points and ranked the remaining points based on
the order they are added to set s in Algorithm 1. Across models, there was a positive correlation
similar to the correlation between runs of the same model. We found similar results if we used
the same initial subset across runs (Figure 10 in the Appendix). For forgetting events and entropy,
we ranked points in descending order based on the number of forgetting events and the entropy of
the output predictions from the trained model, respectively. Both metrics had comparable positive
correlations between different models and different runs of the same model. We also looked at
the Pearson correlation coefficient for the number of forgetting events and entropy in Figure 13 in
the Appendix and found a similar positive correlation. The consistent positive correlation between
varying depths illustrates why small models are good proxies for larger models in data selection.

Models with different architectures. As an additional approach to creating proxy models, we
investigated using different model architectures by calculating the Spearman’s correlation between
pretrained ImageNet models and found that correlations varied greatly (Figure 8 in the Appendix).
Within the range of architectures with residual connections or similar mechanisms to propagate

2https://github.com/facebookresearch/fastText

7

https://github.com/facebookresearch/fastText

Under review as a conference paper at ICLR 2020

features between layers (e.g., ResNet or DenseNet), the Spearman’s correlation was positive and
fairly high. However, there was almost no correlation between rankings from ResNet architectures
and VGG variants (Simonyan & Zisserman, 2014) and even a negative correlation with older models
such as AlexNet (Krizhevsky et al., 2012). While the work of Lewis & Catlett (1994) and our
results with fastText and VDCNN from Section 3.2 suggest the potential for heterogeneous selection,
there are limits (Lowell et al., 2018). Fundamental differences between architectures should be
considered carefully as these building blocks introduce strong inductive biases (Gaier & Ha, 2019). In
comparison, simply removing layers may be more practical as there were generally high correlations
between models from within a specific family of architectures but varying depths.

4 RELATED WORK

Active learning. There are examples in the active learning literature that address the computational
efficiency of active learning methods by using one model to select points for a different, more
expensive model. For instance, Lewis & Catlett (1994) proposed heterogeneous uncertainty sampling
and used a Naïve Bayes classifier to select points to label for a more expensive decision tree target
model. Tomanek et al. (2007) uses a committee-based active learning algorithm for an NLP task
and notes that the set of selected points are “reusable” across different models (maximum entropy,
conditional random field, naive Bayes). In our work, we showed that this can be generalized to
deep learning by either using smaller models or fewer training epochs, where it can significantly
reduce the running time of uncertainty-based (Settles, 2012; Shen et al., 2017; Gal et al., 2017) and
recent representativeness-based (Sener & Savarese, 2018) methods. In addition, we showed that this
phenomenon extends to core-set selection using several metrics.

Core-set selection. Core-set selection attempts to find a representative subset of points to speed up
learning or clustering; such as k-means and k-medians (Har-Peled & Kushal, 2007), SVM (Tsang
et al., 2005), Bayesian logistic regression (Huggins et al., 2016), and Bayesian inference (Campbell
& Broderick, 2017; 2018). However, these examples generally require ready-to-use features as input,
and do not directly apply to deep neural networks unless a feature representation is first learned,
which usually requires training the full target model itself. There is also a body of work on data
summarization based on submodular maximization (Wei et al., 2013; 2014; Tschiatschek et al., 2014;
Ni et al., 2015), but these techniques depend on a combination of hand-engineered features and
simple models (e.g., hidden Markov models and Gaussian mixture models) pretrained on auxiliary
tasks. In comparison, our work demonstrated that we can use the feature representations of smaller,
faster-to-train proxy models as an effective way to select core-sets for deep learning tasks.

Recently, Toneva et al. (2019) showed that a large number of “unforgettable" examples that are
rarely incorrectly classified once learned (i.e., 30% on CIFAR10) could be omitted without impacting
generalization, which can be viewed as a core-set selection method. They also provide initial evidence
that forgetting events are transferable across models and throughout training by using the forgetting
events from ResNet18 to select a subset for WideResNet (Zagoruyko & Komodakis, 2016) and by
computing the Spearman’s correlation of forgetting events during training compared to their final
values. In our work, we evaluated a similar idea of using proxy models to approximate various
properties of a large model, and showed that proxy models closely match the rankings of large models
in the entropy, greedy k-centers, and example forgetting metrics. We showed how this similarity
could be leveraged for active learning in addition to core-set selection.

5 CONCLUSION

In this work, we introduced selection via proxy (SVP) to improve the computational efficiency
of active learning and core-set selection in deep learning by substituting a cheaper proxy model’s
representation for an expensive model’s during data selection. Applied to least confidence uncertainty
sampling and Sener & Savarese (2018)’s core-set approach, SVP achieved up to a 41.9× and 3.8×
improvement in runtime respectively with no significant increase in error. For core-set selection, we
found that SVP can remove up to 50% of the data from CIFAR10 in 10× less time than it takes to
train the target model, achieving an end-to-end training speed-up of 1.6× without increasing error.
Our results demonstrate that SVP is a promising approach to reduce the computational requirements
of data selection methods for deep learning.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Trevor Campbell and Tamara Broderick. Automated scalable bayesian inference via hilbert coresets.
arXiv preprint arXiv:1710.05053, 2017.

