
Under review as a conference paper at ICLR 2020

UNSUPERVISED GENERATIVE 3D SHAPE LEARNING
FROM NATURAL IMAGES

Anonymous authors
Paper under double-blind review

Figure 1: Samples from our generator trained on the FFHQ dataset at 128 × 128 resolution. The
first column shows random rendered samples. The other columns show the 3D normal map, texture,
background and textured 3D shapes for 5 canonical viewpoints in the range of ±90 degrees.

ABSTRACT

In this paper we present, to the best of our knowledge, the first method to learn a
generative model of 3D shapes from natural images in a fully unsupervised way.
For example, we do not use any ground truth 3D or 2D annotations, stereo video,
and ego-motion during the training. Our approach follows the general strategy
of Generative Adversarial Networks, where an image generator network learns to
create image samples that are realistic enough to fool a discriminator network into
believing that they are natural images. In contrast, in our approach the image gen-
eration is split into 2 stages. In the first stage a generator network outputs 3D ob-
jects. In the second, a differentiable renderer produces an image of the 3D object
from a random viewpoint. The key observation is that a realistic 3D object should
yield a realistic rendering from any plausible viewpoint. Thus, by randomizing
the choice of the viewpoint our proposed training forces the generator network
to learn an interpretable 3D representation disentangled from the viewpoint. In
this work, a 3D representation consists of a triangle mesh and a texture map that is
used to color the triangle surface by using the UV-mapping technique. We provide
analysis of our learning approach, expose its ambiguities and show how to over-
come them. Experimentally, we demonstrate that our method can learn realistic
3D shapes of faces by using only the natural images of the FFHQ dataset.

1 INTRODUCTION

Generative Adversarial Nets (GAN) (see Goodfellow et al. (2014)) have become the gold standard
of generative model over the years. Their capability is demonstrated in many data sets of natural
images. These generative models can create sample images that are nearly indistinguishable from
real ones. GANs do not need to make assumptions on the data formation other than applying a
neural network on a latent noise input. They can also operate in a fully unsupervised way. GANs
have strong theoretical foundations since the beginning. Goodfellow et al. (2014) demonstrate that,

1

Under review as a conference paper at ICLR 2020

under suitable conditions, GANs learn to generate samples with the same probability distribution of
samples in the training data set.

However, there is one notable drawback of GANs compared to classical generative models like
Gaussian Mixture Models by Xu & Jordan (1996) or Naive Bayes classifiers by McCallum et al.
(1998). Classical models are interpretable, but GANs are not. Interpretability is achieved in clas-
sical models by making strong assumptions on the data formation process and by using them on
interpretable engineered features.

Our work combines the best of both worlds for 3D shape learning. We keep the advantages of
GANs: unsupervised training, applicability on real datasets without feature engineering, the theo-
retical guarantees and simplicity. We also make our representation interpretable, as our generator
network provides a 3D mesh as an output, To make the learning possible, we make the assumption
that natural images are formed by a differentiable renderer. This renderer produces fake images by
taking the 3D mesh, its texture, a background image and a viewpoint as its input. During training
a discriminator network is trained against the generator in an adversarial fashion. It tries to classify
whether its input is fake or comes from the training dataset.

The key observation is that a valid 3D object should look realistic from multiple viewpoints. This
image realism is thus enforced by the GAN training. This idea was first applied for generating 3D
shapes in Gadelha et al. (2017). Their pioneering work had several limitations though. It was only
applicable to synthetic images, where the background mask is available and produced only black and
white images. Our method works on natural images and we do not need silhouettes as supervision
signal.

From a theoretical point of view, image realism means that the images lie inside the support of the
probability distribution of natural images (see Ledig et al. (2017), where image realism was used
for super-resolution). AmbientGAN of Bora et al. (2018) proves that one can recover an underlying
latent data distribution, when a known image formation function is applied to the data. This means
that our work and that of Gadelha et al. (2017) are special cases of AmbientGAN. However the 3D
shape learning task in general does not satisfy an assumption in Bora et al. (2018), which results in
ambiguities in the training. We resolve these issues in our paper by using suitable priors.

