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ABSTRACT

Audio adversarial examples, imperceptible to humans, have been constructed to
attack automatic speech recognition (ASR) systems. However, the adversarial
examples generated by existing approaches usually involve notable noise, espe-
cially during the periods of silence and pauses, which may lead to the detection of
such attacks. This paper proposes a new approach to generate adversarial audios
using Iterative Proportional Clipping (IPC), which exploits temporal dependency
in original audios to significantly limit human-perceptible noise. Specifically, in
every iteration of optimization, we use a backpropagation model to learn the raw
perturbation on the original audio to construct our clipping. We then impose a con-
straint on the perturbation at the positions with lower sound intensity across the
time domain to eliminate the perceptible noise during the silent periods or pauses.
IPC preserves the linear proportionality between the original audio and the per-
turbed one to maintain the temporal dependency. We show that the proposed ap-
proach can successfully attack the latest state-of-the-art ASR model Wav2letter+,
and only requires a few minutes to generate an audio adversarial example. Experi-
mental results also demonstrate that our approach succeeds in preserving temporal
dependency and can bypass temporal dependency based defense mechanisms.

1 INTRODUCTION

Due to the recent advancement in machine learning, automatic speech recognition (ASR) systems
have been integrated into numerous commercial products. However, researchers have designed ad-
versarial examples to launch targeted attacks towards ASR systems (Vaidya et al. (2015); Carlini
et al. (2016)). Under adversarial attacks, ASR systems will recognize the audio inputs as intelligi-
ble voice commands, while humans perceive the audio inputs differently. Such attack has proven
effective towards ASR systems using Gaussian Mixture Model (GMM) and Hidden Markov Model
(HMM) (Lamere et al. (2003)), while recently, ASR systems based on deep neural networks can also
be targeted by adversarial examples that slightly perturb the original inputs (Carlini et al. (2016)).
Since voice interfaces of ASR products are always listening and have been deployed in sensitive
environment, there is an urgent need to study the security and privacy of ASR systems.

While existing research focuses on generating image adversarial examples (Szegedy et al. (2013);
Liu et al. (2016); Kos et al. (2018); Arnab et al. (2018); Sharif et al. (2016); Hu & Tan (2017)),
these approaches cannot be directly applied to generate effective audio adversarial examples due to
the difference in audio and image inputs. In general, we face two major challenges in generating
effective audio adversarial examples: (I1) Human voices are often interleaved with silent periods
due to the pauses in the speech. Inevitably, adversarial examples generated by existing optimization-
based approaches (Carlini & Wagner (2018)) could involve non-negligible perturbation on the silent
and pause positions, which would affect the quality of adversarial examples and alert the users.
(I2) When generating adversarial examples against ASR, existing approaches do not consider the
inherent voice data property, which allows defense mechanisms (Yang et al. (2018)) that exploit
voice data properties to resist such attacks. One important data property that has been used in defense
mechanisms is temporal dependency. If the adversarial examples distort temporal dependency of
voice data, they can be easily detected.

In this paper, we propose a new approach called Iterative Proportional Clipping (IPC) to generate
audio adversarial examples which are not only imperceptible to the humans but also more robust
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against existing defense mechanisms. Specifically, we first compute the Connectionist Temporal
Classification (CTC) loss (Graves et al. (2006)) of the original audio and the target sentence. Then,
we derive the gradient on the original audio through a backpropagation model to be used as the raw
perturbation. Moreover, we proportionally clip the perturbation that will be added to the input data.
By enforcing a limit on the perturbation at those positions with lower sound intensity in the time
domain, our method can introduce negligible noise at silent and pausal positions (addressing (I1)).
In addition, we preserve the linear proportionality between the original audio and the perturbed
audio. By maintaining the relative relation among the signal intensities across different positions,
our audio adversarial examples succeed to preserve the temporal dependency in the original audio
(addressing (I2)). To summarize, we force the perturbation to be within a certain proportion of the
original audio at all positions based on iterative proportional clipping, to both restrict the perceptible
noise and preserve the temporal dependency.