Trevor Campbell and Tamara Broderick. Bayesian coreset construction via greedy iterative geodesic
ascent. arXiv preprint arXiv:1802.01737, 2018.

Alexis Conneau, Holger Schwenk, Loïc Barrault, and Yann Lecun. Very deep convolutional networks
for text classification. arXiv preprint arXiv:1606.01781, 2016.

Alexis Conneau, Holger Schwenk, Loïc Barrault, and Yann Lecun. Very deep convolutional networks
for text classification. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume 1, Long Papers, pp. 1107–1116. Association
for Computational Linguistics, 2017. URL http://aclweb.org/anthology/E17-1104.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Adam Gaier and David Ha. Weight agnostic neural networks. CoRR, abs/1906.04358, 2019. URL
http://arxiv.org/abs/1906.04358.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059,
2016.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1183–1192.
JMLR. org, 2017.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering. Discrete
& Computational Geometry, 37(1):3–19, 2007.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016b.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web,
pp. 173–182. International World Wide Web Conferences Steering Committee, 2017.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning for
classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, volume 1, pp. 3, 2017.

Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable bayesian logistic
regression. In Advances in Neural Information Processing Systems, pp. 4080–4088, 2016.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. Bag of tricks for efficient
text classification. arXiv preprint arXiv:1607.01759, 2016.

9

http://aclweb.org/anthology/E17-1104
http://arxiv.org/abs/1906.04358

Under review as a conference paper at ICLR 2020

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the
limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. arXiv preprint arXiv:1906.08158, 2019.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised learning. In
Machine Learning Proceedings 1994, pp. 148–156. Elsevier, 1994.

David D Lewis and William A Gale. A sequential algorithm for training text classifiers. In Proceed-
ings of the 17th annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 3–12. Springer-Verlag New York, Inc., 1994.

David Lowell, Zachary C. Lipton, and Byron C. Wallace. How transferable are the datasets collected
by active learners? CoRR, abs/1807.04801, 2018. URL http://arxiv.org/abs/1807.
04801.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Chongjia Ni, Cheung-Chi Leung, Lei Wang, Nancy F Chen, and Bin Ma. Unsupervised data selection
and word-morph mixed language model for tamil low-resource keyword search. In Acoustics,
Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, pp. 4714–4718.
IEEE, 2015.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4510–4520, 2018.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=H1aIuk-RW.

Burr Settles. From theories to queries: Active learning in practice. In Isabelle Guyon, Gavin
Cawley, Gideon Dror, Vincent Lemaire, and Alexander Statnikov (eds.), Active Learning and
Experimental Design workshop In conjunction with AISTATS 2010, volume 16 of Proceedings
of Machine Learning Research, pp. 1–18, Sardinia, Italy, 16 May 2011. PMLR. URL http:
//proceedings.mlr.press/v16/settles11a.html.

Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 6
(1):1–114, 2012.

H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee. In Proceedings of
the fifth annual workshop on Computational learning theory, pp. 287–294. ACM, 1992.

Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov Kronrod, and Animashree Anandkumar. Deep
active learning for named entity recognition. arXiv preprint arXiv:1707.05928, 2017.

10

http://arxiv.org/abs/1807.04801
http://arxiv.org/abs/1807.04801
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW
http://proceedings.mlr.press/v16/settles11a.html
http://proceedings.mlr.press/v16/settles11a.html

Under review as a conference paper at ICLR 2020

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Katrin Tomanek, Joachim Wermter, and Udo Hahn. An approach to text corpus construction which
cuts annotation costs and maintains reusability of annotated data. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), 2007.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network learning.
In International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=BJlxm30cKm.

Ivor W Tsang, James T Kwok, and Pak-Ming Cheung. Core vector machines: Fast svm training on
very large data sets. Journal of Machine Learning Research, 6(Apr):363–392, 2005.

Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and Jeff A Bilmes. Learning mixtures of
submodular functions for image collection summarization. In Advances in neural information
processing systems, pp. 1413–1421, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Kai Wei, Yuzong Liu, Katrin Kirchhoff, and Jeff Bilmes. Using document summarization techniques
for speech data subset selection. In Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
721–726, 2013.

Kai Wei, Yuzong Liu, Katrin Kirchhoff, Chris Bartels, and Jeff Bilmes. Submodular subset selection
for large-scale speech training data. In Acoustics, Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on, pp. 3311–3315. IEEE, 2014.

Gert W Wolf. Facility location: concepts, models, algorithms and case studies., 2011.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Computer Vision and Pattern Recognition (CVPR),
2017 IEEE Conference on, pp. 5987–5995. IEEE, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Xiang Zhang and Yann LeCun. Text understanding from scratch. arXiv preprint arXiv:1502.01710,
2015.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. In Advances in neural information processing systems, pp. 649–657, 2015.