We summarize our contributions below:

• For the first time, to the best of our knowledge, we provide a procedure to build a generative
model that learns explicit 3D representations in an unsupervised way from natural images.
We achieve that using a generator network and a renderer trained against a discriminator in
a GAN setting. Samples from our model are shown in Figure 1.

• We introduce a novel differentiable renderer, which is a fundamental component to obtain
a high-quality generative model. Notably, it is differentiable with respect to the 3D vertex
coordinates. The gradients are not approximated, they can be computed exactly even at the
object boundaries and in the presence of self-occlusions.

• We analyze our learning setup in terms of the ambiguities in the learning task. These am-
biguities might derail the training to undesirable results. We show that these problems can
only be solved when one uses labels or prior knowledge on the data distribution. Finally, we
provide practical solutions to overcome the problems that originate from the ambiguities.

2 RELATED WORK

Before we discuss prior work, we would like to state clearly what we mean with supervised, unsu-
pervised and weakly supervised learning in this paper. Usually, supervised learning is understood
as using annotated data for training, where the annotation was provided by human experts. In some
scenarios the annotation comes from the image acquisition setup. Often these approaches are con-
sidered unsupervised, because the annotation is not produced by humans. Throughout our paper
we consider supervision based on the objective function and its optimization, and not based on the
origin of the annotation. To that purpose, we use the notion of the target and training objective. The
target objective is defined as the function that measures the performance of the trained model f , i.e.,

Ltarget(f) = E[lt(f(x),y)], (1)

2

Under review as a conference paper at ICLR 2020

Table 1: Comparison of prior work. We indicated all supervision signals for the full training process.
In case of methods that work on synthetic images with static background we indicated silhouettes as
supervision signal.

3D Method Supervision Signal 3D Representation Capabilities

Im
ag

es

3D
M

M

3D K
ey

po
in

ts

Si
lh

ou
et

te
s

V
ie

w
po

in
t

Po
in

tC
lo

ud

Vo
xe

l

M
es

h

Te
xt

ur
e

V
ie

w
C

on
tr

ol

N
at

ur
al

Im
ag

es

Geng et al. (2019) X X X X X X X
Gecer et al. (2019) X X X X X X X
Sanyal et al. (2019) X X X X X X
Ranjan et al. (2018) X X
Kato & Harada (2019) X X X X X
Achlioptas et al. (2018) X X
Wu et al. (2016) X X X
Paysan et al. (2009) X X X X X
Gerig et al. (2018) X X X X X
Gadelha et al. (2017) X X X
Henzler et al. (2018) X X X X X X
Henderson & Ferrari (2019) X X X X
This work X X X X X

where lt is the loss function, x, y are the data and labels respectively. The training objective is the
function that is optimized during the training, They are defined for the supervised, weakly supervised
and unsupervised case as

Lsupervised(f) = E[ls(f(x),y)], (2)
Lweakly(f) = E[lw(f(x),yw)], (3)

Lunsupervised(f) = E[lu(f(x))], (4)

where yw denotes a subset of labels and the loss functions ls, lw and lu may be different from lt.
In the case of most supervised tasks (e.g. in classification) the target is the same as the training ob-
jective (cross-entropy). Another example is monocular depth estimation. In this case, the inputs are
monocular images and the model is trained using stereo images. This makes it a weakly supervised
method under the definitions above. The GAN training is unsupervised, it has the same target and
training objectives (the Jensen-Shannon divergence), and thus even the target objective does not use
labels. In Table 1, we show the most relevant prior work with a detailed list of used supervision sig-
nals. There, we consider the full training scenario from beginning to end. For example if a method
uses a pre-trained network from another previous work in its setup, we consider it supervised if the
pre-trained network used additional annotation during its training.

