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ABSTRACT

There is a growing interest in automated neural architecture search (NAS). To im-
prove the efficiency of NAS, previous approaches adopt weight sharing method
to force all models share the same set of weights. However, it has been observed
that a model performing better with shared weights does not necessarily perform
better when trained alone. In this paper, we analyse existing weight sharing one-
shot NAS approaches from a Bayesian point of view and identify the posterior
fading problem, which compromises the effectiveness of shared weights. To al-
leviate this problem, we present a practical approach to guide the parameter pos-
terior towards its true distribution. Moreover, a hard latency constraint is intro-
duced during the search so that the desired latency can be achieved. The resulted
method, namely Posterior Convergent NAS (PC-NAS), achieves state-of-the-art
performance under standard GPU latency constraint on ImageNet. In our small
search space, our model PC-NAS-S attains 76.8% top-1 accuracy, 2.1% higher
than MobileNetV2 (1.4x) with the same latency. When adopted to the large search
space, PC-NAS-L achieves 78.1% top-1 accuracy within 11ms. The discovered
architecture also transfers well to other computer vision applications such as ob-
ject detection and person re-identification.

1 INTRODUCTION

Neural network design requires extensive experiments by human experts. In recent years, neural
architecture search (Zoph & Le, 2016; Liu et al., 2018a; Zhong et al., 2018; Li et al., 2019; Lin
et al., 2019) has emerged as a promising tool to alleviate the cost of human efforts on manually
balancing accuracy and resources constraint.

Early works of NAS (Real et al., 2018; Elsken et al., 2017) achieve promising results but have
to resort to search only using proxy or subsampled dataset due to its large computation expense.
Recently, the attention is drawn to improve the search efficiency via sharing weights across models
(Bender et al., 2018; Pham et al., 2018). Generally, weight sharing approaches utilize an over-
parameterized network (supergraph) containing every single model, which can be mainly divided
into two categories.

The first category is continuous relaxation method (Liu et al., 2018c; Cai et al., 2018), which keeps a
set of so called architecture parameters to represent the model, and updates these parameters alterna-
tively with supergraph weights. The resulted model is obtained using the architecture parameters at
convergence. The continuous relaxation method entails the rich-get-richer problem (Adam & Lor-
raine, 2019), which means that a better-performed model at the early stage would be trained more
frequently (or have larger learning rates). This introduces bias and instability to the search process.

Another category is referred to as one-shot method (Brock et al., 2017b; Guo et al., 2019; Bender
et al., 2018; Chu et al., 2019), which divides the NAS proceedure into a training stage and a searching
stage. In the training stage, the supergraph is optimized along with either dropping out each operator
with certain probability or sampling uniformly among candidate architectures. In the search stage, a
search algorithm is applied to find the architecture with the highest validation accuracy with shared
weights. The one-shot approach ensures the fairness among all models by sampling architecture
or dropping out operator uniformly. However, as identified in (Adam & Lorraine, 2019; Chu et al.,
2019; Bender et al., 2018), the validation accuracy of the model with shared weights is not predictive
to its true performance.
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In this paper, we formulate NAS as a Bayesian model selection problem (Chipman et al., 2001).
With this formulation, we can obtain a comprehensive understanding of one-shot approaches. We
show that shared weights are actually a maximum likelihood estimation of a proxy distribution to
the true parameter distribution. Further, we identify the common issue of weight sharing, which we
call Posterior Fading, i.e., the KL-divergence between true parameter posterior and proxy posterior
also increases with the number of models contained in the supergraph.

To alleviate the aforementioned problem, we proposed a practical approach to guide the convergence
of the proxy distribution towards the true parameter posterior. Specifically, our approach divides the
training of supergraph into several intervals. We maintain a pool of high potential partial models and
progressively update this pool after each interval . At each training step, a partial model is sampled
from the pool and complemented to a full model. To update the partial model pool, we generate
candidates by extending each partial model and evaluate their potentials, the top ones among which
form the new pool size. Since the search space is shrinked in the upcoming training interval, the
parameter posterior get close to the desired true posterior during this procedure. Main contributions
of our work is concluded as follows:

• We analyse the one-shot approaches from a Bayesian point of view and identify the asso-
ciated disadvantage which we call Posterior Fading.