The main contributions of this paper are two fold. First, we launch a successful attack on the latest
model of end-to-end ASR system Wav2letter+1 with a differentiable Mel Frequency Cepstral Coef-
ficient (MFCC) features extraction. Second, we provide a new perspective by considering temporal
information in generating robust audio adversarial examples. To the best of our knowledge, we are
the first to take temporal dependency into account when launching targeted attacks towards ASR
systems. Our method generates audio adversarial examples just in a few minutes while prior meth-
ods take hours. Compare to Schönherr et al. (2018) which requires the domain-specific knowledge
of psychoacoustic hiding, our approach is also more generic and easier to implement in practice.

2 RELATED WORK

In their seminal work, Biggio et al. (2013) and Goodfellow et al. (2014) have shown that neural
networks are vulnerable to adversarial examples. The followup work (Goodfellow et al. (2014);
Fawzi et al. (2016); Liu et al. (2016); Fawzi et al. (2018); Shaham et al. (2018)) further investigates
the problem of enhancing the robustness of machine learning models in face of adversarial examples.
A substantial amount of efforts have been spent on improving the image recognition models (Kos
et al. (2018); Arnab et al. (2018); Sharif et al. (2016); Behzadan & Munir (2017); Huang et al.
(2017)), which have seen a significant growth since the inception of deep neural networks (DNN).
Meanwhile, recent studies investigate the impact of adversarial examples over text classification (Jia
& Liang (2017)) and malware classification (Grosse et al. (2016); Hu & Tan (2017)).

Although we have witnessed the impact of adversarial images on neural networks based systems
in recent years, less efforts have been spent on studying the impact of audio adversarial examples
towards neural networks based ASR systems. One type of attack approaches is to create an adversar-
ial audio that ASR systems recognize as intelligible voice commands but humans perceive as noise.
Vaidya et al. (2015) first explored adversarial examples against ASR systems, which were generated
by inputting an audio command into an audio mangler while keeping most of MFCCs intact. The
output audio was converted back to a waveform from a lossy inversion of MFCCs, making the out-
put audio unintelligible to a human. Carlini et al. (2016) further extended the black-box approach
and constructed white-box attacks via the hidden voice commands on CMU Sphinx speech recog-
nition system (Lamere et al. (2003)), in which they demonstrated HMM-only ASR systems were
subject to targeted attack. While these methods can achieve targeted attacks on ASR systems, they
cannot generate the adversarial audios in an end-to-end framework. Zhang et al. (2017) proposed
DolphinAttacks, in which they modulated the baseband audio signal onto ultrasound frequency to
form inaudible voice commands. This approach requires an expensive attack equipment and highly
relies on the software and hardware of the target device. Compared with these approaches, our IPC
method is easy to implement with a low cost and can achieve an end-to-end attack framework.

Another type of approaches is to fool neural networks by introducing minor perturbations on the
input. Carlini & Wagner (2018) used CTC loss as an objective function and generated adversarial
examples using a gradient-descent-based minimization scheme (Carlini & Wagner (2017)). Yuan
et al. (2018) successfully embedded transcripts within a popular song. The latest approach con-
sidered psychoacoustics to minimize human perception: Schönherr et al. (2018) proposed to gen-
erate adversarial examples based on psychoacoustic hiding. They used the hearing thresholds as
a guideline to design appropriate manipulations on the input signal by limiting them to be below

1https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition/wave2letter.html
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the thresholds of human perception. Abdullah et al. (2019) utilized domain-specific knowledge of
audio signal processing to achieve practical black-box attacks by leveraging the fact that humans
interpret discontinuous signals as noisy and hardly discern differences in high frequency signals.
These techniques require domain-specific knowledge and complex signal processing. By contrast,
optimization-based methods (Opt) (Carlini & Wagner (2018)) are easier to implement, but the gener-
ated adversarial examples tend to include widely distributed noise. In this paper, we propose a novel
method which extends Opt but limits the total perturbation using iterative proportional clipping, to
derive more imperceptible adversarial examples.