A very successful 3D generative model is the Basel face model introduced by Paysan et al. (2009),
which models the 3D shape of faces as a linear combination of base shapes. To create it, classical 3D
reconstruction techniques (see Hartley & Zisserman (2003)) and laser scans were used. This model
is used in several methods (e.g. Geng et al. (2019); Gecer et al. (2019); Sanyal et al. (2019); Sela
et al. (2017); Tran et al. (2017); Genova et al. (2018); Tewari et al. (2017)) for 3D reconstruction
tasks by regressing its parameters. There are other methods based on GANs, such as those of Wu
et al. (2016); Achlioptas et al. (2018), and autoencoders (e.g. Ranjan et al. (2018)) that learn 3D
representations by directly using 3D as the supervision signal.

The most relevant papers similar to our work are the ones that use differentiable rendering and using
randomly sampled viewpoints to enforce image realism. There are GAN based methods by Gadelha
et al. (2017); Henzler et al. (2018) and Variational autoencoder based methods by Henderson &
Ferrari (2019); Kato & Harada (2019). However, these methods use weak supervision for training
as shown in Table 1.

Our method can also be interpreted as a way to disentangle the 3D and the viewpoint factors from
images in an unsupervised manner. Reed et al. (2015) used image triplets for the task. They utilized

3

Under review as a conference paper at ICLR 2020

z m
vG R xf D 0

xr D 1

Figure 2: Illustration of the training setup. G and D are the generator and discriminator neural
networks. R is the differentiable renderer and it has no trainable parameters. The random variables
z, m and v are the latent vector, 3D object and the viewpoint parameters. The fake images are xf

and the real images are xr.

an autoencoder to reconstruct an image from the mixed latent encodings of other two images. Math-
ieu et al. (2016) and Szabó et al. (2018) only use image pairs that share the viewpoint attribute, thus
reducing part of the supervision in the GAN training. Similarly, StyleGAN Karras et al. (2019) and
Hu et al. (2018) use mixing latent variables for unsupervised disentangling. By using a fixed image
formation model, we demonstrate the disentangling of the 3D from the viewpoint without any labels
and also guarantee interpretability.

An important component of our model is the renderer. Differentiable renderers like Neural mesh
renderer Kato et al. (2018) or OpenDR Loper & Black (2014). have been used along with neural
networks for shape learning tasks. Differentiability is essential to make use of the gradient descent
algorithms commonly employed in the training of neural networks. We introduce a novel renderer,
where the gradients are exactly computed and not approximated at the object boundaries.

3 METHOD

We are interested in building a mapping from a random vector to a 3D object (texture and vertex
coordinates), and a background image. We call these three components the scene representation.
To generate a view of this scene we also need to specify a viewpoint, which we call the camera
representation. The combination of the scene and camera representations is also referred to as
simply the representation, and it is used by a differential renderer R to reconstruct an image.

We train a generator G in an adversarial fashion against a discriminator D by feeding zero-mean
Gaussian samples zf as input (see Fig. 2). The objective of the generator is to map Gaussian samples
to scene representations m that result in realistic renderings xf for the viewpoint v used during
training. The discriminator then receives the fake xf and real xr images as inputs. The GAN
training solves the following optimization problem,

min
G

max
D

Exf∼Pr [log(D(xf))] + Ez∼N ,v∼Pv [log(1−D(R(G(z),v)))], (5)

where xf = R(G(z),v) are the generated fake images, m = G(z) are the 3D shape representa-
tions and xr are the real data samples. The renderer R is a fixed function, i.e., without trainable
parameters, but differentiable. The viewpoints v are randomly sampled from a known viewpoint
distribution. In practice, G and D are neural networks and the optimization is done using a variant
of Stochastic Gradient Descent (SGD).

4 THEORY

In this section we give a theoretical analysis of our method and describe assumptions that are needed
to make the training of the generator succeed. We build on the theory of Bora et al. (2018) and
examine its assumptions in the 3D shape learning task.

Assumption 1 The images in the dataset xr = R(mr,vr) are formed by the differentiable render-
ing function R given the 3D representation mr ∼ pm and vr ∼ pv.