• Inspired by the theoretical discovery, we introduce a novel NAS algorithm which guide the
proxy distribution to converge towards the true parameter posterior.

We apply our proposed approach to ImageNet classification (Russakovsky et al., 2015) and achieve
strong empirical results. In one typical search space (Cai et al., 2018), our PC-NAS-S attains 76.8%
top-1 accuracy, 0.5% higher and 20% faster than EfficientNet-B0 (Tan & Le, 2019a), which is the
previous state-of-the-art model in mobile setting. To show the strength of our method, we apply our
algorithm to a larger search space, our PC-NAS-L boosts the accuracy to 78.1%.

2 RELATED WORK

Increasing interests are drawn to automating the design of neural network with machine learning
techniques such as reinforcement learning or neuro-evolution, which is usually referred to as neural
architecture search(NAS) (Miller et al., 1989; Liu et al., 2018b; Real et al., 2017; Zoph & Le, 2016;
Baker et al., 2017a; Wang et al., 2019; Liu et al., 2018c; Cai et al., 2018). This type of NAS is
typically considered as an agent-based explore and exploit process, where an agent (e.g. an evolution
mechanism or a recurrent neural network(RNN)) is introduced to explore a given architecture space
with training a network in the inner loop to get an evaluation for guiding exploration. Such methods
are computationally expensive and hard to be used on large-scale datasets, e.g. ImageNet.

Recent works (Pham et al., 2018; Brock et al., 2017a; Liu et al., 2018c; Cai et al., 2018) try to alle-
viate this computation cost via modeling NAS as a single training process of an over-parameterized
network that comprises all candidate models, in which weights of the same operators in different
models are shared. ENAS (Pham et al., 2018) reduces the computation cost by orders of magni-
tude, while requires an RNN agent and focuses on small-scale datasets (e.g. CIFAR10). One-shot
NAS (Brock et al., 2017b) trains the over-parameterized network along with droping out each oper-
ator with increasing probability. Then it use the pre-trained over-parameterized network to evaluate
randomly sampled architectures. DARTS (Liu et al., 2018c) additionally introduces a real-valued
architecture parameter for each operator and alternately train operator weights and architecture pa-
rameters by back-propagation. ProxylessNAS (Cai et al., 2018) binarize the real-value parameters
in DARTS to save the GPU cumputation and memory for training the over-parameterized network.

The paradigm of ProxylessNAS (Cai et al., 2018) and DARTS (Liu et al., 2018c) introduce unavoid-
able bias since operators of models performing well in the beginning will easily get trained more
and normally keep being better than other. But they are not necessarily superior than others when
trained from scratch.

Other relevant works are ASAP (Noy et al., 2019) and XNAS (Nayman et al., 2019), which intro-
duce pruning during the training of over-parameterized networks to improve the efficiency of NAS.
Similarly, we start with an over-parameterized network and then reduce the search space to derive
the optimized architecture. The distinction is that they focus on the speed-up of training and only
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Figure 1: One example of search space(a) and PC-NAS process(b)(c)(d). Each mixed opperator
consists of N (=3 in this figure) operators. However, only one operator in each mixop is invoked at
a time for each batch. In (b), partial models 1 and 2 in the pool consist of choices in mixop 1 and
2. We extend these 2 partial models to one mixop 3. 6 extended candidate models are evaluated and
ranked in(c). In (d), the new pool consists of the top-2 candidate models ranked in (c).

prune by evaluating the architecture parameters, while we improves the rankings of models and
evaluate operators direct on validation set by the performance of models containing it.

3 METHODS

In this section, we first formulate neural architecture search in a Bayesian manner. Utilizing this
setup, we introduce our PC-NAS approach and analyse its advantage against previous approach.
Finally, we discuss the search algorithm combined with latency constraint.

3.1 A PROBABILISTIC SETUP FOR MODEL UNCERTAINTY

Suppose K models M = {m1, ...,mK} are under consideration for data D, and p(D|θk,mk)
describes the probability density of data D given model mk and its associated parameters θk. The
Bayesian approach proceeds by assigning a prior probability distribution p(θk|mk) to the parameters
of each model, and a prior probability p(mk) to each model.

