
Under review as a conference paper at ICLR 2020

DYNAMICS-AWARE UNSUPERVISED DISCOVERY OF
SKILLS

Anonymous authors
Paper under double-blind review

ABSTRACT

Conventionally, model-based reinforcement learning (MBRL) aims to learn a
global model for the dynamics of the environment. A good model can poten-
tially enable planning algorithms to generate a large variety of behaviors and
solve diverse tasks. However, learning an accurate model for complex dynami-
cal systems is difficult, and even then, the model might not generalize well out-
side the distribution of states on which it was trained. In this work, we combine
model-based learning with model-free learning of primitives that make model-
based planning easy. To that end, we aim to answer the question: how can we
discover skills whose outcomes are easy to predict? We propose an unsuper-
vised learning algorithm, Dynamics-Aware Discovery of Skills (DADS), which
simultaneously discovers predictable behaviors and learns their dynamics. Our
method can leverage continuous skill spaces, theoretically, allowing us to learn
infinitely many behaviors even for high-dimensional state-spaces. We demon-
strate that zero-shot planning in the learned latent space significantly outperforms
standard MBRL and model-free goal-conditioned RL, can handle sparse-reward
tasks, and substantially improves over prior hierarchical RL methods for unsu-
pervised skill discovery. Video demonstration of our results are available at:
https://sites.google.com/view/dads-skill

Figure 1: A humanoid agent discovers diverse locomotion primitives without any reward using DADS. We
show zero-shot generalization to downstream tasks by composing the learned primitives using model predic-
tive control, enabling the agent to follow an online sequence of goals (green markers) without any additional
training.

1 INTRODUCTION

Deep reinforcement learning (RL) enables autonomous learning of diverse and complex tasks with
rich sensory inputs, temporally extended goals, and challenging dynamics, such as discrete game-
playing domains (Mnih et al., 2013; Silver et al., 2016), and continuous control domains including
locomotion (Schulman et al., 2015; Heess et al., 2017) and manipulation (Rajeswaran et al., 2017;
Kalashnikov et al., 2018; Gu et al., 2017). Most of the deep RL approaches learn a Q-function
or a policy that are directly optimized for the training task, which limits their generalization to
new scenarios. In contrast, MBRL methods (Li & Todorov, 2004; Deisenroth & Rasmussen, 2011;
Watter et al., 2015) can acquire dynamics models that may be utilized to perform unseen tasks
at test time. While this capability has been demonstrated in some of the recent works (Levine
et al., 2016; Nagabandi et al., 2018; Chua et al., 2018b; Kurutach et al., 2018; Ha & Schmidhuber,
2018), learning an accurate global model that works for all state-action pairs can be exceedingly
challenging, especially for high-dimensional system with complex and discontinuous dynamics.

1

https://sites.google.com/view/dads-skill

Under review as a conference paper at ICLR 2020

The problem is further exacerbated as the learned global model has limited generalization outside
of the state distribution it was trained on and exploring the whole state space is generally infeasible.
Can we retain the flexibility of model-based RL, while using model-free RL to acquire proficient
low-level behaviors under complex dynamics?

While learning a global dynamics model that captures all the different behaviors for the entire state-
space can be extremely challenging, learning a model for a specific behavior that acts only in a small
part of the state-space can be much easier. For example, consider learning a model for dynamics of
all gaits of a quadruped versus a model which only works for a specific gait. If we can learn many
such behaviors and their corresponding dynamics, we can leverage model-predictive control to plan
in the behavior space, as opposed to planning in the action space. The question then becomes: how
do we acquire such behaviors, considering that behaviors could be random and unpredictable? To
this end, we propose Dynamics-Aware Discovery of Skills (DADS), an unsupervised RL framework
for learning low-level skills using model-free RL with the explicit aim of making model-based con-
trol easy. Skills obtained using DADS are directly optimized for predictability, providing a better
representation on top of which predictive models can be learned. Crucially, the skills do not require
any supervision to learn, and are acquired entirely through autonomous exploration. This means that
the repertoire of skills and their predictive model are learned before the agent has been tasked with
any goal or reward function. When a task is provided at test-time, the agent utilizes the previously
learned skills and model to immediately perform the task without any further training.