Here pm and pv are the “true” probability density functions of 3D models and viewpoints. This
assumption is needed to make sure that an optimal generator exists. If some real images cannot be
generated by the renderer then the generator can never learn the corresponding model. We can safely

4

Under review as a conference paper at ICLR 2020

assume we have a powerful enough renderer for the task. Note that this does not mean the real data
has to be synthetically rendered with the specific renderer R.

Assumption 2 The ground truth viewpoint vr ∼ pv and the 3D models mr ∼ pm are independent
random variables. The distribution of the 3D representations pm is not known (it will be learned).
The viewpoint distribution pv is known, and we can sample from it, but the viewpoint vr is not
known for any specific data sample xr.

This assumption is satisfied unless images in the dataset are subject to some capture bias. For exam-
ple, this would be the case for celebrities that have a “preferred” side of their face when posing for
pictures. More technically, this assumption allows us to randomly sample vf viewpoints indepen-
dently from the generated mf models.

Assumption 3 Given the image formation model x = R(m,v), when v ∼ pv, there is a unique
distribution pm that induces the data x ∼ px.

This assumption is necessary for learning the ground truth pm. In the unsupervised learning task we
can only measure the success of the learning algorithm on the output images. If multiple distributions
can induce the same data x ∼ px, there is no way for any learning algorithm to choose between
them, unless prior knowledge on pm (in practice it is an added constrain on m in the optimization)
is available.

The 3D shape learning task in general is ambiguous. For example in the case of the hollow-mask
illusion (see Gregory (1970)) people are fooled by an inverted dept image. Many of these ambigu-
ities depend on the parametrization of the 3D representation. For example a mesh can reproduce
the same depth image with different triangle configurations, thus it is more ambiguous than a depth
map. However, if the aim is to reconstruct the depth of an object, the ambiguities arising from the
mesh representation do not cause an ambiguity in the depth. We call these acceptable ambiguities.

For natural images one has to model the whole 3D scene, otherwise there is a trivial ambiguity
when a static background is used. The generator can simply move the object out of the camera field
of view and generate the images on the background like in the GAN training to generate natural
images. Modeling the whole scene with a triangle mesh however is problematic in practice because
of the large size of the (multiple) meshes that would be needed. We propose a compromise, where
we only model the object with the mesh and we generate a large background and crop a portion of it
randomly during training. In this way, even if the generator outputs background images with a view
of the object, there is no guarantee that the background crop will still contain the object. Thus, the
generator will not be able to match the statistics of real data unless it produces a realistic 3D model.

Assumption 4 The generator G and discriminator D have large enough capacity, and the training
reaches the global optimum of the GAN training 5.

In practice, neural networks have finite capacity and we train them with a local iterative minimization
solver (stochastic gradient descent). Hence, the global optimum might not be achieved. Nonetheless
we show that the procedure works in practice.

Now we show that under these conditions the generator can learn the 3D geometry of the scene
faithfully.

Theorem 1 When the above assumptions are satisfied, the generated scene representation distribu-
tion is identical to the real one, thus G(z) ∼ pm, with z ∼ N (0, I).

The proof can be readily adapted from Bora et al. (2018).

5 DIFFERENTIABLE RENDERER

Differentiability is essential for functions used in neural network training. Unfortunately traditional
polygon renderers are only differentiable with respect to the texture values but not for the 3D ver-
tex coordinates. When the mesh is shifted by a small amount, the rendered pixel can shift to the
background or to another triangle in the mesh. This can cause problems during training. Thus, we
propose a novel renderer that is differentiable with respect to the 3D vertex coordinates.

5

Under review as a conference paper at ICLR 2020

We make the renderer differentiable by extending the triangles at their boundaries with a fixed
amount in pixel space. Then, we blend the extension against the background or against an oc-
cluded triangle. The rendering is done in two stages. First, we render an image with what we call a
crisp renderer. Second, we render the triangle extensions and its alpha map, which we call the soft
image. Finally we blend the crisp and the soft images.