3 METHOD

In this section, we first introduce our attack workflow for Iterative Proportional Clipping (IPC)
attack, and then elaborate on how we use IPC method to generate our adversarial examples. We
also explain the imperceptibility of the perturbation on the silent periods. Finally, we analyze the
preservation of temporal dependency of our method.
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Figure 1: The workflow for generating our adversarial examples.

3.1 ATTACK WORKFLOW

The workflow for our adversarial audio generation is shown in Figure 1, which includes three major
components: 1) the raw audio is fed into a common ASR system to get the pseudo-posteriors y,
which is a matrix with each element representing the possibility of each alphabet label at each step.
2) We compute the objective loss L(y, y′) in terms of the pseudo-posteriors y and target sentence
y′ directly, with no need of forced alignment. Then, we compute the gradient ∇xL on the input as
the raw perturbation through a backpropagation model. 3) The perturbation is then clipped to an
allowed range which is derived from the IPC method. Finally, the modified audio added with the
clipped perturbation is then fed into the system in the next iteration. Note that the clipping on the
gradient in the third component can realize the preservation of temporal dependency.

3.2 ITERATIVE PROPORTIONAL CLIPPING METHOD

Fast gradient sign method (FGSM) (Goodfellow et al. (2014)) takes the sign of the gradient as
the perturbation on the original audio, and the optimization-based method (Opt) (Carlini & Wagner
(2018)) uses the gradient itself to perturb the data. Here, we introduce a novel iterative method using
the proportionally clipped gradient as the perturbation factor to modify the original audio. Figure
2 illustrates how we construct our clipping in every iteration. Given a natural waveform x, we first
calculate its Upper Sideline (USL) and Lower Sideline (LSL) as follows:

xUSL = (1 + B) · x, xLSL = (1− B) · x, (1)

where B is the bandwidth of the perturbation in proportion to x, the value of which resides between 0
and 1. We use B to set the maximum thresholds to limit the perturbation. The tolerable perturbation
of the original audio will increase with a larger B value. For each iteration, based on USL and
LSL, we update the modified input from the previous iteration by gradient descent to get the new
disturbed waveform. Then, we clip the disturbed waveform at those positions where the sound
intensity exceeds the USL or LSL, after which we obtain the modified input for the next iteration.
After a number of iterations, we can derive our adversarial examples.
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Figure 2: Illustration of the proportional clipping process. Two boundary lines in yellow in (b)
which we name Upper Sideline (USL) and Lower Sideline (LSL) respectively, are calculated from
the original waveform (a). The line in green in (c) is the disturbed waveform with the perturbation
based on Opt. We clip the disturbed waveform in green in (c) at those positions where the sound
intensity exceeds the USL or LSL , as shown in (d). The modified waveform in current iteration
after our proportional clipping is displayed in red in (e).

One major advantage of the IPC method is that it limits the perturbation on the silent periods. Since
the threshold of each position on the disturbed waveform is proportional to the original waveform,
the perturbation on the silent position is constrained and thus more likely to be imperceptible to
humans. Existing methods, on the other hand, tend to derive adversarial examples with random
noise applied across all positions of the audio.

In addition, our method also preserves the temporal dependency of the original waveform through
iterative proportional clipping. Existing approaches such as FGSM and Opt-based ones become
ineffective against temporal dependency based defense mechanisms (Yang et al. (2018)). However,
we construct a proportional clipping which aims to preserve the linear proportionality between the
original audio and the perturbed one. Specifically, by clipping the waveform to be between the USL
and LSL, the sound intensity of the output audio is nearly proportional to that of the original audio
at any position. As a result, the relative relation among the sound intensities of the original audio
is preserved. When two waveforms (i.e., the original waveform and the attack waveform) present
identical relative relations, they must have the same temporal dependency. Therefore, the adversarial
examples with preserved temporal dependency can defeat the temporal dependency based defense
mechanisms. Experimental verification of this hypothesis is presented in Section 4. In the end,
IPC method provides a mechanism to better control the relative relation among the sound intensities
across different positions in the output audios.

