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ABSTRACT

Generative Adversarial Networks (GANs) have been impactful on many problems
and applications but suffer from unstable training. Wasserstein GAN (WGAN)
leverages the Wasserstein distance to avoid the caveats in the minmax two-player
training of GANs but has other defects such as mode collapse and lack of metric
to detect the convergence. We introduce a novel inference WGAN (iWGAN)
model, which is a principled framework to fuse auto-encoders and WGANs. The
iWGAN jointly learns an encoder network and a generative network using an
iterative primal dual optimization process. We establish the generalization error
bound of iWGANs. We further provide a rigorous probabilistic interpretation of
our model under the framework of maximum likelihood estimation. The iWGAN,
with a clear stopping criteria, has many advantages over other autoencoder GANs.
The empirical experiments show that our model greatly mitigates the symptom of
mode collapse, speeds up the convergence, and is able to provide a measurement of
quality check for each individual sample. We illustrate the ability of iWGANs by
obtaining a competitive and stable performance with state-of-the-art for benchmark
datasets.

1 INTRODUCTION

One of the goals of generative modeling is to match the model distribution Pθ(x) with parameters
θ to the true data distribution PX for a random variable X ∈ X . For latent variable models, the
data point X is generated from a latent variable Z ∈ Z through a conditional distribution P (X|Z).
Here X denotes the support for PX and Z denotes the support for PZ . There has been a surge of
research on deep generative networks in recent years and the literature is too vast to summarize here
(Kingma & Welling, 2013; Goodfellow et al., 2014; Li et al., 2015). These models have provided
a powerful framework for modeling complex high dimensional datasets. We start introducing two
main approaches for generative modeling. The first one is called variational auto-encoders (VAEs)
(Kingma & Welling, 2013), which use variational inference to learn a model by maximizing the
lower bound of the likelihood function. VAEs have elegant theoretical foundations but the drawback
is that they tend to produce blurry images. The second approach is called generative adversarial
networks (GANs) (Goodfellow et al., 2014), which learn a model by using a powerful discriminator
to distinguish between real data points and generative data points. GANs produce more visually
realistic images but suffer from the unstable training and the mode collapse problem. Although there
are many variants of generative models trying to take advantages of both VAEs and GANs (Tolstikhin
et al., 2017; Rosca et al., 2017), to the best of our knowledge, the model which provides a unifying
framework combining the best of VAEs and GANs in a principled way is yet to be discovered.

1.1 RELATED WORK

GANs and WGANs: The generative model is to learn a mapping, denoted by G, from Z to X to
approximate the conditional distribution PG(X|Z) of the data point X ∈ X given latent code Z ∈ Z .
We consider the deterministic mapping G in this work. Both GANs and Wasserstein GANs (WGANs)
(Arjovsky et al., 2017) can be viewed as minimizing certain divergence between the data distribution
PX and the generative model distribution PG(Z). For example, the Jensen-Shannon (JS) divergence
is implicitly used in GANs (Goodfellow et al., 2014). The 1-Wasserstein distance between PX and
PG(Z), denoted by W1(PX , PG(Z)), is employed in WGANs. Empirical experiments suggest that
the Wasserstein distance is a more sensible measure to differentiate probability measures supported
in low-dimensional manifold. In terms of training, it turns out that it is hard or even impossible to
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compute these standard divergences in probability, especially when PX is unknown and PG(Z) is
parameterized by deep neural networks (DNNs). The training of GANs is converted into playing a
game between two competing networks: the generator and the discriminator. The generator is to
fool the discriminator and the discriminator is to distinguish between true data samples and generated
samples. Instead, the training of WGANs is to study its dual problem because of the elegant form
of Kantorovich-Rubinstein duality (Villani, 2008). Analogous to GANs, the discriminator is now a
real-valued 1-Lipschitz function. Many techniques such as weight clipping (Arjovsky et al., 2017)
and gradient penalty (Gulrajani et al., 2017) are used to enforce the Lipschitz constraint. More
discussions about WGANs will be presented in Section 2.

Autoencoder GANs: Larsen et al. (2016) first introduced the VAE-GAN, which is a hybrid of VAEs
and GANs. The VAE-GAN uses a GAN discriminator to replace a VAE’s decoder to learn the loss
function. The motivation behind this modification is that VAEs tend to produce blurry outputs during
the reconstruction phase. More recent VAE-GAN variants, such as Adversarial Generator Encoders
(AGE) (Ulyanov et al., 2018) and Auto-encoding GANs (α-GAN) (Rosca et al., 2017), use a separate
encoder to stabilize GAN training. The main difference with standard GANs is that, besides the
generator G, there is an encoder Q : X → Z which maps the data points into the latent space. This
encoder is to approximate the conditional distribution Q(Z|X) of the latent variable Z given the data
point X . Other encoder-decoder GANs are introduced in Adversarially Learned Inference (ALI)
(Dumoulin et al., 2016) and Bidirectional Generative Adversarial Networks (BiGAN) (Donahue et al.,
2016). The objective of both ALI and BiGAN is to match two joint distributions under the framework
of vanilla GANs, the joint distribution of (X,Q(X)) and the joint distribution of (G(Z), Z). When
the algorithm achieves equilibrium, these two joint distributions roughly match. We are able to obtain
more meaningful latent codes by Q(X), and this should improve the quality of the generator as
well. Adversarial Variational Bayes (AVB) (Mescheder et al., 2017) presented a more flexible latent
distribution to train Variational Autoencoders. Hu et al. (2017) provided new interpretations of GANs
and VAEs and revealed strong connections between them which are linked by the classic wake-sleep
algorithm.