We render the crisp layer using the barycentric coordinates. Let us define the distance of a 2D pixel
coordinate p to a triangle T as d(p, T) = minpt∈T d(p,pt) and its closest point in the triangle as
p∗(T) = argminpt∈T d(p,pt), where d is the Euclidean distance. For each pixel and triangle the
rendered attribute and depth, attribute and alpha map can be computed as

zc(p, T) = 1{d(p, T) = 0}
∑3

i=1 bi(p, T)zi(T) + (1− 1{d(p, T) = 0})zfar (6)

ac(p) = 1{zc(p, T ∗(p)) < zfar)}
∑3

i=1 bi(p, T)ai(T
∗
c (p)) (7)

αc(p) = 1{zc(p, T ∗(p)) < zfar)} (8)

where zc indicates the crisp layer, bi are the barycentric coordinates and zi(T) are the depth values
of the triangle vertices and zfar is a large number representing infinity. The vertex attributes of
a triangle T are ai(T). The closest triangle index is computed as T ∗c (p) = argminT zc(p, T),
and it determines which triangle is rendered for the attribute ac(p) crisp image. The soft image is
computed as

zs(p, T) = 1{0 < d(p, T) < B}
∑3

i=1 bi(p
∗(T), T)zi(T)+ (9)

(1− 1{0 < d(p, T) < B})zfar + λsloped(p, T)

as(p) =

∑
T 1{zs(p, T) < zc(p, T

∗(p))
∑3

i=1 bi(p
∗(T), T)zi(T)}∑

T 1{zs(p, T) < zc(p, T ∗(p))
(10)

αs(p) = maxT 1{zs(p, T) < zc(p, T
∗(p))}d(p, T)/B, (11)

where B is the width of the extension around the triangle. The final image a(p) is computed as

a(p) = αs(p)as(p) + (1− αs(p))αc(p)ac(p) + (1− αc(p))bcg(p), (12)

where bcg is the background crop. UV mapping is supported as well: first the UV coordinates are
rendered for the crisp and soft image. Then the colors are sampled from the texture map for the soft
and the crisp image separately. Finally, the soft and the crisp images are blended. Figure 3 shows an
illustration of the blended rendering as well as its effect on the training.

6 3D REPRESENTATION

The 3D representation m = [s, t,b] consists of three parts, where s denotes the 3D shape of the
object, t are the texture and b are the background colour values.

The shape s is a 3 dimensional array with the size of 3×N×N . We call this the shape image, where
each pixel corresponds to a vertex in our 3D mesh and the pixel value determines the 3D coordinates
of the vertex. The triangles are defined as the subset of the regular triangular mesh on the N × N
grid; we only keep the triangles of the middle circular region. The texture (image) is an array of the
size 3×Nt×Nt. The renderer uses the UV mapping technique, so the size of the texture image can
have higher resolution than the shape image. In practice we choose Nt = 2×N , so the triangles are
roughly 1 or 2 pixels wide and the texture can match the image resolution when rendering a N ×N
image. The background is a color image of size 3× 2N × 2N

The renderer uses a perspective camera model, where the camera is pointing at the origin and placed
along the Z axis such that the field of view is set so the unit ball fits tightly in the image. The
viewpoint change is interpreted as rotating the object in 3D space, while the camera stays still.
Finally a random N ×N section of the renderer is cropped and put behind the object.

Notice that the 3D representation (3 dimensional arrays) are a perfect match for convolutional neural
network generators. We designed it this way, so we can use StyleGAN as generator (see Karras et al.
(2019)).

6

Under review as a conference paper at ICLR 2020

7 NETWORK ARCHITECTURE

We use the StyleGAN generator of Karras et al. (2019) with almost vanilla settings to generate the
shape image, texture image and the background. StyleGAN consist of two networks: an 8 layer
fully connected mapping network that produces a style vector from the latent inputs, and a synthesis
network that consist of convolutional and upsampling layers that produces the output image. The
input of the synthesis network is constant and the activations at each layer are perturbed by the style
vector using adaptive instance normalization. For each layer activation also noise is added. It is also
possible to mix styles from different latent vectors, by perturbing the convolutional layer activations
with different styles at each layer. In our work we used the default setting for style mixing and for
most parameters. We modified the number of output channels, the resolution and learning rates. The
training was done in a progressively growing fashion, starting at the an image resolution of 16× 16.
The final resolution was set to 128× 128.