Objective loss function. Similar to Carlini & Wagner (2018), we formulate the problem of
constructing an adversarial example as an optimization problem. Given a natural example x =
(x1, x2, ..., xN ) and any target phrase y′, we solve the formulation as follows:

minimize c1 · `(x, y′) + c2 · |δ|22

s.t. | δi
xi
| < B, ∀ 1 ≤ i ≤ N,

(2)

where `(·) represents the CTC loss. We use bandwidth B to maintain linear preportionality between
the perturbation δ and the original waveform x. The parameters c1, c2 trade off the relative impor-
tance of being adversarial and remaining similar to the original audio. Note that we set the restriction
on the perturbation in every iteration to produce effective final perturbation results.

4 EXPERIMENTAL RESULTS

The presentation flows of the experimental results are summarized as follows. In Section 4.1, we
introduce the dataset and adversary model that are used in all of the experiments. In Section 4.2,
we introduce our experimental setup on IPC attacks. In Section 4.3, we evaluate the performance
of the proposed IPC method from different aspects: first, we perform targeted attacks towards sen-
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tences with different lengths to show that IPC method can transform the original audio into arbitrary
target transcription; second, we further provide a visualized comparison between the waveform gen-
erated by our approach and other approaches in both time and frequency domains to demonstrate
the preservation of the relative relation among the sound intensities at different positions; third, we
balance the noise distortion and time cost to develop the optimal attack scheme. In Section 4.4, we
describe the experimental setup on TD defense against our adversarial examples. In Section 4.5,
we evaluate the maintenance of temporal dependency in our method, and it shows that our IPC can
bypass TD defense with a sharp drop on AUC scores.

4.1 DATASET AND ADVERSARY MODEL

Dataset. LibriSpeech (Panayotov et al. (2015)) is a corpus of approximately 1,000 hours of 16Khz
English speech derived from audiobooks from the LibriVox project. It comes with its own training,
validation sets, test-clean and test-other sets. We used all available samples to train and validate our
ASR system. We generate adversarial examples only using its test-clean set, which contains 2,620
waves with the average duration of 4.294s.

Adversary model. Wav2letter (Collobert et al. (2016)) is a simple and efficient end-to-end auto-
matic speech recognition system open sourced by the Facebook AI research team. It combines a
standard 1D convolutional neural network, a sequence criterion of typical AutoSegCriterion (ASG)
and a simple beam-search decoder. Based on the architecture in Collobert et al. (2016) and Liptchin-
sky et al. (2017), NVIDIA proposes Wav2letter+2 which consists of 17 1D-Convolutional Layers and
2 Fully Connected Layers. It extracts log-mel filterbank energies as the input features to the model
and uses CTC loss to train the model. In this paper, we implement wav2letter+ in Pytorch as our
adversarial model and use beam-search decoder for decoding. Different from the wave2letter+ spec-
ification, we use a differentiate MFCC features extraction in front of the ASR model. The output of
our model is a sequence of letters corresponding to the speech input. The vocabulary consists of all
alphabets (a-z), space, and the apostrophe symbol, a total of 29 symbols including the blank symbol
used by the CTC loss.

4.2 IPC ATTACK SETUP

We implement the attack using Pytorch. We randomly select one audio from the test-clean set as
the original audio, and the sentence corresponding to another audio as the target transcription. To
make sure the target is arbitrary, we also designate other random sentences as targets. To generate
a massive amount of effective adversarial examples quickly and systematically, we conduct attacks
in two stages: for the generation of each adversarial example, we first generate a weak adversarial
example under the train mode of the ASR system, which is an approximation of the true adversarial
example; and then, in the second stage we fine tune it to get the desired adversarial example under
the eval mode of the ASR system.