11

https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=BJlxm30cKm

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 IMPLEMENTATION DETAILS

CIFAR10 and CIFAR100. We used ResNet164 with pre-activation from He et al. (2016b) as our
large target model for both CIFAR10 and CIFAR100. Note that as originally proposed in He et al.
(2016a), the smaller, proxy models are also ResNet architectures with pre-activation, but they use
pairs of 3× 3 convolutional layers as their residual unit rather than bottlenecks and achieve lower
accuracy as shown in Figure 4. As with He et al. (2016b), the ResNets we used were much narrower
when applied to CIFAR rather than ImageNet (256 filters rather than 2048 in the final layer of the last
bottleneck) and have fewer sections, which means far fewer weights despite the increased depth. For
example, ResNet50 on ImageNet has ~25M weights while ResNet164 on CIFAR has ~1.7M. More
recent networks such as Wide Residual Networks (Zagoruyko & Komodakis, 2016), ResNeXt (Xie
et al., 2017), and DenseNets (Huang et al., 2017) use models with more than 25M parameters on
CIFAR10, making ResNet164 relatively small in comparison. Core-set selection experiments used a
single Nvidia P100 GPU, while the active learning experiments used a Titan V GPU. We followed the
same training procedure, initialization, and hyperparameters as He et al. (2016b) with the exception
of weight decay, which was set to 0.0005 and decreased the model’s validation error in all conditions.

ImageNet. we used the original ResNet architecture from He et al. (2016a) implemented in Py-
Torch 3 (Paszke et al., 2017) with ResNet50 as the target and ResNet18 as the proxy. For training, we
used a custom machine with 4 Nvidia Titan V GPUs and followed Nvidia’s optimized implemen-
tation 4 with a larger batch size, appropriately scaled learning rate (Goyal et al., 2017), a 5-epoch
warm-up period, and mixed precision training (Micikevicius et al., 2017) with the apex 5 library. For
active learning, we used the same batch size of 768 images for both ResNet18 and ResNet50 for
simplicity, which was the maximum batch size that could fit into memory for ResNet50. However,
ResNet18 with a batch size of 768 underutilized the GPU and yielded a lower speed-up. With separate
batch sizes for ResNet18 and ResNet50, we would have seen speed-ups closer to 2.7×.

Amazon Review Polarity (2-classes) and Full (5-classes). For Amazon Review Polarity and Ama-
zon Review Full, we used VDCNN (Conneau et al., 2017) and fastText (Joulin et al., 2016) with
VDCNN29 as the target and fastText and VDCNN9 as proxies. For Amazon Review Polarity, core-set
selection experiments used a single Nvidia P100 GPU, while the active learning experiments used
a Nvidia Titan V GPU to train VDCNN models. For Amazon Review Full, core-set selection and
active learning experiments both used a Nvidia Titan V GPU. In all settings, we used the same
training procedure from Conneau et al. (2017) for VDCNN9 and VDCNN29. For fastText, we used
Facebook’s implementation 6 and followed the same training procedure from Joulin et al. (2016).

3https://pytorch.org/docs/stable/torchvision/models.html
4https://github.com/NVIDIA/DeepLearningExamples
5https://github.com/NVIDIA/apex/tree/master/examples/imagenet
6https://github.com/facebookresearch/fastText

12

https://pytorch.org/docs/stable/torchvision/models.html
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/apex/tree/master/examples/imagenet
https://github.com/facebookresearch/fastText

Under review as a conference paper at ICLR 2020

A.2 MOTIVATION FOR CREATING PROXIES

0 1 2 3 4
Training Time in Hours on 1 P100 GPU

5.5

6.0

6.5

7.0

7.5

To
p-

1
Te

st
 E

rro
r (

%
) ResNet20

ResNet56

ResNet110

ResNet164

(a) Top-1 test error and training time on CIFAR10 for
ResNet with pre-activation and a varying number of
layers. There is a diminishing return in accuracy by
increasing the number of layers.

0 5 10 15 20 25
Training Time in Minutes on 1 P100 GPU

10

20

30

40

50

60

To
p-

1
Te

st
 E

rro
r (

%
)

(b) Top-1 test error during training of ResNet20 with
pre-activation. In the first 14 minutes, ResNet20
reaches 9.0% top-1 error, while the remaining 12 min-
utes are spent on decreasing error to 7.6%

Figure 4: Top-1 test error on CIFAR10 for varying model sizes (left) and over the course of training a
single model (right), demonstrating a large amount of time is spent on small changes in accuracy.

0 1 2 3 4
Training Time in Hours on 1 P100 GPU

24

26

28

30

To
p-

1
Te

st
 E

rro
r (

%
) ResNet20

ResNet56
ResNet110

ResNet164

(a) Top-1 test error and training time on CIFAR100
for ResNet with pre-activation and a varying number
of layers. There are diminishing returns in accuracy
from increasing the number of layers.