One StyleGAN instance (Go) generates the shape image and texture and another (Gb) generates
the background. The inputs to both generators are 512 dimensional latent vectors zo and zb. We
sampled them independently, assuming the background and the object are independent. We set both
Go and Gb to produce images at 2N × 2N resolution where N is the rendered image size. The
output of the object generator is then sliced into the shape and texture image, then the texture image
is downsampled by a factor of 2.

We noticed that during the training the generation of shapes would not easily recover from bad local
minima, which resulted in high frequency artifacts and the hollow-mask ambiguity. Thus we use a
shape image pyramid to tackle this problem. The generator is set to produce K = 4 shape images,
then these images are blurred with varying amounts and summed:

spyr =

K−1∑
k=0

blur(si, σ = 2k)

2k
, (13)

where blur(·) is the Gaussian blur and σ is interpreted in pixels on the shape image.

We also noticed that the 3D models of the object tended to grow large and tried to model the back-
ground. This is the result of an acceptable ambiguity in the parametrization, In terms of the GAN
objective it does not matter if the background is modelled by b or s and t. As we are interested
in results where the object fits in the image, we added a size constraint on the object. The output
coordinates are computed as

ssize = s
tanh(|s|)
|s|

smax, (14)

where we set smax = 1.3 and the L2 norm and tanh functions are interpreted pixel-wise on the
shape image s. The effect of bot the shape image pyramid and the size constraint can be seen in
Figure 3.

8 EXPERIMENTS

We trained our model on the FFHQ dataset (Karras et al., 2019). It contains 70k images high
resolution 1024×1024 colour images. We resized the images to 128×128 and trained our generative
model on all images in the dataset. For the viewpoint we found that randomly rotating in the range
of±45 degrees along the vertical and±15 degrees along the horizontal axis yielded the best results.
This is not surprising, as most faces in the dataset are close to frontal. Except for Figure 3, we used
pyramid shapes of 4 levels and size constraint of 1.3. We trained our model for 5M iterations.

First we show ablations of the choices of the renderer and network architecture setting on Figure 3.
The first image shows an illustration of the soft renderer that is used in the training. The following
figures show training with different settings. We can see that our soft renderer has a large impact
on the training. The crisp renderer cannot learn the shape. Furthermore we can see that the size
constraint prevents the mesh to model the background, and the shape pyramid reduces the artifacts
and folds on the face. We can also see that it is important that we set the viewpoint distribution
accurately. With the a large viewpoint range ±120 degrees our method struggles to learn. It puts
multiple faces on the object.

7

Under review as a conference paper at ICLR 2020

(a) (b) (c) (d) (e)

Figure 3: a) illustration of the soft renderer; b) results with crisp renderer; c) results with soft
renderer; d) results with soft renderer + size constraint; e) results with soft renderer + size constraint
+ pyramid on viewpoint range of ±120 degrees.

Figure 4: Samples from our generator trained on the FFHQ dataset at 128 × 128 resolution. The
first column shows random rendered samples. The other columns show the 3D normal map, texture,
background and textured 3D shapes for 5 canonical viewpoints in the range of ±90 degrees.

In Figure 4 we can see samples from our generator. The images were picked to illustrate the range
of quality achieved by our method. We can see that most of the samples have anatomically correct
shapes. In some cases there are exaggerated features like a large chin, that is only apparent from the
profile view. Faces from those viewpoints are not present in the dataset, which might explain the
shortcomings of our method. There are failure cases as well (the bottom row), that looks realistic
from the frontal view, but does not look like a face from the side. More random samples can be
found in the Appendix.