As for parameter settings, we set c1 = 1 and c2 = 100 considering that CTC loss has a larger
magnitude. Besides, we set lr = 1e − 5 in the first stage and lr = 5e − 5 in the second stage.
In order to avoid gradient exploding, we also have a gradient clipping with gradmax = 100 and
gradmax = 10 respectively in two stages. All experiments are carried out on an Ubuntu Server
(16.04 LTS) with an Intel(R) Core(R) i5-6500@ 3.20GHz × 4, 16G Memory and GTX 1080 GPU.

Type Transcribed results
Original but then the picture was gone as quickly as it came

Adversarial (short) open alipay
Adversarial (medium) transfer to bob ten dollars
Adversarial (long) please delete the last transaction record

Table 1: Examples of the IPC attacks

2https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition/wave2letter.html
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Figure 3: The perturbation at the positions with low sound intensity (left), medium sound intensity
(middle) and high sound intensity (right) in time domain.

4.3 EVALUATION OF IPC METHOD

Prior works (Vaidya et al. (2015), Carlini et al. (2016), Carlini & Wagner (2018)) have demonstrated
that the transfer from a short sentence to a longer one is not a difficult task. The reason is that, differ-
ent from humans who comprehend each phoneme generally by a dozen frames or so, the machines
perceive audios by recognizing each phoneme in at least three HMM states. To show the translated
results in different lengths from a general audio, we provide a group of adversarial examples that
have been maliciously transcribed in Table 1. We can see that different alterations of ASR output
toward short, medium, and long utterances, which illustrates that our method can achieve arbitrary
targeted attacks from a general audio. More examples are shown in Appendix A.1.

To explore the impact of our IPC method on the waveform segments with different sound intensities
compared to Opt, we show the specific perturbation at different positions in a magnified view in
Figure 3. For the low sound intensity part in the audio, we can see that our IPC based signal follows
the original one closely while the Opt based signal fluctuates significantly. Consistent with such
phenomenon, our IPC based adversarial examples sound more clear at the silent or the low sound
intensity periods. For the middle and high sound intensity parts, IPC and Opt both look similar to
the original one, but the former always has smaller perturbation. We infer that our IPC based signal
avoids the perturbation of large amplitude at the expense of more frequent variation. Although it
makes the audio periods with high intensities sound a little fuzzy, our adversarial example is more
acceptable compared to Opt based adversarial examples that contain harsh noise at silent periods.
Moreover, we can find that our signal also maintains the relative relation among the sound intensities
at different positions in the time domain.

We further provide a visualization of the above audios in frequency domain in Figure 4. We first
select the signals of 2-5 kHz since the human ear is more sensitive to this band. It shows that
Opt produces more noise than IPC, and the Opt signal is more likely to be perceptible to humans.
However, our IPC signal is almost the same as the original one. We also visualize the audios in higher
frequency bands, where Opt produces obvious noise, which implies that IPC attacks perform better
than Opt attacks, and are more robust against defenses which defend against adversarial examples
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Figure 4: The perturbation at the positions with human sensitive frequency band (left) and high
frequency band (right).
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Figure 5: (a) Trends of L2 Distortion and epoch as the bandwidth gets narrower. (b) Word Error
Rate and Character Error Rate of audio examples.

based on high frequency filtering. See Appendix A.2 for more visualizations of the adversarial
examples in time and frequency domain.