In order to ensure fairness among all models, we set the model prior p(mk) a uniform distribution.
Under previous setting, we can drive

p(mk|D) =
p(D|mk)p(mk)∑
k p(D|mk)p(mk)

, (1)

where
p(D|mk) =

∫
p(D|θk,mk)p(θk|mk)dθk. (2)

Since p(mk) is uniform, the Maximum Likelihood Estimation (MLE) of mk is just the maximum
of (2). It can be inferred that, p(θk|mk) is crucial to the solution of the model selection. We
are interested in attaining the model with highest test accuracy in a trained alone manner, thus the
parameter prior p(θk|mk) is just the posterior palone(θk|mk,D) which means the distribution of θk
when mk is trained alone on dataset D. Thus we would use the term true parameter posterior to
refer palone(θk|mk,D).

3.2 NETWORK ARCHITECTURE SELECTION IN A BAYESIAN POINT OF VIEW

We constrain our discussion on the setting which is frequently used in NAS literature. As a building
block of our search space, a mixed operator (mixop), denoted by O = {O1 . . . , ON}, contains N
different choices of candidate operators Oi for i = 1, . . . N in parallel. The search space is defined
by L mixed operators (layers) connected sequentially interleaved by downsampling as in Fig. 1(a).
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The network architecture (model) m is defined by a vector [o1, o2, ..., oL], ol ∈ O representing the
choice of operator for layer l. The parameter for the operator o at the l-th layer is denoted as θlo.
The parameters of the supergraph are denoted by θ which includes {θlo|l ∈ {1, 2, ..., L}, o ∈ O}.
In this setting, the parameters of each candidate operator are shared among multiple architectures.
The parameters related with a specific model mk is denoted as θmk

= θ1,o1 , θ2,o2 , ..., θL,oL , which
is a subset of the parameters of the supergraph θ, the rest of the parameters are denoted as θ̄mk

, i.e.
θmk
∩ θ̄mk

= ∅, θmk
∪ θ̄mk

= θ. The posterior of all parameters θ given mk has the property
palone(θmk

|mk,D) = palone(θmk
|mk,D)palone(θ̄k|mk,D). Implied by the fact that θ̄mk

does not
affect the prediction of mk and also not updated during training, palone(θ̄mk

|mk,D) is uniformly
distributed, . Obtaining the palone(θk|mk,D) or a MLE of it for each single model is computationally
intractable. Therefore, the one-shot method trains the supergraph by dropping out each operator
(Brock et al., 2017b) or sampling different architectures (Bender et al., 2018; Chu et al., 2019)
and utilize the shared weights to evaluate single model. In this work, we adopt the latter training
paradigm while the former one could be easily generalized. Suppose we sample a model mk and
optimize the supergraph with a mini-batch of data based on the objective function Lalone:

− log palone(θ|mk,D) ∝ Lalone(θ,mk,D) = − log palone(D|θ,mk)− log p(θ|mk), (3)

where − log p(θ|mk) is a regularization term. Thus minimizing this objective equals to making
MLE to palone(θ|mk,D). When training the supergraph, we sample many models mk, and then train
the parameters for these models, which corresponds to a stochastic approximation of the following
objective function:

Lshare(θ,D) =
1

K

∑
k

Lalone(θ,mk,D). (4)

This is equivalent to adopting a proxy parameter posterior as follows:

pshare(θ|D) =
1

Z

∏
k

palone(θ|mk,D), (5)

− log pshare(θ|D) = −
∑
k

log palone(θ|mk,D) + logZ. (6)

Maximizing pshare(θ|D) is equivalent to minimizing Lshare.