0 5 10 15 20 25
Training Time in Minutes on 1 P100 GPU

40

60

80

To
p-

1
Te

st
 E

rro
r (

%
)

(b) Top-1 test error during training of ResNet20 with
pre-activation. In the first 15 minutes, ResNet20
reaches 33.9% top-1 error, while the remaining 12
minutes are spent on decreasing error to 31.1%

Figure 5: Top-1 test error on CIFAR100 for varying model sizes (left) and over the course of training
a single model (right), demonstrating a large amount of time is spent on small changes in accuracy.

13

Under review as a conference paper at ICLR 2020

A.3 ADDITIONAL ACTIVE LEARNING RESULTS

10 15 20 25 30 35 40 45 50
Budget b of Labeled Data (%)

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

To
p-

1
Te

st
 E

rro
r (

%
)

Random
R164-R164 (Proxy/Target)
R110-R164 (Target)
R110-R164 (Proxy)
 R56-R164 (Target)
 R56-R164 (Proxy)
 R20-R164 (Target)
 R20-R164 (Proxy)
Full Dataset

(a) CIFAR10 greedy k-centers

10 15 20 25 30 35 40 45 50
Budget b of Labeled Data (%)

20
25
30
35
40
45
50
55
60
65

To
p-

1
Te

st
 E

rro
r (

%
)

Random
R164-R164 (Proxy/Target)
R110-R164 (Target)
R110-R164 (Proxy)
 R56-R164 (Target)
 R56-R164 (Proxy)
 R20-R164 (Target)
 R20-R164 (Proxy)
Full Dataset

(b) CIFAR100 greedy k-centers

10 15 20 25 30 35 40 45 50
Budget b of Labeled Data (%)

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

To
p-

1
Te

st
 E

rro
r (

%
)

Random
R164-R164 (Proxy/Target)
R110-R164 (Target)
R110-R164 (Proxy)
 R56-R164 (Target)
 R56-R164 (Proxy)
 R20-R164 (Target)
 R20-R164 (Proxy)
Full Dataset

(c) CIFAR10 least confidence

10 15 20 25 30 35 40 45 50
Budget b of Labeled Data (%)

20
25
30
35
40
45
50
55
60
65

To
p-

1
Te

st
 E

rro
r (

%
)

Random
R164-R164 (Proxy/Target)
R110-R164 (Target)
R110-R164 (Proxy)
 R56-R164 (Target)
 R56-R164 (Proxy)
 R20-R164 (Target)
 R20-R164 (Proxy)
Full Dataset

(d) CIFAR100 least confidence

10 15 20 25 30 35 40 45 50
Budget b of Labeled Data (%)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

To
p-

1
Te

st
 E

rro
r (

%
)

Random
V29-V29 (Proxy/Target)
 V9-V29 (Target)
 V9-V29 (Proxy)
 FT-V29 (Target)
 FT-V29 (Proxy)
Full Dataset

(e) Amazon Review Polarity least confidence

10 15 20 25 30 35 40 45 50
Budget b of Labeled Data (%)

36

37

38

39

40

41

42

43

44

To
p-

1
Te

st
 E

rro
r (

%
)

Random
V29-V29 (Proxy/Target)
 V9-V29 (Target)
 V9-V29 (Proxy)
 FT-V29 (Target)
 FT-V29 (Proxy)
Full Dataset

(f) Amazon Review Full least confidence

10 15 20 25 30 35 40 45 50
Budget b of Labeled Data (%)

20

25

30

35

40

45

50

55

To
p-

1
Te

st
 E

rro
r (

%
)

Random
R50-R50 (Proxy/Target)
R18-R50 (Target)
R18-R50 (Proxy)
Full Dataset

(g) ImageNet least confidence

Figure 6: Quality of proxies compared to target models. Average (± 1 std.) top-1 error from 3
runs of active learning with varying proxies, selection methods, and budgets on five classification
datasets. Dotted lines show the top-1 error of the proxy models, while solid lines show the top-1 error
of the target models. CIFAR10 and CIFAR100 experiments used varying depths of pre-activation
ResNet (R) models as proxies and ResNet164 (R164) as the target model (e.g., R20-R164 is ResNet20
selecting for ResNet164). ImageNet used ResNet18 (R18) as the proxy and ResNet50 (R50) as the
target. Amazon Review Polarity and Amazon Review Full used VDCNN9 (V9) and fastText (FT) as
proxies and VDCNN29 (V29) as the target. Across datasets, proxies, methods, and budgets, smaller
proxies had higher top-1 error than the target model, but selecting points that were nearly as good as
the points selected by the target that did not harm the final target model’s predictive performance.

14

Under review as a conference paper at ICLR 2020

A.4 ADDITIONAL CORE-SET SELECTION RESULTS

Full Dataset Random ResNet164 (Baseline) ResNet110 (SVP) ResNet56 (SVP) ResNet20 (SVP)

30 40 50 60 70
Subset of Data Used (%)

20

30

40

To
p-

1
Er

ro
r (

%
)

(a) CIFAR100 forgetting events

30 40 50 60 70
Subset of Data Used (%)

20

30

40

(b) CIFAR100 entropy

30 40 50 60 70
Subset of Data Used (%)

20

30

40

(c) CIFAR100 greedy k-centers

Figure 7: SVP performance on core-set selection. Average (± 1 std.) top-1 error of ResNet164 over
5 runs of core-set selection with different selection methods, proxies, and subset sizes on CIFAR100.
We found subsets using forgetting events (left), entropy (middle), and greedy k-centers (right) from a
proxy model trained over the entire dataset. Across datasets and selection methods, SVP performed
as well as an oracle baseline where ResNet164 trained on the full dataset selected the subset.