To investigate the performance of different bandwidths B in Eq. (1), we conduct a series of exper-
iments with different bandwidths while generating adversarial examples. We mainly explore the
trend of two key metrics with a narrower bandwidth, which is shown in Figure 5(a). One metric is
the L2 distortion, which is chosen for quantifying the distortion introduced by the perturbation; the
other one is the number of epochs required to alter original transcription to the target. We can find
that the L2 distortion descends slowly from 2.4 to 1.6 while the number of requisite epochs grows as
the bandwidth narrows down from 0.5 to 0.1. Specifically, the number of requisite epochs explodes
to be more than 5,000 when the bandwidth drops to 0.1. To strike a balance between epochs and
distortion, we set the bandwidth to 0.2 in all the following experiments to generate adversarial ex-
amples with a high quality while reducing runtime cost. On average, generating a single adversarial
example with our method only requires 5-15 minutes of computation time on commodity hardware
(a single NVIDIA 1080). We encourage the reader to listen to our adversarial examples to hear how
similar they are to the original audio.3

4.4 TD DEFENSE SETUP

Due to the preservation of temporal dependency, our adversarial examples are more robust than the
state-of-the-art adversarial examples (Carlini & Wagner (2018)). To validate their robustness, we
implement attacks using our adversarial examples to target ASR systems equipped with TD defense
(Yang et al. (2018)). TD defense gains discriminate power against adversarial examples by utiliz-
ing the inconsistency between the prefix of length l of the transcribed results and the transcribed
portion of the same length l. The audio portion of length l is obtained by cutting the tested audio
with different cut ratios k. With k = 0.5, for example, TD defense will compare the transcription
of the first half of audio and the corresponding prefix of the original transcription. Common adver-
sarial examples often involve some unwished losses of temporal information. Our proposed method
circumvents the loss of temporal information and therefore can effectively bypass TD defense. We
follow the same experimental procedures as Yang et al. (2018), and adopt their evaluation metrics:
the area under curve (AUC) of word error rate (WER), AUC of character error rate (CER), and AUC
of longest common prefix (LCP).

4.5 EVALUATION OF IPC METHOD AGAINST TD DEFENSE

Generally, as TD defense exploits the broken temporal dependency in audio data to identify adver-
sarial examples, common Opt based adversarial examples can be detected owing to the inconsistent
transcription of the same k portion. To illustrate that the effectiveness of our adversarial examples is
not impacted by TD defense, we list some examples of translated results for benign and adversarial
audios with the cut ratio k = 0.5 in Table 2. We can see that segments of our adversarial examples

3https://drive.google.com/open?id=14LSY9x5lEhaVtJGtOKNpeD8tpGHBCSEh
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Type Transcribed results
Original but then the picture was gone as quickly as it came
the first half of Original but then the picture was to

Adversarial (short) open alipay
First half of Adversarial open
Adversarial (medium) transfer to bob ten dollars
First half of Adversarial transfer to bob
Adversarial (long) please delete the last transaction record
First half of Adversarial please delete the last

Table 2: Examples of the temporal dependency based detection on IPC method

k
IPC (Opt)

WER CER LCP
1/2 0.524 (0.930) 0.507 (0.933) 0.609 (0.806)
2/3 0.770 (0.930) 0.700 (0.948) 0.885 (0.826)
3/4 0.573 (0.933) 0.510 (0.938) 0.835 (0.839)
4/5 0.575 (0.955) 0.553 (0.969) 0.772 (0.880)
5/6 0.755 (0.941) 0.680 (0.962) 0.766 (0.858)

Table 3: AUC scores of different k on IPC and Opt adversarial examples

can be equally transcribed with the corresponding transcription of the whole adversarial examples.
More results on our adversarial examples against TD defense are shown in Appendix A.4. More-
over, we explore the average WER and CER with different cut ratios under TD defense in Figure
5(b) to verify if the IPC based adversarial examples preserve temporal dependency. Compared with
Opt, IPC based adversarial examples have lower WER and CER. The error of IPC is caused by the
wrongly transcription of the last word. These experimental results demonstrate the IPC method can
preserve the temporal information of the original audio. This is because the added perturbation in
the audio presents the same relative relation with the original audio among the sound intensities
across different positions.