Duality in GANs: Regarding the optimization perspectives of GANs, (Chen et al., 2018; Zhao et al.,
2018) studied duality-based methods for improving algorithm performance for training. Primal-dual
Wasserstein GANs (PD-GANs) are introduced in (Gemici et al., 2018), which proposed a new penalty
term whose evaluation samples are obtained from the encoder Q. Farnia & Tse (2018) developed a
convex duality framework to address the case when the discriminator is constrained into a smaller
class. Grnarova et al. (2018) developed an evaluation metric to detect the non-convergence behavior
of vanilla GANs, which is the duality gap defined as the difference between the primal and the dual
objective functions. Husain et al. (2019) investigated the close relationship between WAE (Tolstikhin
et al., 2017) and f-GANs (Nowozin et al., 2016), and proved generalization results for autoencoder
models.

1.2 OUR CONTRIBUTIONS

Although there are many interesting works on autoencoder GANs, it remains unclear what the
principles are underlying the fusion of auto-encoders and GANs. For example, do there even exist
these two mappings, the encoder Q and the decoder G, for any high-dimensional random variable X ,
such that Q(X) has the same distribution as Z and G(Z) has the same distribution as X? Is there
any probabilistic interpretation such as the maximum likelihood principle on autoencoder GANs?
We introduce inference Wasserstein GANs (iWGANs), which provide satisfying answers for these
questions. We focus on the 1-Wasserstein distance, instead of the Kullback-Leibler divergence. We
borrow the strength from both the primal and the dual problems and demonstrate the synergistic effect
between these two optimizations. The encoder component tends out to be a natural consequence
from our algorithm. Furthermore, the iWGAN has a rigorous probabilistic interpretation under the
maximum likelihood principle, and our learning algorithm is equivalent to the maximum likelihood
estimation when our model is defined as an energy-based model based on an autoencoder. Our main
contributions are listed as below:

1. We propose a novel framework, called iWGAN, to learn both an encoder and a decoder
simultaneously. The primal problem and the dual problem work together to boost the
efficiency of the algorithm.
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2. We prove the existence of meaningful encoder and decoder, establish an equivalence between
WGAN and iWGAN, and develop a generalization error bound for iWGAN.

3. We establish a rigorous probability interpretation for iWGANs and our training process is
exactly the same as the maximum likelihood estimation. As a byproduct, this interpretation
allows us to perform the quality check at the individual sample level.

4. We demonstrate the natural use of the duality gap as a measure of convergence for iWGANs,
and show its effectiveness for various numerical settings. Our experiments do not experience
any mode collapse problem.

2 IWGAN

The encoder-decoder generative model consists of two parts: an encoder Q and a generator G. The
encoder Q maps a data sample x ∈ X to a latent variable z ∈ Z , and the generator G takes a latent
variable z ∈ Z to produce a sample G(z). We first show that, for any distribution residing on a
smooth manifold, there always exists an encoder Q∗ which guarantees meaningful encodings and
exists a generator G∗ which generates samples with the same distribution as data points by using
these meaningful codes.
Theorem 2.1. Consider a continuous random variable X ∈ X , where X is a d-dimensional
smooth Riemannian manifold. Then, there exist two mappings Q∗ : X → Rp and G∗ : Rp → X ,
with p = max{d(d + 5)/2, d(d + 3)/2 + 5}, such that Q∗(X) follows a multivariate normal
distribution with zero mean and identity covariance matrix and G∗ ◦Q∗ is an identity mapping, i.e.,
X = G∗(Q∗(X)).

Learning Q∗ and G∗ from the data points is a challenging task. We propose a new framework, called
iWGAN, to efficiently learn these two mappings in a principled way. Recall that the goal of the
WGAN is to minimize the 1-Wasserstein distance between the data distribution PX and the generative
model distribution PG(Z):

W1(PX , PG(Z)) = inf
π∈Π(PX ,PZ)

E(X,Z)∼π‖X −G(Z)‖, (1)

where ‖ · ‖ represents the L2-norm and Π(PX , PZ) is a set of all joint distributions of (X,Z) with
marginal measures PX and PZ , respectively. The main difficulty in (1) is to find the optimal coupling
π (Tolstikhin et al., 2017) and this is a constrained optimization with PX(x) =

∫
π(x, z)dz for x ∈ X

and PZ(z) =
∫
π(x, z)dx for z ∈ Z . On the other hand, by following the Kantorovich-Rubinstein

duality, we have
W1(PX , PG(Z)) = sup

f∈F
EX∼PX

[
f(X)

]
− EZ∼PZ

[
f(G(Z))