Figure 5 shows results on interpolated features. We can see the viewpoint and the identity is disen-
tangled and the transition is smooth.

9 DISCUSSION

Here, we would like to acknowledge the limitations of our work:

8

Under review as a conference paper at ICLR 2020

Figure 5: Interpolated 3D models. From top to bottom the 3D models are generated by linearly
interpolating the latent vector fed to the generator. We show 3 viewpoint in the range of±45 degrees

• Currently, we use a triangle mesh with fixed topology. In general, this is not sufficient for
modeling challenging objects and scenes of arbitrary topology.

• The background is currently not modeled as part of the triangle mesh, which limits our
method for datasets where the object is found at the center of the image. Note that this
limitation is the result of the specific parametrization and the architecture of the generator
and not of the expressive power of our method in general.

• The imaging model is currently Lambertian. However, specularity and illumination can be
added to the renderer model. This is a relatively simple extension, but the representation of
lights as random variables during training needs extensive experimental evaluation.

One might claim that our work does use supervision, as the faces FFHQ dataset were carefully
aligned to the center of the images. We argue that our method still does not use any explicit su-
pervision signal other than the images themselves. Moreover, as discussed in the limitation section,
the centering of the object will be irrelevant when the background and the object share the same 3D
mesh and texture. In contrast, methods that use annotation cannot be extended to deal with more
challenging datasets, where that annotation is not available.

Another point is the motivation to generate faces in an unsupervised manner, since there already exist
several data sets with lots of annotation. First, we choose FFHQ because it is a very clean dataset and
our intention is to demonstrate that unsupervised 3D shape learning is possible. Second, we believe
that unsupervised learning is the right thing to do even if annotation is available. Unsupervised
methods can be extended to other datasets where that annotation is not available.

In conclusion, we provide a solution to the challenging and fundamental problem of building a
generative model of 3D shapes in an unsupervised way. We explore the ambiguities present in this
task and provide remedies for them. Our analysis highlights the limitations of our approach and sets
the direction for future work.

REFERENCES

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representa-
tions and generative models for 3d point clouds, 2018. URL https://openreview.net/
forum?id=BJInEZsTb.

Ashish Bora, Eric Price, and Alexandros G. Dimakis. AmbientGAN: Generative models from lossy
measurements. In ICLR, 2018.

9

https://openreview.net/forum?id=BJInEZsTb
https://openreview.net/forum?id=BJInEZsTb

Under review as a conference paper at ICLR 2020

Matheus Gadelha, Subhransu Maji, and Rui Wang. 3d shape induction from 2d views of multiple
objects. In International Conference on 3D Vision, 2017.

Baris Gecer, Stylianos Ploumpis, Irene Kotsia, and Stefanos Zafeiriou. Ganfit: Generative adversar-
ial network fitting for high fidelity 3d face reconstruction. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

Zhenglin Geng, Chen Cao, and Sergey Tulyakov. 3d guided fine-grained face manipulation. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Kyle Genova, Forrester Cole, Aaron Maschinot, Aaron Sarna, Daniel Vlasic, and William T Free-
man. Unsupervised training for 3d morphable model regression. In CVPR, 2018.

Thomas Gerig, Andreas Morel-Forster, Clemens Blumer, Bernhard Egger, Marcel Luthi, Sandro
Schönborn, and Thomas Vetter. Morphable face models-an open framework. In Automatic Face
& Gesture Recognition. IEEE, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

R. L Gregory. The intelligent eye. Weidenfeld & Nicolson, 1970. ISBN 0297000217. URL https:
//www.amazon.com/intelligent-eye-R-L-Gregory/dp/0297000217?
SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=
xm2&camp=2025&creative=165953&creativeASIN=0297000217.

Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge
university press, 2003.

Paul Henderson and Vittorio Ferrari. Learning single-image 3d reconstruction by generative mod-
elling of shape, pose and shading. CoRR, abs/1901.06447, 2019. URL http://arxiv.org/
abs/1901.06447.