To further investigate the effectiveness on the preservation of temporal dependency, Table 3 repre-
sents the AUC scores of three basic metrics under different cut ratios on the IPC based adversarial
examples. The AUC scores on IPC are mostly distributed between 0.5 and 0.7, which means the
classifier with TD defense has poor performance on our adversarial examples. Moreover, TD de-
fense with metrics of WER and CER performs worse than that with LCP. We observe that the AUC
scores based on WER and CER of IPC are relatively low and can reach slightly above 0.5. And the
AUC score based on LCP reaches above 0.8 under the cut of 2/3 and 3/4 due to the unbalanced pro-
portion of longer and shorter transcribed targets. It is clear that our AUC scores are lower than the
scores of Opt method under different cut ratios, which demonstrates the robustness of our method
against TD defense due to the preservation of temporal information.

5 CONCLUSION

In this paper, we propose a new method based on IPC to achieve targeted attacks on ASR system,
which, for the first time, considers the preservation of temporal dependency to generate robust au-
dio adversarial examples. By iteratively performing proportional clipping on the perturbation which
we compute from the gradient through a backpropagation model, we force the modified audio to
maintain the original relative relation across all positions. Our experiments show that IPC based
adversarial examples can not only fool the state-of-the-art Wav2letter+ model but also bypass the
latest temporal dependency based defense. Experimental results also demonstrate that IPC signifi-
cantly outperforms other voice attack methods, and the added noise on the original audio becomes
imperceptible to humans.
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A APPENDIX

A.1 MORE RESULTS ON IPC ATTACK

Tables 4-6 provide the results of targeted attacks from different original audios. We show that they
are converted into transcriptions of different lengths for each example.

Type Transcribed results
Original but then the picture was gone as quickly as it came

Adversarial (short) what is slang
Adversarial (short) what was that
Adversarial (short) you are acute
Adversarial (medium) i don’t anticipate
Adversarial (medium) sunday august sixteenth
Adversarial (medium) why are we to be divided
Adversarial (long) there it clothes itself in word masks in metaphor rags
Adversarial (long) for some time after that i remembered nothing distinctly
Adversarial (long) yes yes she hurried pulling her hand gently away from him

Table 4: Examples of the IPC attacks from “but then the picture was gone as quickly as it came”.

Type Transcribed results
Original surely we can submit with good grace

Adversarial (short) i know
Adversarial (short) got it
Adversarial (short) run away
Adversarial (medium) you are positive then
Adversarial (medium) he nods his consen
Adversarial (medium) we suffer stifling pains
Adversarial (long) it will be no disappointment to me
Adversarial (long) tea please matthews butler impassively
Adversarial (long) it will not be safe for you to stay here now

Table 5: Examples of the IPC attacks from “surely we can submit with good grace”.

Type Transcribed results
Original there it clothes itself in word masks in metaphor rags

Adversarial (short) i’m happy
Adversarial (short) you did it
Adversarial (short) open the door
Adversarial (medium) there just in front
Adversarial (medium) anders face grew red
Adversarial (medium) now to bed boy
Adversarial (long) tis fine for you to talk old man answered the lean aullen apprentice
Adversarial (long) it will not be safe for you to stay here now
Adversarial (long) run back uncas and bring me the size of the singer’s foot

Table 6: Examples of the IPC attacks from “there it clothes itself in word masks in metaphor rags”.
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A.2 MORE VISUALIZATIONS OF THE ADVERSARIAL EXAMPLES IN THE TIME AND
FREQUENCY DOMAIN