The key contribution of our work is an unsupervised reinforcement learning algorithm, DADS,
grounded in mutual-information-based exploration. We demonstrate that our objective can em-
bed learned primitives in continuous spaces, which allows us to learn a large, diverse set of skills.
Crucially, our algorithm also learns to model the dynamics of the skills, which enables the use of
model-based planning algorithms for downstream tasks. We adapt the conventional model predic-
tive control algorithms to plan in the space of primitives, and demonstrate that we can compose the
learned primitives to solve downstream tasks without any additional training.

2 PRELIMINARIES

Mutual information can been used as an objective to encourage exploration in reinforcement learning
(Houthooft et al., 2016; Mohamed & Rezende, 2015). According to its definition, I(X;Y) =
H(X) − H(X | Y), maximizing mutual information I with respect to Y amounts to maximizing
the entropyH of X while minimizing the conditional entropyH(X | Y). In the context of RL, X is
usually a function of the state and Y a function of actions. Maximizing this objective encourages the
state entropy to be high, making the underlying policy to be exploratory. Recently, multiple works
(Eysenbach et al., 2018; Gregor et al., 2016; Achiam et al., 2018) apply this idea to learn diverse
skills which maximally cover the state space.

To leverage planning-based control, MBRL estimates the true dynamics of the environment by learn-
ing a model p̂(s′ | s, a). This allows it to predict a trajectory of states τ̂H = (st, ŝt+1, . . . ŝt+H)
resulting from a sequence of actions without any additional interaction with the environment. While
model-based RL methods have been demonstrated to be sample efficient compared to their model-
free counterparts, learning an effective model for the whole state-space is challenging. An open-
problem in model-based RL is to incorporate temporal abstraction in model-based control, to enable
high-level planning and move-away from planning at the granular level of actions.

These seemingly unrelated ideas can be combined into a single optimization scheme, where we first
discover skills (and their models) without any extrinsic reward and then compose these skills to
optimize for the task defined at test time using model-based planning. At train time, we assume
a Markov Decision Process (MDP) M1 ≡ (S,A, p). The state space S and action space A are
assumed to be continuous, and theA bounded. We assume the transition dynamics p to be stochastic,
such that p : S × A× S 7→ [0,∞). We learn a skill-conditioned policy π(a | s, z), where the skills
z belongs to the space Z , detailed in Section 3. We assume that the skills are sampled from a prior
p(z) over Z . We simultaneously learn a skill-conditioned transition function q(s′ | s, z), coined as
skill-dynamics, which predicts the transition to the next state s′ from the current state s for the skill
z under the given dynamics p. At test time, we assume an MDPM2 ≡ (S,A, p, r), where S,A, p
match those defined inM1, and the reward function r : S × A 7→ (−∞,∞). We plan in Z using
q(s′ | s, z) to compose the learned skills z for optimizing r inM2, which we detail in Section 4.

2

Under review as a conference paper at ICLR 2020

3 DYNAMICS-AWARE DISCOVERY OF SKILLS (DADS)

Algorithm 1: Dynamics-Aware Dis-
covery of Skills (DADS)

Initialize π, qφ;
while not converged do

Sample a skill z ∼ p(z) every
episode;

Collect new M on-policy samples;
Update qφ using K1 steps of

gradient descent on M transitions;
Compute rz(s, a, s′) for M

transitions;
Update π using any RL algorithm;

end

Figure 2: The agent π interacts with the environment to produce a transition s → s′. Intrinsic reward is
computed by computing the transition probability under q for the current skill z, compared to random samples
from the prior p(z). The agent maximizes the intrinsic reward computed for a batch of episodes, while q
maximizes the log-probability of the actual transitions of (s, z)→ s′.