]
, (2)

where F is the set of all bounded 1-Lipschitz functions. This is also a constrained optimization
problem with f(x) − f(G(z)) − ‖x − G(z)‖ ≤ 0 for all x ∈ X , z ∈ Z (Arjovsky et al., 2017;
Gulrajani et al., 2017). Recall the facts that the primal variable π for the primal problem (1) is also a
dual variable for the dual problem (2), and the primal variable f for the dual problem (2) is also a dual
variable for the primal problem (1). From the Lagrange multiplier perspective and after introducing
another mapping Q : X → Z to approximate the conditional distribution of Z given X , the optimal
value of the primal problem satisfies

inf
π

sup
f∈F

Eπ
∥∥∥X −G(Z)

∥∥∥+

∫
x

f(x)
(
PX(x)−

∫
z

π(x, z)dz
)
dx−

∫
z

f(G(z))
(
PZ(z)−

∫
x

π(x, z)dx
)
dz

= inf
Q

sup
f∈F

EX
[
‖X −G(Q(X))‖+ f(G(Q(X)))

]
− EZ

[
f(G(Z))

]
,

and the optimal value of the dual problem satisfies

sup
f∈F

inf
π

EX
[
f(X)

]
− EZ

[
f(G(Z))

]
−
∫
X×Z

π(x, z)
(
f(x)− f(G(z))− ‖x−G(z)‖

)
dxdz

= sup
f∈F

inf
Q

EX
[
‖X −G(Q(X))‖+ f(G(Q(X)))

]
− EZ

[
f(G(Z))

]
.

The primal and dual formulations motivate us to define the iWGAN objective to be

W 1(PX , PG(Z)) = inf
Q∈Q

sup
f∈F

EX‖X −G(Q(X))‖+ EX
[
f(G(Q(X)))

]
− EZ

[
f(G(Z))

]
, (3)
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whereQ denotes some function space fromX → Z . The term ‖X−G(Q(X))‖ can be treated as the
autoencoder reconstruction error as well as a loss to match the distributions betweenX andG(Q(X)).
We note that the L1-norm ‖ · ‖1 has been used for the reconstruction term by α-GAN (Rosca et al.,
2017) and CycleGAN (Zhu et al., 2017). Another term EX∼PX

f(G(Q(X)))−EZ∼PZ
f(G(Z)) can

be treated as a loss for the generator as well as a loss to match the distribution between G(Q(X))
and G(Z). We emphasize that this term is different with the objective function of WGAN in (2). It is
challenging for practitioners to determine when to stop training GANs. Most of the GAN algorithms
do not provide any explicit standard for the convergence of the model. However, the measure of
convergence for iWGAN becomes very natural and we use the duality gap as the measure. The
duality gap can be defined as

DualGap(G̃, Q̃, f̃) = sup
f∈F

L(G̃, Q̃, f)− inf
G∈G,Q∈Q

L(G,Q, f̃), (4)

where L(G,Q, f) = EX‖X −G(Q(X))‖+ EX [f(G(Q(X)))]− EZ [f(G(Z))].
Theorem 2.2. The iWGAN objective (3) is equivalent to

W 1(PX , PG(Z)) = inf
Q∈Q

W1(PX , PG(Q(X))) +W1(PG(Q(X)), PG(Z)). (5)

Therefore, W1(PX , PG(Z)) ≤ W 1(PX , PG(Z)). If there exists a Q∗ ∈ Q such that Q∗(X) has
the same distribution with Z, then W1(PX , PG(Z)) = W 1(PX , PG(Z)). Let (Q̃, G̃, f̃) be a fixed
solution and assume that the encoder, generator, and discriminator all have enough capacities. Then
the duality gap is larger than W1(PX , PG̃(Q̃(X))) +W1(PG̃(Q̃(X)), PG̃(Z)). Moreover, if G̃ outputs

the same distribution as X and Q̃ outputs the same distribution as Z, both the duality gap and
W 1(PX , PG̃(Z)) are zeros and X = G̃(Q̃(X)) for X ∼ PX .

According to Theorem 2.2, the iWGAN objective is in general the upper bound of W1(PX , PG(Z)).
However, this upper bound is tight. When the space Q includes a special encoder Q∗ such that
Q∗(X) has the same distribution as Z, the iWGAN objective is the exactly same as W1(PX , PG(Z)).
Theorem 2.2 also provides an appealing property from a practical point of view. The values of the
duality gap and W 1(PX , PG̃(Z)) give us a natural criteria to justify the algorithm convergence.

3 GENERALIZATION ERROR BOUND AND THE ALGORITHM

In practice, we minimize the empirical version, Ŵ 1(PX , PG(Z)), of W 1(PX , PG(Z)) to learn both
the encoder and the decoder. Before we present the details of the algorithm, we first develop the
generalization error bound for iWGANs. For discussions of generalization performance of classical
GANs, see Arora et al. (2017) and Jiang et al. (2018).
Theorem 3.1. Given a generator G ∈ G, and given n samples (x1, . . . , xn) from X = {x : ‖x‖ ≤
B}, with probability at least 1− δ for any δ ∈ (0, 1), we have

W1(PX , PG(Z)) ≤ Ŵ 1(PX , PG(Z)) + 2R̂n(F) + 3B

√
2

n
log

(
2

δ

)
, (6)

where R̂n(F) = Eε
[
supf∈F n

−1∑n
i=1 εif(xi)

]
is the empirical Rademacher complexity of the

1-Lipschitz function set F , in which εi is the Rademacher variable.