We show the IPC attack from “but then the picture was gone as quickly as it came” to “why are we
to be divided” in the time domain in Figure 6-7, and frequency domain in Figure 8.
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Figure 6: The original audio(left), Opt based adversarial example (middle) and IPC based adversarial
example (right) in time domain.
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Figure 7: The perturbation at the positions with low sound intensity (left), medium sound intensity
(middle) and high sound intensity (right) in time domain.
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Figure 8: The perturbation at the positions with human sensitive frequency band (left) and high
frequency band (right).
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We show the IPC attack from “surely we can submit with good grace” to “it will not be safe for you
to stay here now” in the time domain in Figure 9-10, and frequency domain in Figure 11.
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Figure 9: The original audio(left), Opt based adversarial example (middle) and IPC based adversarial
example (right) in time domain.
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Figure 10: The perturbation at the positions with low sound intensity (left), medium sound intensity
(middle) and high sound intensity (right) in time domain.
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Figure 11: The perturbation at the positions with human sensitive frequency band (left) and high
frequency band (right).
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A.3 RESULTS ON OPT BASED ADVERSARIAL EXAMPLES AGAINST TD DEFENSE

To show the Opt method’s failure in preserving the temporal dependency, Tables 7-9 provide some
additional examples of translated results for benign and Opt based adversarial audios under TD
detection. We can see the transcription of the first half of audio always contains different words with
the corresponding prefix of the original transcription in all cases, which shows the inconsistency
between the prefix of the transcribed results and the transcribed portion of the same length.

Type Transcribed results
Original but then the picture was gone as quickly as it came
the first half of Original but then the picture was to

Adversarial (short) what is slang
First half of Adversarial why this
Adversarial (medium) no my little son she said
First half of Adversarial my little son
Adversarial (long) it will not be safe for you to stay here now
First half of Adversarial it were no bus

Table 7: Examples of the temporal dependency based detection on Opt method

Type Transcribed results
Original surely we can submit with good grace
the first half of Original surely we can submit

Adversarial (short) i know
First half of Adversarial i ki
Adversarial (medium) why are we to be divided
First half of Adversarial why are we do
Adversarial (long) it will be no disappointment to me
First half of Adversarial it will be conclude

Table 8: Examples of the temporal dependency based detection on Opt method

Type Transcribed results
Original there it clothes itself in word masks in metaphor rags
the first half of Original there it clothes itself in word

Adversarial (short) i’m happy
First half of Adversarial more
Adversarial (medium) oh i know that’s lorne brandon
First half of Adversarial oh i knew that lord
Adversarial (long) a golden fortune and a happy life
First half of Adversarial a golden fortun and a whiping

Table 9: Examples of the temporal dependency based detection on Opt method
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A.4 MORE RESULTS ON IPC BASED ADVERSARIAL EXAMPLES AGAINST TD DEFENSE

Tables 10-12 provide some additional examples of translated results for benign and IPC based ad-
versarial audios under TD detection. We can see the transcription of the first half of audio is almost
identical to the corresponding prefix of the original transcription in all cases, which shows the consis-
tency between the prefix of the transcribed results and the transcribed portion with the same length.

Type Transcribed results
Original but then the picture was gone as quickly as it came
the first half of Original but then the picture was to

Adversarial (short) what is slang
First half of Adversarial what is
Adversarial (medium) i don’t anticipate
First half of Adversarial i don’t any
Adversarial (long) there it clothes itself in word masks in metaphor rags
First half of Adversarial there it clothes itself in word

Table 10: Examples of the temporal dependency based detection on IPC method

Type Transcribed results
Original surely we can submit with good grace
the first half of Original surely we can submit

Adversarial (short) i know
First half of Adversarial i know
Adversarial (medium) you are positive then
First half of Adversarial you are pose
Adversarial (long) it will be no disappointment to me
First half of Adversarial it will be no disappoint

Table 11: Examples of the temporal dependency based detection on IPC method

Type Transcribed results
Original there it clothes itself in word masks in metaphor rags
the first half of Original there it clothes itself in word

Adversarial (short) i’m happy
First half of Adversarial i’m happy
Adversarial (medium) there just in front
First half of Adversarial there just
Adversarial (long) tis fine for you to talk old man answered the lean sullen apprentice
First half of Adversarial tis fine for you to talk old man

Table 12: Examples of the temporal dependency based detection on IPC method
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