We use the information theoretic paradigm of mutual information to obtain our unsupervised skill
discovery algorithm. In particular, we propose to maximize the mutual information between the next
state s′ and current skill z conditioned on the current state s.

I(s′; z | s) = H(z | s)−H(z | s′, s) (1)

= H(s′ | s)−H(s′ | s, z) (2)

Mutual information in Equation 1 quantifies how much can be known about s′ given z and s, or
symmetrically, z given the transition from s → s′. From Equation 2, maximizing this objective
corresponds to maximizing the diversity of transitions produced in the environment, that is denoted
by the entropy H(s′ | s), while making z informative about the next state s′ by minimizing the
entropy H(s′ | s, z). Intuitively, skills z can be interpreted as abstracted action sequences which
are identifiable by the transitions generated in the environment (and not just by the current state).
Thus, optimizing this mutual information can be understood as encoding a diverse set of skills in
the latent space Z , while making the transitions for a given z ∈ Z predictable. We use the entropy-
decomposition in Equation 2 to connect this objective with model-based control.

We want to optimize the our skill-conditioned controller π(a | s, z) such that the latent space
z ∼ p(z) is maximally informative about about the transitions s → s′. Using the definition of
conditional mutual information, we can rewrite Equation 2 as:

I(s′; z | s) =

∫
p(z, s, s′) log

p(s′ | s, z)
p(s′ | s)

ds′dsdz (3)

We assume the following generative model: p(z, s, s′) = p(z)p(s | z)p(s′ | s, z), where p(z) is
user specified prior over Z , p(s|z) denotes the stationary state-distribution induced by π(a | s, z)
for a skill z and p(s′ | s, z) denotes the transition distribution under skill z. Note, p(s′ | s, z) =∫
p(s′ | s, a)π(a | s, z)da is intractable to compute because the underlying dynamics are unknown.

However, we can variationally lower bound the objective as follows:

I(s′; z | s) = Ez,s,s′∼p
[

log
p(s′ | s, z)
p(s′ | s)

]
= Ez,s,s′∼p

[
log

qφ(s′ | s, z)
p(s′ | s)

]
+ Es,z∼p

[
DKL(p(s′ | s, z) || qφ(s′ | s, z))

]
≥ Ez,s,s′∼p

[
log

qφ(s′ | s, z)
p(s′ | s)

]
(4)

where we have used the non-negativity of KL-divergence, that is DKL ≥ 0. Note, skill-dynamics
qφ represents the variational approximation for the transition function p(s′ | s, z), which enables

3

Under review as a conference paper at ICLR 2020

model-based control as described in Section 4. Equation 4 suggests an alternating optimization
between qφ and π, summarized in Algorithm 1. In every iteration:
(Tighten variational lower bound) We minimize DKL(p(s′ | s, z) || qφ(s′ | s, z)) with respect to
the parameters φ on z, s ∼ p to tighten the lower bound. For general function approximators like
neural networks, we can write the gradient for φ as follows:

∇φEs,z[DKL(p(s′ | s, z) || qφ(s′ | s, z))] = ∇φEz,s,s′
[

log
p(s′ | s, z)
qφ(s′ | s, z)

]
= −Ez,s,s′

[
∇φ log qφ(s′ | s, z)

]
(5)

which corresponds to maximizing the likelihood of the samples from p under qφ.