Theorem 3.1 indicates that the 1-Wasserstein distance between PX and PG(Z) can be domi-

nantly upper bounded by the empirical Ŵ 1(PX , PG(Z)) and Rademacher complexity of F . Since

Ŵ 1(PX , PG(Z)) ≤ Ŵ1(PX , PG(Q(X))) + Ŵ1(PG(Q(X)), PG(Z)) for any Q ∈ Q, the capacity of Q
determines the value of Ŵ 1(PX , PG(Z)). On the other hand, there are several existing results on
the empirical Rademacher complexity of neural networks. When F is a set of 1-Lipschitz neural
networks, we can apply the conclusion from Bartlett et al. (2017) to R̂n(F), which produces an
upper bound scaling as O(B

√
L3/n). Here L denotes the depth of network f ∈ F . Similar upper

bound with an order of O(B
√
Ld2/n) can be obtained by utilizing the results from Li et al. (2018),

where d is the width of the network.

4



Under review as a conference paper at ICLR 2020

In practice, we adopt the gradient penalty defined as GP(f) = EX
[
(‖∇Xf(X)‖2−1)2

]
in (Gulrajani

et al., 2017) to enforce the 1-Lipschitz constraint on f ∈ F . In addition, we use the maximum
mean discrepancy (MMD) penalty (Gretton et al., 2012), denoted by MMDk(PQ(X), PZ), to enforce
Q(X) to converge to PZ , where k is a kernel function. The details of the algorithm are presented in
Algorithm 1.

Algorithm 1: The training algorithm of iWGAN

1 while DualGap > ε1 or L(Gi, Qi, f i) > ε2 do
2 for t = 1, ..., ncritic do
3 Sample real data xi ∼ PX , latent variable zi ∼ PZ and a random number ε ∼ U [0, 1]

4 x̂i ← εxi + (1− ε)Gi(zi)
5 Calculate Li = L(Gi, Qi, f i|xi, zi) and gradient of −Li
6 Update f by Adam: f i+1 ← Adam(−∇fLi)
7 where for f i,

8 −∇fLi = ∇f
1

n

∑n
k=1

(
f i(Gi(zik))− f i(Gi(Qi(xik))) + λ1(‖∇x̂if i(x̂i)‖2 − 1)2

)
9 end

10 for t = 1, ..., ncritic do
11 Sample real data x′i ∼ PX , latent variable z′i ∼ PZ
12 Calculate L′i = L(Gi, Qi, f i+1|x′i, z′i) and gradient of L′i

13 Update G, Q by Adam: Gi+1, Qi+1 ← Adam(∇G,QL′i)
14 where for Gi, Qi,

∇G,QL′i = ∇G,Q
1

n

n∑
k=1

(‖xik −Gi(Qi(xik))‖+ f i+1(Gi(Qi(xik)))− f i+1(Gi(zik)))

+
λ2

n(n− 1)

∑
l6=j

k(zil , z
i
j) +

λ2

n(n− 1)

∑
l 6=j

k(Q(xil), Q(xij))−
2λ2

n2

∑
l,j

k(zil , Q(xij))

15 end
16 end

4 PROBABILISTIC INTERPRETATION AND THE MLE

The iWGAN has proposed an efficient framework to stably and automatically estimate both the
encoder and the generator. In this section, we provide a probabilistic interpretation of the iWGAN
under the framework of maximum likelihood estimation.

Maximum likelihood estimator (MLE) is a fundamental statistical framework for learning models
from data. However, for complex models, MLE can be computationally prohibitive due to the
intractable normalization constant. MCMC has been used to approximate the intractable likelihood
function but do not work efficiently in practice. The iWGAN can be treated as an adaptive method
for MLE training, which not only provides computational advantages but also allows us to generate
more realistic-looking images. Furthermore, this probabilistic interpretation enables other novel
applications such as image quality checking and outlier detection.

Let X denote the image. Define the density of X by an energy-based model based on an autoencoder
(Zhao et al., 2016; Berthelot et al., 2017):

p(x|θ) = exp
(
−
∥∥x−Gθ(Qθ(x))

∥∥− V (θ)
)
, V (θ) = log

∫
exp(−

∥∥x−Gθ(Qθ(x))
∥∥)dx,

where θ is the unknown parameter and V (θ) is the log normalization constant. The major difficulty
for the likelihood inference is due to the intractable function V (θ). Suppose that we have the observed
data {xi : i = 1, . . . , n}. The log-likelihood function of θ is `(θ) = n−1

∑n
i=1 log p(xi|θ), whose

gradient is
∇θ`(θ) = −Êobs

[
∂θ
∥∥x−Gθ(Qθ(x))