Table 2: Average (± 1 std.) top-1 error and runtime in minutes from 5 runs of core-set selection with
varying proxies, selection methods, and subset sizes on CIFAR10 and CIFAR100.

Top-1 Error of ResNet164 (%) Data Selection Runtime in Minutes Total Runtime in Minutes
Subset Size 30.0% 50.0% 70.0% 30.0% 50.0% 70.0% 30.0% 50.0% 70.0%

Dataset Method Proxy
CIFAR10 Facility Location ResNet164 (Baseline) 8.9± 0.29 6.3± 0.23 5.4± 0.09 265± 48.0 286± 91.6 260± 42.6 342± 47.7 406± 94.3 425± 41.7

ResNet20 9.1± 0.33 6.4± 0.13 5.5± 0.21 27± 1.1 28± 1.4 30± 2.2 104± 1.9 147± 1.0 193± 5.7
ResNet56 8.9± 0.09 6.1± 0.21 5.3± 0.07 65± 3.9 67± 3.8 68± 3.4 142± 4.7 187± 4.8 230± 5.1

Forgetting Events ResNet164 (Baseline) 7.7± 0.19 5.2± 0.11 5.0± 0.12 218± 1.4 218± 1.6 219± 1.5 296± 3.2 340± 6.8 382± 4.6
ResNet20 7.6± 0.18 5.2± 0.11 5.1± 0.07 24± 1.3 24± 1.4 25± 1.5 101± 2.6 142± 2.5 185± 5.0
ResNet56 7.7± 0.27 5.2± 0.09 5.1± 0.09 63± 4.3 63± 4.0 63± 4.0 141± 5.4 184± 4.6 226± 2.8

Entropy ResNet164 (Baseline) 9.6± 0.16 6.4± 0.27 5.6± 0.19 218± 1.4 218± 1.7 218± 1.6 296± 1.5 338± 2.2 382± 3.1
ResNet20 8.9± 0.18 5.7± 0.23 5.3± 0.09 24± 1.3 24± 1.5 25± 1.5 103± 2.2 145± 1.3 190± 3.7
ResNet56 9.9± 0.29 6.6± 0.09 5.7± 0.17 63± 4.3 63± 4.0 63± 4.0 141± 4.8 182± 4.0 226± 3.8

CIFAR100 Facility Location ResNet164 (Baseline) 40.8± 0.20 29.5± 0.29 24.6± 0.42 263± 52.2 325± 158.7 296± 70.2 339± 52.7 446± 158.1 460± 69.1
ResNet20 35.2± 0.37 28.2± 0.23 24.7± 0.30 27± 0.8 28± 1.3 30± 1.4 105± 2.6 151± 3.6 198± 4.6
ResNet56 40.8± 0.89 29.6± 0.28 24.7± 0.40 64± 1.7 66± 1.9 67± 2.2 142± 1.7 185± 1.5 230± 3.9
ResNet110 42.3± 0.44 29.5± 0.43 24.7± 0.38 129± 3.7 131± 3.6 132± 3.5 208± 7.3 253± 8.5 303± 11.6

Forgetting Events ResNet164 (Baseline) 36.8± 0.36 27.1± 0.40 23.5± 0.19 221± 6.1 221± 6.1 221± 6.1 298± 5.7 342± 5.5 384± 4.7
ResNet20 37.2± 0.29 27.1± 0.14 23.4± 0.16 24± 0.7 25± 0.7 25± 0.7 104± 3.3 148± 3.6 193± 6.1
ResNet56 36.7± 0.23 27.0± 0.33 23.3± 0.28 62± 2.4 62± 2.6 62± 1.9 141± 7.1 183± 3.8 228± 5.2
ResNet110 36.6± 0.51 26.9± 0.27 23.4± 0.37 127± 2.7 127± 2.7 127± 2.7 207± 3.7 250± 4.9 293± 7.3

Entropy ResNet164 (Baseline) 39.6± 0.43 30.1± 0.12 25.4± 0.39 220± 6.4 220± 6.4 220± 6.4 297± 7.3 340± 7.3 380± 7.1
ResNet20 46.5± 0.74 29.7± 0.45 24.2± 0.21 24± 0.6 25± 0.7 25± 0.7 105± 1.7 148± 2.6 193± 3.6
ResNet56 42.6± 0.63 29.6± 0.13 24.8± 0.29 62± 1.7 62± 1.8 62± 1.9 142± 1.9 186± 3.9 230± 5.9
ResNet110 40.2± 0.28 30.4± 0.35 25.5± 0.34 127± 3.0 127± 3.1 127± 3.1 204± 3.3 247± 3.5 291± 3.7

Table 3: Average top-1 error (± 1 std.) and runtime in minutes from 5 runs of core-set selection with
varying selection methods calculated from ResNet20 models trained for a varying number of epochs
on CIFAR10 and CIFAR100.