We take one step further to assume that the parameters at each layer are independent, i.e.

palone(θ|mk,D) =
∏
l,o

palone(θl,o|mk,D). (7)

Due to the independence, we have

pshare(θ|D) =
∏
k

∏
l,o

palone(θl,o|mk,D) =
∏
l,o

pshare(θl,o|D), (8)

where
pshare(θl,o|D) =

∏
k

palone(θl,o|mk,D). (9)

The KL-divergence between palone(θl,o|mk,D) and pshare(θl,oj |D) is as follows:

DKL

(
palone(θl,o|mk,D)

∣∣∣∣∣∣ pshare(θl,o|D)
)

=

∫
palone(θl,o|mk,D) log

palone(θl,o|mk,D)

pshare(θl,o|D)
dθ

=

∫
palone(θl,o|mk,D) log

palone(θl,o|mk,D)∏
i palone(θl,o|mi,D)

dθ

=
∑
i6=k

−
∫
palone(θl,o|mk,D) log palone(θl,o|mi,D)dθ.

(10)
Since the KL-divergence is just the summation of the cross-entropy of palone(θl,o|mk,D) and
palone(θl,o|mi,D) where i 6= k. The cross-entropy term is always positive. Increasing the num-
ber of architectures would push pshare away from palone, namely the Posterior Fading. We conclude
that non-predictive problem originates naturally from one-shot supergraph training. Based on this
analysis, if we effectively reduce the number of architectures in Eq.(10), the divergence would de-
crease, which motivates our design in the next section.
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Algorithm 1 Potential: Evaluating the Potential of Partial Candidates

Inputs: G(supergraph), L(num of mixops in G), m′(partial candidate), Lat(latency constraint),
S(evaluation number), Dval (validataion set)
Scores = ∅
for i = 1 : S do
m∗ = expand(m′) randomly expand m′ to full depth L
if Latency(m∗) > Lat then

continue dump samples that don’t satisfy the latency constraint
end if
acc = Acc(m∗, Dval) inference m∗ for one batch and return its accuracy
Scores.append(acc) save accuracy

end for
Outputs: Average(Scores)

3.3 POSTERIOR CONVERGENT NAS

One trivial way to mitigate the posterior fading problem is limit the number of candidate models
inside the supergraph. However, large number of candidate models is demanded for NAS to discover
promising models. Due to this conflict, we present PC-NAS which adopt progressive search space
shrinking. The resulted algorithm divide the training of shared weights into L intervals, where L
is the number of mixed operators in the search space. The number of training epochs of a single
interval is denoted as Ti.

Partial model pool is a collection of partial models. At the l-th interval, a single partial model
should contain l − 1 selected operators [o1, o2, ..., ol]. The size of partial model pool is denoted as
P . After the l-th interval, each partial model in the pool will be extended by the N operators in l-th
mixop. Thus there are P × N candidate extended partial models with length l. These candidate
partial models are evaluated and the top-P among which are used as the partial model pool for the
interval l + 1. An illustrative exmaple of partial model pool update is in Fig. 1(b)(c)(d).

Candidate evaluation with latency constraint: We simply define the potential of a partial model
to be the expected validation accuracy of the models which contain the partial model.

Potential(o1, o2, ..., ol) = Em∈{m|mi=oi,∀i≤l}(Acc(m)). (11)

where the validation accuracy of model m is denoted by Acc(m). We estimate this value by uni-
formly sampling valid models and computing the average of their validation accuracy using one
mini-batch. We use S to denote the evaluation number, which is the total number of sampled mod-
els. We observe that when S is large enough, the potential of a partial model is fairly stable and
discriminative among candidates. See Algorithm. 1 for pseudo code. The latency constraint is im-
posed by dumping invalid full models when calculating potentials of extended candidates of partial
models in the pool.

Training based on partial model pool The training iteration of the supergraph along with the partial
model pool has two steps. First, for a partial model from the pool, we randomly sample the missing
operator {ol+1, ol+2, ..., oL} to complement the partial model to a full model. Then we optimize
θ using the sampled full model and mini-batch data. We Initially, the partial model pool is empty.
Thus the supergraph is trained by uniformly sampled models, which is identical to previous one-shot
training stage. After the initial training, all operators in the first mixop are evaluated. The top P
operators forms the partial model pool in the second training stage. Then, the supergraph resume
training and the training procedure is identical to the one discussed in last paragraph. Inspired by
warm-up, the first stage is set much more epochs than following stages denoted as Tw. The whole
PC-NAS process is elaborated in algorithm. 2 The number of models in the shrinked search space
at the interval l is strictly less than interval l − 1. At the final interval, the number of cross-entropy
terms in Eq.(10) are P-1 for each architectures in final pool. Thus the parameter posterior of PC-NAS
would move towards the true posterior during these intervals.