∥∥]+ Eθ
[
∂θ
∥∥x−Gθ(Qθ(x))

∥∥], (7)

where Êobs[·] denotes the empirical average on the observed data {xi} and Eθ[·] denotes the
expectation under model p(x|θ). The key computational obstacle lies in the approximations of the
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model expectation Eθ[·]. To address this problem, we propose a novel dual approximation for this
expectation. By Theorem 5.10 of Villani (2008), there exists an optimal f∗ such that

P(x,y)∼π
[
f∗(y)− f∗(x) = ‖y − x‖

]
= 1 (8)

for the optimal coupling π. Therefore, there exists a f∗ such that f∗(x)− f∗(Gθ(Qθ(x))) = ‖x−
Gθ(Qθ(x))‖ with probability one with respect to the distribution of x. Since Eθ in (7) is taken under
the current estimated θ and we also require Gθ to be a good generator and the distributions of Gθ(z)
and Gθ(Qθ(x)) to be close, we approximate ‖x − Gθ(Qθ(x))‖ by f∗(Gθ(z)) − f∗(Gθ(Qθ(x))).
We replace ‖x−Gθ(Qθ(x))‖ in the second term of (7) by f∗(Gθ(z))− f∗(Gθ(Qθ(x))), yielding a
gradient update for θ of form θ ← θ + ε∇̂θ`(θ), where

∇̂θ`(θ) = −Êobs
[
∂θ
∥∥x−Gθ(Qθ(x))

∥∥]+ Eθ
[
∂θf
∗(Gθ(z))− ∂θf∗(Gθ(Qθ(x))

]
. (9)

Here f∗ needs to be learned and is solved by the corresponding dual problem at each iteration. We
approximate f∗ by a network fη with an unknown parameter η, yielding a gradient update for η of
form

η ← η + ε Eθ
[
∂ηfη(Gθ(z))− ∂ηfη(Gθ(Qθ(x))

]
. (10)

The advantage of using expectations in (9) and (10) is that we can evaluate them by using only
marginal distributions of z and x. The above iterative updating process is exactly the same as in
Algorithm 1. Therefore, the training of iWGAN is to seek the MLE. This probabilistic interpretation
provides a novel alternative method to tackle problems with the intractable normalization constant in
latent variable models. The MLE gradient update of p(x|θ) decreases the energy of the training data
and increases the dual objective. Compare with original GANs or WGANs, our method gives much
faster convergence and simultaneously provides a higher quality generated images.

The probabilistic modeling opens a door for many interesting applications. Next, we present a
completely new approach for determining a highest density region (HDR) estimate for the distribution
of X . What makes HDR distinct from other statistical methods is that it finds the smallest region,
denoted by U(α), in the high dimensional space with a given probability coverage 1 − α, i.e.,
P(X ∈ U(α)) = 1− α. We can use U(α) to assess each individual sample quality. Note that FID or
the Inception score are used to measure the whole sample quality, not at the individual sample level.
Let θ̂ be the MLE. The density ratio at x1 and x2 is

p(x1|θ̂)
p(x2|θ̂)

= exp
[
− (‖x1 −Gθ̂(Qθ̂(x1))‖ − ‖x2 −Gθ̂(Qθ̂(x2))‖)

]
.

The smaller the reconstruction error is, the larger the density value is. We can define the HDR for x
through the HDR for the reconstruction error ex := ‖x−Gθ̂(Qθ̂(x))‖, which is simple because it is
a one-dimensional problem. Let Ũ(α) be the HDR for ex. Then, U(α) = {x : ex ∈ Ũ(α)}. Here
Qθ̂(U(α)) defines the corresponding region in the latent space, which can be used to generate better
quality samples.

5 EXPERIMENTAL RESULTS

5.1 MIXTURE OF GAUSSIANS

We train our iWGAN model on three toy datasets with an increasing difficulty shown on the right:

(a) RING (b) Swiss Roll (c) GRID

a). RING: a mixture of 8 Gaussians,
b). SPIRAL: a mixture of 20 Gaus-
sians and c). GRID: a mixture of 25
Gaussians. As the true data distribu-
tions are known, this setting allows
for tracking of convergence and mode
dropping.
Duality gap and convergence: We
illustrate that as the duality gap con-
verges to 0, our model converges to
the generated samples from the true distribution. We keep track of the generated samples using G(z)
and record the duality gap at each iteration to check the corresponding generated samples. Figure 2
shows the generated samples converge to the true distribution very fast without the mode collapse
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Figure 2: Duality gap and generated samples from iWGANs on mixture of Gaussians

problem. We compare our method with WGAN-GP in Figure 2. Both methods adopt the same
structure, learning rate, number of critical steps, and other hyper-parameters. The iWGAN surpasses
the performance of the WGAN-GP at very early stage and avoids the appearance of mode collapse.

Latent Space: We choose the latent distribution to be a five dimensional standard normal distribution
Z ∼ N(0, I5). After training, the distribution of Q(X) is expected to be close to the distribution of
Z. We plot the Q(X)i against Q(X)j for all i 6= j in Figure 3. We can tell that the joint distribution
of any two dimensions of Q(X) is close to a bivariate normal distribution.