Top-1 Error of ResNet164 (%) Data Selection Runtime in Minutes Total Runtime in Minutes
Subset Size 30.0% 50.0% 70.0% 30.0% 50.0% 70.0% 30.0% 50.0% 70.0%

Dataset Method Proxy Epochs
CIFAR10 Forgetting Events ResNet164 (Baseline) 181 7.7± 0.19 5.2± 0.11 5.0± 0.12 218± 1.4 218± 1.6 219± 1.5 296± 3.2 340± 6.8 382± 4.6

ResNet20 181 7.6± 0.18 5.2± 0.11 5.1± 0.07 24± 1.3 24± 1.4 25± 1.5 101± 2.6 142± 2.5 185± 5.0
100 7.1± 0.16 5.4± 0.22 5.0± 0.17 14± 1.0 14± 0.7 14± 0.7 92± 1.5 135± 0.7 178± 2.5
50 7.2± 0.18 5.4± 0.09 5.1± 0.15 7± 0.9 7± 0.4 7± 0.4 85± 2.0 126± 1.4 169± 1.0

Entropy ResNet164 (Baseline) 181 9.6± 0.16 6.4± 0.27 5.6± 0.19 218± 1.4 218± 1.7 218± 1.6 296± 1.5 338± 2.2 382± 3.1
ResNet20 181 8.9± 0.18 5.7± 0.23 5.3± 0.09 24± 1.3 24± 1.5 25± 1.5 103± 2.2 145± 1.3 190± 3.7

100 8.4± 0.14 5.6± 0.17 5.2± 0.14 14± 1.1 14± 0.7 14± 0.7 92± 1.6 134± 1.2 176± 1.3
50 10.4± 1.19 6.3± 0.55 5.2± 0.23 7± 0.8 7± 0.4 7± 0.4 84± 1.5 126± 1.6 169± 1.9

CIFAR100 Forgetting Events ResNet164 (Baseline) 181 36.8± 0.36 27.1± 0.40 23.5± 0.19 221± 1.1 221± 0.7 221± 0.7 298± 1.6 342± 1.2 384± 1.3
ResNet20 181 37.2± 0.29 27.1± 0.14 23.4± 0.16 24± 1.1 25± 0.7 25± 0.7 104± 1.6 148± 1.2 193± 1.3

100 35.8± 0.40 27.7± 0.24 24.7± 0.33 14± 1.1 14± 0.7 14± 0.7 92± 1.6 134± 1.2 177± 1.3
50 36.3± 0.25 28.2± 0.24 24.6± 0.28 8± 1.1 8± 0.7 8± 0.7 87± 1.6 132± 1.2 177± 1.3

Entropy ResNet164 (Baseline) 181 39.6± 0.43 30.1± 0.12 25.4± 0.39 220± 1.1 220± 0.7 220± 0.7 297± 1.6 340± 1.2 380± 1.3
ResNet20 181 46.5± 0.74 29.7± 0.45 24.2± 0.21 24± 1.1 25± 0.7 25± 0.7 105± 1.6 148± 1.2 193± 1.3

100 46.5± 0.52 29.7± 0.36 24.1± 0.48 14± 1.1 14± 0.7 14± 0.7 91± 1.6 135± 1.2 176± 1.3
50 43.3± 1.83 30.0± 0.77 24.7± 0.41 7± 1.1 7± 0.7 8± 0.7 85± 1.6 128± 1.2 170± 1.3

15

Under review as a conference paper at ICLR 2020

Table 4: Average top-1 error (± 1 std.) from 3 runs of core-set selection with varying selection
methods on ImageNet, Amazon Review Polarity, and Amazon Review Full.

Top-1 Error (%)
Subset Size 40.0% 60.0% 80.0% 100.0%

Dataset Method Proxy
ImageNet Random - 32.2± 0.12 28.0± 0.15 25.8± 0.06 23.3± 0.11

Entropy ResNet50 (Baseline) 34.9± 0.08 28.8± 0.03 25.9± 0.04 -
Entropy ResNet18 32.2± 0.04 27.0± 0.01 25.1± 0.07 -
Forgetting Events ResNet50 (Baseline) 31.9± 0.07 26.7± 0.06 24.8± 0.03 -
Forgetting Events ResNet18 31.6± 0.07 27.1± 0.10 25.3± 0.18 -

Amazon Review Polarity Random - 4.9± 0.02 4.5± 0.05 4.3± 0.01 4.1± 0.04
Entropy VDCNN29 (Baseline) 4.4± 0.03 4.2± 0.02 4.2± 0.02 -
Entropy VDCNN9 4.4± 0.02 4.2± 0.01 4.2± 0.00 -
Entropy fastText 4.4± 0.02 4.2± 0.02 4.2± 0.02 -