(Maximize approximate lower bound) After fitting qφ, we can optimize π to maximize
Ez,s,s′ [log qφ(s′ | s, z) − log p(s′ | s)]. Note, this is a reinforcement-learning style optimiza-
tion with a reward function log qφ(s′ | s, z) − log p(s′ | s). However, log p(s′ | s) is intractable to
compute, so we approximate the reward function for π:

rz(s, a, s
′) = log

qφ(s′ | s, z)∑L
i=1 qφ(s′ | s, zi)

+ logL, zi ∼ p(z). (6)

The approximation is motivated as follows: p(s′ | s) =
∫
p(s′ | s, z)p(z|s)dz ≈

∫
qφ(s′ |

s, z)p(z)dz ≈ 1
L

∑L
i=1 qφ(s′ | s, zi) for zi ∼ p(z), where L denotes the number of samples from

the prior. We are using the marginal of variational approximation qφ over the prior p(z) to approx-
imate the marginal distribution of transitions. We discuss this approximation in Appendix C. Note,
the final reward function rz encourages the policy π to produce transitions that are (a) predictable
under qφ (predictability) and (b) different from the transitions produced under zi ∼ p(z) (diversity).

To generate samples from p(z, s, s′), we use the rollouts from the current policy π for multiple
samples z ∼ p(z) in an episodic setting for a fixed horizon T . We also introduce entropy regu-
larization for π(a | s, z), which encourages the policy to discover action-sequences with similar
state-transitions and to be clustered under the same skill z, making the policy robust besides en-
couraging exploration (Haarnoja et al., 2018a). The use of entropy regularization can be justified
from an information bottleneck perspective as discussed for Information Maximization algorithm in
(Mohamed & Rezende, 2015). This is even more extensively discussed from the graphical model
perspective in Appendix B, which connects unsupervised skill discovery and information bottleneck
literature, while also revealing the temporal nature of skills z. Details corresponding to implemen-
tation and hyperparameters are discussed in Appendix A.

4 PLANNING USING SKILL DYNAMICS

Given the learned skills π(a | s, z) and their respective skill-transition dynamics qφ(s′ | s, z), we
can perform model-based planning in the latent space Z to optimize for a reward r that is given to
the agent at test time. Note, that this essentially allows us to perform zero-shot planning given the
unsupervised pre-training procedure described in Section 3.

In order to perform planning, we employ the model-predictive-control (MPC) paradigm Garcia et al.
(1989), which in a standard setting generates a set of action plans Pk = (ak,1, . . . ak,H) ∼ P for
a planning horizon H . The MPC plans can be generated due to the fact that the planner is able
to simulate the trajectory τ̂k = (sk,1, ak,1 . . . sk,H+1) assuming access to the transition dynamics
p̂(s′ | s, a). In addition, each plan computes the reward r(τ̂k) for its trajectory according to the
reward function r that is provided for the test-time task. Following the MPC principle, the planner
selects the best plan according to the reward function r and executes its first action a1. The planning
algorithm repeats this procedure for the next state iteratively until it achieves its goal.

We use a similar strategy to design an MPC planner to exploit previously-learned skill-transition
dynamics qφ(s′ | s, z). Note that unlike conventional model-based RL, we generate a plan Pk =
(zk,1, . . . zk,HP

) in the latent space Z as opposed to the action space A that would be used by a
standard planner. Since the primitives are temporally meaningful, it is beneficial to hold a primitive
for a horizon HZ > 1, unlike actions which are usually held for a single step. Thus, effectively, the
planning horizon for our latent space planner is H = HP ×HZ , enabling longer-horizon planning

4

Under review as a conference paper at ICLR 2020

Algorithm 2: Latent Space Planner

s← s0;
Initialize parameters µ1, . . . µHP ;
for i← 1 to HE/HZ do

for j ← 1 to R do
{zi, . . . zi+HP−1}Kk=1 ∼
Ni, . . .Ni+HP−1 ;

Compute renv for
{zi, . . . zi+HP−1}Kk=1;

Update µi, . . . , µi+HP−1;
end
Sample zi fromNi;
Execute π(a|s, zi) for HZ steps;
Initialize µi+HP ;

end

Figure 3: At test time, the planner executes simulates the transitions in environment using skill-dynamics q,
and updates the distribution of plans according to the computed reward on the simulated trajectories. After a
few updates to the plan, the first primitive is executed in the environment using the learned agent π.

using fewer primitives. Similar to the standard MPC setting, the latent space planner simulates the
trajectory τ̂k = (sk,1, zk,1, ak,1, sk,2, zk,2, ak,2, . . . sk,H+1) and computes the reward r(τ̂k). After
a small number of trajectory samples, the planner selects the first latent action z1 of the best plan,
executes it for HZ steps in the environment, and the repeats the process until goal completion.