(a) RING (b) Swiss Roll (c) GRID

Figure 3: Latent Space of Mixture of Gaussians

Individual sample quality check: From the probability interpretation of iW-
GANs, we naturally adopt the reconstruction error ‖X − G(Q(X))‖, or the qual-
ity score exp (−‖X −G(Q(X))‖) as the metric of the quality of any individ-
ual sample. The larger the quality score is, the better quality the sample has.

Figure 4: Quality Check

Figure 4 shows their quality scores for
different samples. The quality scores
of samples near the modes of the true
distribution are close to 1, and become
smaller as the sample draw is away
from the modes. This indicates that
the iWGAN does converge and learns
the distribution well, and the quality
score is a reliable metric for the indi-
vidual sample quality.

5.2 MNIST & CELEBA

We experimentally demonstrate our
model’s ability on well-known datasets, MNIST and CelebA. The results by iWGAN on MNIST and
CelebA are shown in Figure 5 and Figure 6, respectively. For latent space interpolations between
MNIST or CelebA validation set examples. We sample pairs of validation set examples x1 and x2
and project them into z1 and z2 by the encoder. We then linearly interpolate between z1 and z2 and
pass the intermediary points through the decoder to plot the input-space interpolations. Figure 7
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displays images with high and low quality scores selected from CelebA. More experimental results,
including reconstructed images, interpolations, and comparison with state-of-the-art results by
WGAN-GP, are shown in Appendix.

(a) Generated samples (b) Reconstructed samples (c) Interpolations

Figure 5: iWGAN on MNIST

(a) Generated samples (b) Reconstructed samples (c) Interpolations

Figure 6: iWGAN on CelebA

Figure 7: Images with high (left) and low (right) quality scores by iWGAN

6 CONCLUSION

We have developed a novel iWGAN model, which fuses auto-encoders and GANs in a principle way.
We have established a generalization error bound for iWGAN. We have provided a solid probabilistic
interpretation on iWGAN using the maximum likelihood principle. Our training algorithm with an
iterative primal and dual optimization has demonstrated an efficient and stable learning. We have
proposed a stopping criteria for our algorithm and a metric for individual sample quality checking.
The empirical results on both synthetic and benchmark datasets are state-of-the-art.

We now mention several future directions for research on iWGAN. First, one might be interested
in applying iWGAN into image-to-image translation, as the extension should be straightforward.
A second direction is to develop a formal hypothesis testing procedure to test whether the samples
generated from iWAGN is the same as the data distribution.
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APPENDIX

APPENDIX A: PROOF OF THEOREM 2.1

According to the Nash embedding theorem (Nash, 1956; Günther, 1991), every d-dimensional smooth Rieman-
nian manifold X possesses a smooth isometric embedding into Rp with p = max{d(d+ 5)/2, d(d+ 3)/2 + 5}.
Therefore, there exists an injective mapping u : X → Rp which preserves the metric in the sense that the
manifold metric on X is equal to the pullback of the usual Euclidean metric on Rp by u. The mapping u is
injective so that we can define the inverse mapping u−1 : u(X )→ X .

Let X̃ = u(X) ∈ Rp, and write X̃ = (X̃1, . . . , X̃p). Let Fi(x) = P(X̃i ≤ x), i = 1, . . . , p, be the marginal
cdfs. By applying the probability integral transformation to each component, the random vector(

U1, U2, . . . , Up
)

:=
(
F1(X̃1), F2(X̃2), . . . , Fp(X̃p)

)
has uniformly distributed marginals. Let C : [0, 1]p → [0, 1] be the copula of X̃ , which is defined as the joint
cdf of (U1, . . . , Up):

C(u1, u2, . . . , up) = P
(
U1 ≤ u1, U2 ≤ u2, . . . , Up ≤ up

)
.

The copula C contains all information on the dependence structure among the components of X̃ , while the
marginal cumulative distribution functions Fi contain all information on the marginal distributions. Therefore,
the joint cdf of X̃ is

H(x̃1, x̃2, . . . , x̃p) = C
(
F1(x̃1), F2(x̃2), . . . , Fp(x̃p)

)
.

Define, for i = 2, . . . , p,

Ci(u1, u2, . . . , ui) = C
(
u1, u2, . . . , ui, 1, . . . , 1

)
.

The conditional distribution of Uk, given U1, . . . , Uk−1, is given by Cherubini et al. (2004)

Ck(uk|u1, . . . , uk−1) = P
(
Uk ≤ uk|U1 = u1, . . . , Uk−1 = uk−1

)
=

[
∂k−1Ck(u1, . . . , uk)/∂u1 · · · ∂uk−1

][
∂k−1Ck−1(u1, . . . , uk)/∂u1 · · · ∂uk−1

] ,
for k = 2, . . . , p.

We will construct Q∗ as follows. First, we obtain X̃ ∈ Rp by X̃ = u(X). Second, we transform X̃ into a
random vector with uniformly distributed marginals (U1, . . . , Up) by the marginal cdf Fi. Then, define Ũ1 = U1

and
Ũk = Ck

(
Uk|U1, . . . , Uk−1

)
, k = 2, . . . , p.