Amazon Review Full Random - 38.4± 0.03 37.6± 0.03 37.0± 0.05 36.6± 0.06
Entropy VDCNN29 (Baseline) 42.7± 1.14 39.3± 0.14 37.6± 0.10 -
Entropy VDCNN9 41.1± 0.24 38.8± 0.03 37.7± 0.09 -
Entropy fastText 39.0± 0.18 37.8± 0.06 37.1± 0.06 -

16

Under review as a conference paper at ICLR 2020

A.5 ADDITIONAL CORRELATION RESULTS

Re
sN

eX
t5

0-
32

x4
d

Re
sN

eX
t1

01
-3

2x
8d

Re
sN

et
18

Re
sN

et
34

Re
sN

et
50

Re
sN

et
10

1

Re
sN

et
15

2

De
ns

eN
et

12
1

De
ns

eN
et

16
9

De
ns

eN
et

20
1

De
ns

eN
et

16
1

M
ob

ile
Ne

t V
2

Go
og

le
Ne

t

VG
G-

11
 w

/ B
at

ch
No

rm

VG
G-

13
 w

/ B
at

ch
No

rm

VG
G-

16
 w

/ B
at

ch
No

rm

VG
G-

19
 w

/ B
at

ch
No

rm

Sq
ue

ez
eN

et
 1

.0

Sq
ue

ez
eN

et
 1

.1

Al
ex

Ne
t

ResNeXt50-32x4d

ResNeXt101-32x8d

ResNet18

ResNet34

ResNet50

ResNet101

ResNet152

DenseNet121

DenseNet169

DenseNet201

DenseNet161

MobileNet V2

GoogleNet

VGG-11 w/ BatchNorm

VGG-13 w/ BatchNorm

VGG-16 w/ BatchNorm

VGG-19 w/ BatchNorm

SqueezeNet 1.0

SqueezeNet 1.1

AlexNet

0.49

0.38 0.32

0.44 0.39 0.47

0.51 0.44 0.47 0.50

0.52 0.51 0.43 0.49 0.55

0.52 0.53 0.42 0.48 0.54 0.60

0.48 0.44 0.46 0.49 0.52 0.53 0.53

0.49 0.49 0.40 0.46 0.49 0.53 0.54 0.54

0.49 0.48 0.38 0.45 0.48 0.52 0.54 0.53 0.56

0.49 0.53 0.38 0.44 0.48 0.54 0.55 0.53 0.60 0.57

0.36 0.31 0.44 0.41 0.43 0.40 0.39 0.42 0.37 0.34 0.35

0.39 0.35 0.41 0.41 0.43 0.42 0.41 0.44 0.41 0.40 0.40 0.35

0.04 0.02 0.21 0.14 0.13 0.06 0.04 0.10 0.03 0.01 0.02 0.21 0.11

0.07 0.01 0.22 0.16 0.16 0.08 0.07 0.12 0.05 0.03 0.01 0.22 0.13 0.56

0.10 0.04 0.25 0.19 0.19 0.12 0.11 0.16 0.09 0.06 0.04 0.24 0.15 0.51 0.53

0.12 0.06 0.26 0.21 0.21 0.14 0.13 0.18 0.11 0.09 0.07 0.25 0.17 0.48 0.49 0.52

0.29 0.32 0.19 0.23 0.25 0.31 0.32 0.30 0.33 0.33 0.37 0.15 0.25 0.20 0.18 0.14 0.12

0.29 0.33 0.20 0.23 0.26 0.31 0.33 0.30 0.34 0.34 0.38 0.16 0.26 0.19 0.17 0.13 0.12 0.84

0.26 0.29 0.18 0.20 0.23 0.28 0.29 0.27 0.30 0.30 0.33 0.14 0.24 0.18 0.15 0.12 0.11 0.74 0.75

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 8: Comparing selection across model architectures on ImageNet. Spearman’s correlation
between max entropy rankings from PyTorch (Paszke et al., 2017) pretrained models on ImageNet.
The black box surrounds models with residual connections (Xie et al., 2017; He et al., 2016a; Sandler
et al., 2018) and the spiritually similar Dense Convolutional Networks (Huang et al., 2017). The
remaining models do not allow feature representations from preceding layers to directly propagate to
later layers (Szegedy et al., 2015; Simonyan & Zisserman, 2014; Iandola et al., 2016; Krizhevsky
et al., 2012). Generally, we found that all models with explicit pathways for feature representations to
propagate had a high positive correlation, while other networks had low or even negative correlations,
indicating that architectural components are fundamental to correlation.