The latent planner P maintains a distribution of latent plans, each of length HP . Each element
in the sequence represents the distribution of the primitive to be executed at that time step. For
continuous spaces, each element of the sequence can be modelled using a normal distribution,
N (µ1,Σ), . . .N (µHP

,Σ). We refine the planning distributions for R steps, using K samples of
latent plans Pk, and compute the rk for the simulated trajectory τ̂k. The update for the parameters
follows that in Model Predictive Path Integral (MPPI) controller Williams et al. (2016):

µi =

K∑
k=1

exp(γrk)∑K
p=1 exp(γrp)

zk,i ∀i = 1, . . . HP (7)

While we keep the covariance matrix of the distributions fixed, it is possible to update that as well
as shown in Williams et al. (2016). We show an overview of the planning algorithm in Figure 3, and
provide more implementation details in Appendix A.

5 RELATED WORK

Central to our method is the concept of skill discovery via mutual information maximization. This
principle, proposed in prior work that utilized purely model-free unsupervised RL methods (Daniel
et al., 2012; Florensa et al., 2017; Eysenbach et al., 2018; Gregor et al., 2016; Warde-Farley et al.,
2018), aims to learn diverse skills via a discriminability objective: a good set of skills is one where it
is easy to distinguish the skills from each other, which means they perform distinct tasks and cover
the space of possible behaviors. Building on this prior work, we distinguish our skills based on
how they modify the original uncontrolled dynamics of the system. This simultaneously encourages
the skills to be both diverse and predictable. We also demonstrate that constraining the skills to
be predictable makes them more amenable for hierarchical composition and thus, more useful on
downstream tasks.

Another line of work that is conceptually close to our method copes with intrinsic motiva-
tion (Oudeyer & Kaplan, 2009; Oudeyer et al., 2007; Schmidhuber, 2010) which is used to drive
the agent’s exploration. Examples of such works include empowerment Klyubin et al. (2005); Mo-
hamed & Rezende (2015), count-based exploration Bellemare et al. (2016); Oh et al. (2015); Tang
et al. (2017); Fu et al. (2017), information gain about agent’s dynamics Stadie et al. (2015) and
forward-inverse dynamics models Pathak et al. (2017). While our method uses an information-
theoretic objective that is similar to these approaches, it is used to learn a variety of skills that can be

5

Under review as a conference paper at ICLR 2020

directly used for model-based planning, which is in contrast to learning a better exploration policy
for a single skill.

The skills discovered using our approach can also provide extended actions and temporal abstrac-
tion, which enable more efficient exploration for the agent to solve various tasks, reminiscent of
hierarchical RL (HRL) approaches. This ranges from the classic option-critic architecture (Sutton
et al., 1999; Stolle & Precup, 2002; Perkins et al., 1999) to some of the more recent work (Bacon
et al., 2017; Vezhnevets et al., 2017; Nachum et al., 2018; Hausman et al., 2018). However, in
contrast to end-to-end HRL approaches (Heess et al., 2016; Peng et al., 2017), we can leverage a
stable, two-phase learning setup. The primitives learned through our method provide action and
temporal abstraction, while planning with skill-dynamics enables hierarchical composition of these
primitives, bypassing many problems of end-to-end HRL.