Hence, Ũ1, . . . , Ũp are independent uniform random variables. Finally, let Zi = Φ−1(Ui) for i = 1, . . . , p.
This completes the transformation Q∗ from X to Z = (Z1, . . . , Zp).

The above process can be inverted to obtain G∗. First, we transform Z into independent uniform random
variables by Ũi = Φ(Zi) for i = 1, . . . , p. Next, let U1 = Ũ1. Define

Uk = C−1
k (Ũk|Ũ1, . . . , Ũk−1), i = 2, . . . , p,

where C−1
k (·|u1, . . . , uk) is the inverse of Ck and can be obtained by numerical root finding. Finally, let

X̃i = F−1
i (Ui) for i = 1, . . . , p and X = u−1(X̃), where u−1 : u(X )→ X is the inverse mapping of u. This

completes the transformation G∗ from Z to X .

APPENDIX B: PROOF OF THEOREM 2.2

By the iWGAN objective (3), (5) holds. Since W1 is a distance between two probability measures,
W1(PX , PG(Z)) ≤ W 1(PX , PG(Z)). If there exists a Q∗ ∈ Q such that Q∗(X) has the same distribution as
PZ , we have

W 1(PX , PG(Z)) ≤W1(PX , PG(Q∗(X))) +W1(PG(Q∗(X)), PG(Z)) = W1(PX , PG(Z)).

Hence, W1(PX , PG(Z)) = W 1(PX , PG(Z)). Observe that supf L(G̃, Q̃, f) = W1(PX , PG̃(Q̃(X))) +

W1(PG̃(Q̃(X)), PG̃(Z)). By Theorem 2.1, we have infG,Q L(G,Q, f̃) ≤ L(G∗, Q∗, f̃) = 0 when G and
Q have enough capacity. Therefore, the duality gap is larger thanW1(PX , PG̃(Q̃(X))) +W1(PG̃(Q̃(X)), PG̃(Z)).

It is easy to see that, if G̃ outputs the same distribution as X and Q̃ outputs the same distribution as Z, both the
duality gap and W 1(PX , PG(Z)) are zeros and X = G̃(Q̃(X)) for X ∼ PX .
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APPENDIX C: PROOF OF THEOREM 3.1

We first consider the difference between population W1(PX , PG(Z)) and empirical Ŵ1(PX , PG(Z)) given n
samples S = {x1, . . . , xn}. Let f1 and f2 be their witness function respectively. Using the dual form of
1-Wassertein distance, we have

W1(PX , PG(Z))− Ŵ1(PX , PG(Z))

=EX∼PX [f1(X)]− EZ∼PZ [f1(G(Z))]− 1

n

n∑
i=1

f2(xi) + EZ∼PZ [f2(G(Z))]

≤EX∼PX [f1(X)]− EZ∼PZ [f1(G(Z))]− 1

n

n∑
i=1

f1(xi) + EZ∼PZ [f1(G(Z))]

≤ sup
f

EX∼PX [f(X)]− 1

n

n∑
i=1

f(xi) , Φ(S).

Given another sample set S′ = {x1, . . . , x
′
i, . . . , xn}, it is clear that

Φ(S)− Φ(S′) ≤ sup
f

|f(xi)− f(x′i)|
n

≤ ‖xi − x
′
i‖

n
≤ 2B

n
,

where the second inequality is obtained since f is 1-Lipschitz continuous function. Applying McDiamond’s
Inequality, with probability at least 1− δ/2 for any δ ∈ (0, 1), we have

Φ(S) ≤ E[Φ(S)] +B

√
2

n
log

(
2

δ

)
. (11)

By the standard technique of symmetrization in Mohri et al. (2018), we have

E[Φ(S)] = E

[
sup
f

EX∼PX [f(X)]− 1

n

n∑
i=1

f(xi)

]
≤ 2Rn(F). (12)

It has been proved in Mohri et al. (2018) that with probability at least 1− δ/2 for any δ ∈ (0, 1),

Rn(F) ≤ R̂n(F) +B

√
2

n
log

(
2

δ

)
. (13)

Combining Equation (11), Equation (12) and Equation (13), we have

W1(PX , PG(Z)) ≤ Ŵ1(PX , PG(Z)) + 2R̂n(F) + 3B

√
2

n
log

(
2

δ

)
.

By Theorem 2.2, we have Ŵ1(PX , PG(Z)) ≤ Ŵ 1(PX , PG(Z)). Thus,

W1(PX , PG(Z)) ≤ Ŵ 1(PX , PG(Z)) + 2R̂n(F) + 3B

√
2

n
log

(
2

δ

)
.