5



Under review as a conference paper at ICLR 2020

Algorithm 2 PC-NAS: Posterior Convergent Architecture Search

Inputs: P (size of partial model pool), G(supergraph), Oi (the ith operator in mixed operator),
L(num of mixed operators in G), Tw(warm-up epochs), Ti(interval between updation of partial
model pool), Dtrain(train set), Dval (validataion set), Lat(latency constraint)
PartialModels = ∅
Warm-up(G, Dtrain, Tw) uniformly sample models from G and train
for I = 0:(L · Ti−1) do

if I mod Ti == 0 then
ExtendedPartialModels = ∅
if PartialModels == ∅ then

ExtendedPartialModels.append([Oi]) add all operator in the first mixop
end if
for m in PartialModels do

ExtendedPartialModels.append(Extend(m,O1), ..., Extend(m,ON ))
end for
for m′ in ExtendedPartialModels do
m′.potential = Potential(m′, Dval, Lat, S) evaluate the extended partial model

end for
PartialModels = Top(ExtendedPartialModels, P ) keep P best partial models

end if
Train(PartialModels, Dtrain) train one epoch using partial models

end for
Outputs: PartialModels

4 EXPERIMENTS RESULTS

We demonstrate the effectiveness of our methods on ImageNet, a large scale benchmark dataset,
which contains 1,000,000 training samples with 1000 classes. For this task, we focus on models that
have high accuracy under certain GPU latency constraint. We search models using PC-NAS, which
progressively updates a partial model pool and trains shared weights. Then, we select the model
with the highest potential in the pool and report its performance on the test set after training from
scratch. Finally, we investigate the transferability of the model learned on ImageNet by evaluating
it on two tasks, object detection and person re-identification.

4.1 TRAINING DETAILS

Dataset and latency measurement: As a common practice, we randomly sample 50,000 images
from the train set to form a validation set during the model search. We conduct our PC-NAS on the
remaining images in train set. The original validation set is used as test set to report the performance
of the model generated by our method. The latency is evaluated on Nvidia GTX 1080Ti and the
batch size is set 16 to fully utilize GPU resources.

Search spaces: We use two search spaces. We benchmark our small space similar to ProxylessNAS
(Cai et al., 2018) and FBNet (Wu et al., 2018) for fair comparison. To test our PC-NAS method in a
more complicated search space, we add 3 more kinds of operators to the small space’s mixoperators
to construct our large space. Details of the two spaces are in A.1.

PC-NAS hyperparameters: We use PC-NAS to search in both small and large space. To balance
training time and performance, we set evaluation number S = 900 and partial model pool size
P = 5 in both experiments. Ablation study of the two values is in 4.4. When updating weights of
the supergraph, we adopt mini-batch nesterov SGD optimizer with momentum 0.9, cosine learning
rate decay from 0.1 to 5e-4 and batch size 512, and L2 regularization with weight 1e-4. The warm-
up epochs Tw and shrinking interval Ti are set 100 and 5, thus the total training of supergraph lasts
100 + 20 × 5 = 200 epochs. After searching, we select the best one from the top 5 final partial
models and train it from scratch. The hyperparameters used to train this best model are the same as
that of supergraph and the training takes 300 epochs. We add squeeze-and-excitation layer to this
model at the end of each operator and use mixup during the training of resulted model.
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4.2 IMAGENET RESULTS

Table 1: PC-NAS’ Imagenet results compared with state-of-the-art methods in the mobile setting.

model space params latency(gpu) top-1 acc
MobileNetV2 1.4x (Sandler et al., 2018) - 6.9M 10ms 74.7%
AmoebaNet-A(Real et al., 2018) - 5.1M 23ms 74.5%
PNASNet (Liu et al., 2018a) 5.6x1014 5.1M 25ms 74.2%
MnasNet(Tan et al., 2018) - 4.4M 11ms 74.8%
FBNet-C(Wu et al., 2018) 1021 5.5M - 74.9%
ProxylessNAS-gpu(Cai et al., 2018) 721 7.1M 8ms 75.1%
EfficientNet-B0(Tan & Le, 2019a) - 5.3M 13 ms 76.3%
MixNet-S(Tan & Le, 2019b) - 4.1M 13 ms 75.8%
PC-NAS-S 1021 5.1M 10 ms 76.8%
PC-NAS-L 2021 15.3M 11 ms 78.1%