17

Under review as a conference paper at ICLR 2020

R20 R56 R110 R164

R20

R56

R110

R164

0.78

0.78 0.84

0.78 0.85 0.85

0.77 0.83 0.84 0.89
1.0

0.5

0.0

0.5

1.0

(a) CIFAR100 forgetting events

R20 R56 R110 R164

R20

R56

R110

R164

0.71

0.53 0.49

0.35 0.38 0.35

0.39 0.40 0.35 0.41
1.0

0.5

0.0

0.5

1.0

(b) CIFAR100 entropy

R20 R56 R110 R164

R20

R56

R110

R164

0.45

0.37 0.59

0.33 0.60 0.63

0.38 0.58 0.61 0.63
1.0

0.5

0.0

0.5

1.0

(c) CIFAR100 greedy k-centers

Figure 9: Comparing selection across model sizes and methods on CIFAR100. Average Spear-
man’s correlation between different runs of ResNet (R) models and a varying depths. We computed
rankings based on forgetting events (left), entropy (middle), and greedy k-centers (right). We saw
a similarly high correlation across model architectures (off-diagonal) as between runs of the same
architecture (on-diagonal), suggesting that small models are good proxies for data selection.

R20 R56 R110 R164

R20

R56

R110

R164

0.38

0.38 0.47

0.37 0.46 0.46

0.40 0.46 0.45 0.50
1.0

0.5

0.0

0.5

1.0

(a) CIFAR10 facility location

R20 R56 R110 R164

R20

R56

R110

R164

0.44

0.36 0.59

0.33 0.59 0.63

0.37 0.58 0.60 0.63
1.0

0.5

0.0

0.5

1.0

(b) CIFAR100 facility location

Figure 10: Spearman’s rank-order correlation between different runs of ResNet (R) with pre-activation
and a varying number of layers on CIFAR10 (left) and CIFAR100 (right). For each combination,
we compute the average from 20 pairs of runs. For each run, we compute rankings based on the
order examples are added in facility location using the same initial subset of 1,000 randomly selected
examples. The results are consistent with Figure 3c and Figure 9c, demonstrating that most of the
variation is due to stochasticity in training rather than the initial subset.

0 25 50 75 100 125 150 175
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ra
nk

 C
or

re
la

tio
n

wi
th

 R
es

Ne
t1

64

ResNet20
ResNet56
ResNet110

(a) CIFAR10 forgetting events

0 25 50 75 100 125 150 175
Epoch

0.0

0.2

0.4

0.6

0.8

Ra
nk

 C
or

re
la

tio
n

wi
th

 R
es

Ne
t1

64 ResNet20
ResNet56
ResNet110

(b) CIFAR100 forgetting events

Figure 11: Average (± 1 std.) Spearman’s rank-order correlation with ResNet164 during 5 training
runs of varying ResNet architectures on CIFAR10 (left) and CIFAR100 (right), where rankings were
based on forgetting events.

18

Under review as a conference paper at ICLR 2020

0 25 50 75 100 125 150 175
Epoch

0.1

0.2

0.3

0.4

0.5

Ra
nk

 C
or

re
la

tio
n

wi
th

 R
es

Ne
t1

64 ResNet20
ResNet56
ResNet110

(a) CIFAR10 entropy

0 25 50 75 100 125 150 175
Epoch

0.1

0.2

0.3

0.4

Ra
nk

 C
or

re
la

tio
n

wi
th

 R
es

Ne
t1

64 ResNet20
ResNet56
ResNet110

(b) CIFAR100 entropy

Figure 12: Average (± 1 std.) Spearman’s rank-order correlation with ResNet164 during 5 training
runs of varying ResNet architectures on CIFAR10 (left) and CIFAR100 (right), where rankings were
based on entropy.

R20 R56 R110 R164

R20

R56

R110

R164

0.92

0.92 0.93

0.91 0.93 0.93

0.91 0.92 0.92 0.94
1.0

0.5

0.0

0.5

1.0

(a) CIFAR10 forgetting events

R20 R56 R110 R164

R20

R56

R110

R164

0.40

0.24 0.18

0.20 0.15 0.14

0.24 0.17 0.15 0.19
1.0

0.5

0.0

0.5

1.0

(b) CIFAR10 entropy

R20 R56 R110 R164

R20

R56

R110

R164

0.49

0.33 0.73

0.30 0.77 0.84

0.30 0.76 0.83 0.88
1.0

0.5

0.0

0.5

1.0

(c) CIFAR100 forgetting events

R20 R56 R110 R164

R20

R56

R110

R164

0.66

0.41 0.36

0.27 0.27 0.23

0.25 0.24 0.21 0.21
1.0

0.5

0.0

0.5

1.0

(d) CIFAR100 entropy

Figure 13: Pearson correlation coefficient between different runs of ResNet (R) with pre-activation
and a varying number of layers on CIFAR10 (top) and CIFAR100 (bottom). For each combination,
we compute the average from 20 pairs of runs. For each run, we compute rankings based on the
number of forgetting events (left), and entropy of the final model (right). Generally, we see a similarly
high correlation across model architectures (off-diagonal) as between runs of the same architecture
(on-diagonal), providing further evidence that small models are good proxies for data selection.

19

	Introduction
	Methods
	Active Learning
	Core-Set Selection
	Applying Selection Via Proxy

	Results
	Experimental Setup
	Active Learning
	Core-Set Selection
	Ranking Correlation Between Models

	Related Work
	Conclusion
	Appendix
	Implementation details
	Motivation for Creating Proxies
	Additional Active Learning Results
	Additional Core-Set Selection Results
	Additional Correlation Results