APPENDIX D: ARCHITECTURES 1

D1: MIXTURE OF GUASSIANS

Encoder architecture:

x ∈ R2 → FC1024 → RELU

→ FC512 → RELU

→ FC256 → RELU

→ FC128 → RELU → FC5

1Codes used for this paper will be available at: https://drive.google.com/drive/folders/
1-_vIrbOYwf2BH1lOrVEcEPJUxkyV5CiB?usp=sharing

12

https://drive.google.com/drive/folders/1-_vIrbOYwf2BH1lOrVEcEPJUxkyV5CiB?usp=sharing
https://drive.google.com/drive/folders/1-_vIrbOYwf2BH1lOrVEcEPJUxkyV5CiB?usp=sharing


Under review as a conference paper at ICLR 2020

Generator architecture:

z ∈ R5 → FC512 → RELU

→ FC512 → RELU

→ FC512 → RELU → FC2

Discriminator architecture:

x ∈ R2 → FC512 → RELU

→ FC512 → RELU

→ FC512 → RELU → FC1

D2: MNIST

Encoder architecture:

x ∈ R28×28 → Conv128 → RELU

→ Conv256 → RELU

→ Conv512 → RELU → FC8

Generator architecture:

z ∈ R8 → FC4×4×512 → RELU

→ ConvTrans256 → RELU

→ ConvTrans128 → RELU → ConvTrans1

Discriminator architecture:

x ∈ R28×28 → Conv128 → RELU

→ Conv256 → RELU

→ Conv512 → RELU → FC1

D3: CELEBA

Encoder architecture:

x ∈ R64×64×3 → Conv128 → LeakyRELU

→ Conv256 → InstanceNorm→ LeakyRELU

→ Conv512 → InstanceNorm→ LeakyRELU → Conv1

Generator architecture:

z ∈ R64 → FC4×4×1024

→ ConvTrans512 → BN → RELU

→ ConvTrans256 → BN → RELU

→ ConvTrans128 → BN → RELU → ConvTrans3

Discriminator architecture:

x ∈ R64×64×3 → Conv128 → LeakyRELU

→ Conv256 → InstanceNorm→ LeakyRELU

→ Conv512 → InstanceNorm→ LeakyRELU → Conv1

13
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APPENDIX E: MORE EXPERIMENTAL RESULTS ON MIXTURE OF GAUSSIAN

We investigate the mode collapse problem for the iWGAN. If we draw two random samples in the latent space
z1, z2 ∼ N(0, I5), the interpolation, G(λz1 + (1−λ)z2), 0 ≤ λ ≤ 1, should fall around the mode to represent
a reasonable sample. In Figure 8, we select λ ∈ {0, 0.05, 0.10, . . . , 0.95, 1.0}, and do interpolations on two
random samples. We repeat this procedure several times on 3 datasets as demonstrated in Figure 8. No matter
where the interpolations start and end, the interpolations would fall around the modes other than the locations
where true distribution has a low density. There may still be some samples that appears in the middle of two
modes. This may be because the generator G is not able to approximate a step function well.

Figure 8: Interpolation: H and N indicates the first and last samples in the interpolations, other
colored samples are the interpolations.

APPENDIX F: MORE EXPERIMENTAL RESULTS ON MNIST

F.1: LATENT SPACE

Figure 9 shows the latent space of MNIST, i.e. Q(X)i against Q(X)j for all i 6= j.

F.2: GENERATED SAMPLES

Figure 10 shows the comparison of random generated samples between WGAN-GP and iWGAN. Figure 11
shows examples of interpolations of two random generated samples.

F.3: RECONSTRUCTION

Figure 12 shows, based on the samples from validation dataset, the distribution of reconstruction error. Figure 13
shows examples of reconstructed samples. Figure 14 shows the best and worst samples based on quality scores
from the validation dataset.
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Figure 9: Latent Space of MNIST dataset

(a) WGAN-GP

(b) iWGAN

Figure 10: Generated samples on MNIST
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Figure 11: Interpolations on MNIST

Figure 12: Histogram of reconstruction error on MNIST

Figure 13: Reconstructions on MNIST
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(a) Samples with high quality scores

(b) Samples with low quality scores

Figure 14: Sample quality check by iWGAN on the validation dataset of MNIST
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APPENDIX G: MORE EXPERIMENTAL RESULTS ON CELEBA

G.1 LATENT SPACE

Figure 15 shows the first 8 dimensions of the latent space calculated by Q(x) on CelebA.

G.2 RANDOM GENERATED SAMPLE

Figure 16, and Figure 17, respectively display the random generated samples from WGAN-GP, and iWGAN.
We also calculate the FID score with pre-trained interception model. iWGAN achieves FID score of 69.28, and
WGAN-GP gets 94.49. Figure 18 displays the interpolation between two randomly reconstructed images.

G.3: RECONSTRUCTION

Figure 19 shows the distribution of reconstruction error of CelebA. Figure 20 shows the comparison between
real images and reconstructed images. Figure 21 shows samples with high and low quality scores in CelebA
validation sets.

Figure 15: Latent Space of CelebA dataset

18



Under review as a conference paper at ICLR 2020

Figure 16: Generated samples by WGAN-GP

Figure 17: Generated samples by iWGAN
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Figure 18: Interpolations between two images

Figure 19: Histogram of reconstruction errors on CelebA
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Figure 20: Reconstructed samples by iWGAN
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(a) Samples with high quality scores

(b) Samples with lower quality scores

Figure 21: Sample quality check by iWGAN on CelebA
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