Table 1 shows the performance of our model on ImageNet. We set our target latency at 10ms
according to our measurement of mobile setting models on GPU. Our search result in the small
space, namely PC-NAS-S, achieves 76.8% top-1 accuracy under our latency constraint, which is
0.5% higher than EffcientNet-B0 (in terms of absolute accuracy improvement), 1% higher than
MixNet-S. If we slightly relax the time constraint, our search result from the large space, namly
PC-NAS-L, achieves 78.1% top-1 accuracy, which improves top-1 accuracy by 1.8% compared
to EfficientNet-B0, 2.3% compared to MixNet-S. Both PC-NAS-S and PC-NAS-L are faster than
EffcientNet-b0 and MixNet-S.

Table 2: Performance Comparison on COCO and Market-1501

backbone params latency COCO mAP Market-1501 mAP
MobileNetV2 3.5M 7ms 31.7 76.8

ResNet50 25.5M 15ms 36.8 80.9
ResNet101 44.4M 26ms 39.4 82.1
PC-NAS-L 15.3M 11ms 38.5 81.0

4.3 TRANSFERABILITY OF PC-NAS

We validate our PC-NAS’s transferability on two tasks, object detection and person re-identification.
We use COCO (Lin et al., 2014) dataset as benchmark for object detection and Market-1501 (Zheng
et al., 2015) for person re-identification. For the two dataset, PC-NAS-L pretrained on ImageNet is
utilized as feature extractor, and is compared with other models under the same training script. For
object detection, the experiment is conducted with the two-stage framework FPN (Lin et al., 2017).
Table 2 shows the performance of our PC-NAS model on COCO and Market-1501. For COCO,
our approach significantly surpasses the mAP of MobileNetV2 as well as ResNet50. Compare to
the standard ResNet101 backbone, our model achieves comparable mAP quality with almost 1/3
parameters and 2.3× faster speed. Similar phenomena are found on Market-1501.

4.4 ABLATION STUDY

Impact of hyperparameters: In this section, we further study the impact of hyperparameters on
our method within our small space on ImageNet. The hyperparameters include warm-up, training
epochs Tw, partial model pool size P , and evaluation number S. We tried setting Tw as 100 and
150 with fixed P = 5 and S = 900. The resulted models of these two settings show no significant
difference in top-1 accuracy (less than 0.1%), shown as in Fig. 2a. Thus we choose warm-up training
epochs as 100 in our experiment to save computation resources. For the influence of P and S,
we show the results in Fig. 2a. It can be seen that the top-1 accuracy of the models found by
PC-NAS increases with both P and S. Thus we choose P = 5, S = 900 in the experiments for
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Figure 2: (a): Influence of warm-up epochs Tw, partial model pool size P , and evaluation number S
to the resulted model. (b): Comparison of model rankings for One-Shot (left) and PC-NAS (right).

better performance. we did not observe significant improvement when further increasing these two
hyperparameters.

Effectiveness of shrinking search space: To assess the role of space shrinking, we trains the super-
graph of our large space using One-Shot(Brock et al., 2017b) method without any shrinking of the
search space. Then we conduct model search on this supergraph by progressively updating a partial
model pool in our method. The resulted model using this setting attains 77.1% top-1 accuracy on
ImageNet, which is 1% lower than our PC-NAS-L as in Table.3.

We add another comparison as follows. First, we select a batch of models from the candidates of our
final pool under small space and evaluate their stand alone top-1 accuracy. Then we use One-Shot to
train the supergraph also under small space without shrinking. Finally, we shows the model rankings
of PC-NAS and One-Shot using the accuracy obtained from inferring the models in the supergraphs
trained with the two methods. The difference is shown in Fig. 2b, the pearson correlation coefficients
between stand-alone accuracy and accuracy in supergraph of One-Shot and PC-NAS are 0.11 and
0.92, thus models under PC-NAS’s space shrinking can be ranked by their accuracy evaluated on
sharing weights much more precisely than One-Shot.