Philipp Henzler, Niloy J. Mitra, and Tobias Ritschel. Escaping plato’s cave using adversarial train-
ing: 3d shape from unstructured 2d image collections. CoRR, abs/1811.11606, 2018. URL
http://arxiv.org/abs/1811.11606.

Qiyang Hu, Attila Szabó, Tiziano Portenier, Paolo Favaro, and Matthias Zwicker. Disentangling
factors of variation by mixing them. In CVPR, 2018.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4401–4410, 2019.

Hiroharu Kato and Tatsuya Harada. Learning view priors for single-view 3d reconstruction. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neural 3d mesh renderer. In CVPR, 2018.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic sin-
gle image super-resolution using a generative adversarial network. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 4681–4690, 2017.

Matthew M Loper and Michael J Black. Opendr: An approximate differentiable renderer. In ECCV,
2014.

Michael F Mathieu, Junbo Jake Zhao, Junbo Zhao, Aditya Ramesh, Pablo Sprechmann, and Yann
LeCun. Disentangling factors of variation in deep representation using adversarial training. In
NIPS, 2016.

Andrew McCallum, Kamal Nigam, et al. A comparison of event models for naive bayes text clas-
sification. In AAAI-98 workshop on learning for text categorization, volume 752, pp. 41–48.
Citeseer, 1998.

10

https://www.amazon.com/intelligent-eye-R-L-Gregory/dp/0297000217?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0297000217
https://www.amazon.com/intelligent-eye-R-L-Gregory/dp/0297000217?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0297000217
https://www.amazon.com/intelligent-eye-R-L-Gregory/dp/0297000217?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0297000217
https://www.amazon.com/intelligent-eye-R-L-Gregory/dp/0297000217?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0297000217
http://arxiv.org/abs/1901.06447
http://arxiv.org/abs/1901.06447
http://arxiv.org/abs/1811.11606

Under review as a conference paper at ICLR 2020

Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami Romdhani, and Thomas Vetter. A 3d face
model for pose and illumination invariant face recognition. In Advanced video and signal based
surveillance, 2009.

Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J. Black. Generating 3d faces using
convolutional mesh autoencoders. In The European Conference on Computer Vision (ECCV),
September 2018.

Scott E Reed, Yi Zhang, Yuting Zhang, and Honglak Lee. Deep visual analogy-making. In Advances
in neural information processing systems, 2015.

Soubhik Sanyal, Timo Bolkart, Haiwen Feng, and Michael J. Black. Learning to regress 3d face
shape and expression from an image without 3d supervision. In The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), June 2019.

Matan Sela, Elad Richardson, and Ron Kimmel. Unrestricted facial geometry reconstruction using
image-to-image translation. In ICCV, 2017.

Attila Szabó, Qiyang Hu, Tiziano Portenier, Matthias Zwicker, and Paolo Favaro. Understanding
degeneracies and ambiguities in attribute transfer. In ECCV, 2018.

Ayush Tewari, Michael Zollhöfer, Hyeongwoo Kim, Pablo Garrido, Florian Bernard, Patrick Pérez,
and Christian Theobalt. Mofa: Model-based deep convolutional face autoencoder for unsuper-
vised monocular reconstruction. In ICCV, 2017.

Anh Tuan Tran, Tal Hassner, Iacopo Masi, and Gérard Medioni. Regressing robust and discrimina-
tive 3d morphable models with a very deep neural network. In CVPR, 2017.

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum. Learning a prob-
abilistic latent space of object shapes via 3d generative-adversarial modeling. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems 29, pp. 82–90. Curran Associates, Inc., 2016.

Lei Xu and Michael I Jordan. On convergence properties of the em algorithm for gaussian mixtures.
Neural computation, 8(1):129–151, 1996.

11

Under review as a conference paper at ICLR 2020

A APPENDIX

Figure 6: Random samples from our generator. The format is the same as in Figure 1.

12

	Introduction
	Related work
	Method
	Theory
	Differentiable renderer
	3D Representation
	Network Architecture
	Experiments
	Discussion
	Appendix