Effectiveness of our search method: To investigate the importance of our search method, we utilize
Evolution Algorithm (EA) to search for models with the above supergraph of our large space trained
with One-Shot. The top-1 accuracy of discovered model drops furthur to 75.9% accuracy, which is
2.2% lower than PC-NAS-L . We implement EA with population size 5, aligned to the value of pool
size P in our method, and set the mutation operation as randomly replace the operator in one mixop
operator to another. We constrain the total number of validation images in EA the same as ours. The
results are shown in Table.3.

Table 3: Comparision with One-Shot and Evolution Algorithm

training method search method top-1 acc
Ours Ours 78.1%

One-shot Ours 77.1%
One-shot EA 75.9%

5 CONCLUSION

In this paper, a new architecture search approach called PC-NAS is proposed. We study the con-
ventional weight sharing approach from Bayesian point of view and identify a key issue that com-
promises the effectiveness of shared weights. With the theoretical insight, a practical method is
devised to mitigate the issue. Experimental results demonstrate the effectiveness of our method,
which achieves state-of-the-art performance on ImageNet, and transfers well to COCO detection
and person re-identification too.
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A APPENDIX

A.1 CONSTRUCTION OF THE SEARCH SPACE:

The operators in our spaces have structures described by either Conv1x1-ConvNxM-Conv1x1 or
Conv1x1-ConvNxM-ConvMxN-Conv1x1. We define expand ratio as the ratio between the channel
numbers of the ConvNxM in the middle and the input of the first Conv1x1.
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Small search space Our small search space contains a set of MBConv operators (mobile inverted
bottleneck convolution (Sandler et al., 2018)) with different kernel sizes and expand ratios, plus
Identity, adding up to 10 operators to form a mixoperator. The 10 operators in our small search space
are listed in the left column of Table 4, where notation OP X Y represents the specific operator OP
with expand ratio X and kernel size Y.

Large search space We add 3 more kinds of operators to the mixoperators of our large search
space, namely NConv, DConv, and RConv. We use these 3 operators with different kernel sizes
and expand ratios to form 10 operators exclusively for large space, thus the large space contains 20
operators. For large search space, the structure of NConv, DConv are Conv1x1-ConvKxK-Conv1x1
and Conv1x1-ConvKxK-ConvKxK-Conv1x1, and that of RConv is Conv1x1-Conv1xK-ConvKx1-
Conv1x1. The kernel sizes and expand ratios of operators exclusively for large space are lised in the
right column of Table 4, where notation OP X Y represents the specific operator OP with expand
ratio X and K=Y.

There are altogether 21 mixoperators in both small and large search spaces. Thus our small search
space contains 1021 models, while the large one contains 2021.

Table 4: operator table

Operators in both Operators exclusively in
large and small space large space

MBConv 1 3 MBConv 3 3 NConv 1 3 NConv 2 3
MBConv 6 3 MBConv 1 5 DConv 1 3 DConv 2 3
MBConv 3 5 MBConv 6 5 RConv 1 5 RConv 2 5
MBConv 1 7 MBConv 3 7 RConv 4 5 RConv 1 7
MBConv 6 7 Identity RConv 2 7 RConv 4 7

A.2 SPECIFICATIONS OF RESULTED MODELS:

The specifications of PC-NAS-S and PC-NAS-L are shown in Fig. 3. We observe that PC-NAS-S
adopts either high expansion rate or large kernel size at the tail end, which enables a full use of high
level features. However, it tends to select small kernels and low expansion rates to ensure the model
remains lightweight. PC-NAS-L chooses lots of powerful bottlenecks exclusively contained in the
large space to achieve the accuracy boost. The high expansion rate is not quite frequently seen which
is to compensate the computation utilized by large kernel size. Both PC-NAS-S and PC-NAS-L tend
to use heavy operator when the resolution reduces, circumventing too much information loss in these
positions.
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Figure 3: The architectures of PC-NAS-S and PC-NAS-L.
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