In the second phase of our approach, we use the learned skill-transition dynamics models to perform
model-based planning - an idea that has been explored numerous times in the literature. Model-based
reinforcement learning has been traditionally approached with methods that are well-suited for low-
data regimes such as Gaussian Processes (Rasmussen, 2003) showing significant data-efficiency
gains over model-free approaches (Deisenroth et al., 2013; Kamthe & Deisenroth, 2017; Kocijan
et al., 2004; Ko et al., 2007). More recently, due to the challenges of applying these methods to high-
dimensional state spaces, MBRL approaches employs Bayesian deep neural networks (Nagabandi
et al., 2018; Chua et al., 2018b; Gal et al., 2016; Fu et al., 2016; Lenz et al., 2015) to learn dynamics
models. In our approach, we take advantage of the deep dynamics models that are conditioned
on the skill being executed, simplifying the modelling problem. In addition, the skills themselves
are being learned with the objective of being predictable, further assists with the learning of the
dynamics model. There also have been multiple approaches addressing the planning component
of MBRL including linear controllers for local models (Levine et al., 2016; Kumar et al., 2016;
Chebotar et al., 2017), uncertainty-aware (Chua et al., 2018b; Gal et al., 2016) or deterministic
planners (Nagabandi et al., 2018) and stochastic optimization methods (Williams et al., 2016). The
main contribution of our work lies in discovering model-based skill primitives that can be further
combined by a standard model-based planner, therefore we take advantage of an existing planning
approach - Model Predictive Path Integral (Williams et al., 2016) that can leverage our pre-trained
setting.

6 EXPERIMENTS

Through our experiments, we aim to demonstrate that: (a) DADS as a general purpose skill dis-
covery algorithm can scale to high-dimensional problems; (b) discovered skills are amenable to
hierarchical composition and; (c) not only is planning in the learned latent space feasible, but it is
competitive to strong baselines. In Section 6.1, we provide visualizations and qualitative analysis of
the skills learned using DADS. We demonstrate in Section 6.2 and Section 6.4 that optimizing the
primitives for predictability renders skills more amenable to temporal composition that can be used
for Hierarchical RL.We benchmark against state-of-the-art model-based RL baseline in Section 6.3,
and against goal-conditioned RL in Section 6.5.

6.1 QUALITATIVE ANALYSIS

Figure 4: Skills learned on different MuJoCo environments in the OpenAI gym. DADS can discover diverse
skills without any extrinsic rewards, even for problems with high-dimensional state and action spaces.

In this section, we provide a qualitative discussion of the unsupervised skills learned using DADS.
We use the MuJoCo environments (Todorov et al., 2012) from the OpenAI gym as our test-bed

6

Under review as a conference paper at ICLR 2020

(Brockman et al., 2016). We find that our proposed algorithm can learn diverse skills without any
reward, even in problems with high-dimensional state and actuation, as illustrated in Figure 4. DADS
can discover primitives for Half-Cheetah to run forward and backward with multiple different gaits,
for Ant to navigate the environment using diverse locomotion primitives and for Humanoid to walk
using stable locomotion primitives with diverse gaits and direction. The videos of the discovered
primitives are available at: https://sites.google.com/view/dads-skill

Qualitatively, we find the skills discovered by DADS to be predictable and stable, in line with im-
plicit constraints of the proposed objective. While the Half-Cheetah will learn to run in both back-
ward and forward directions, DADS will disincentivize skills which make Half-Cheetah flip owing to
the reduced predictability on landing. Similarly, skills discovered for Ant rarely flip over, and tend
to provide stable navigation primitives in the environment. This also incentivizes the Humanoid,
which is characteristically prone to collapsing and extremely unstable by design, to discover gaits
which are stable for sustainable locomotion.

One of the significant advantages of the proposed objective is that it is compatible with continuous
skill spaces, which has not been shown in prior work on skill discovery (Eysenbach et al., 2018). Not
only does this allow us to embed a large and diverse set of skills into a compact latent space, but also
the smoothness of the learned space allows us to interpolate between behaviors generated in the envi-
ronment. We demonstrate this on the Ant environment (Figure 5), where we learn two-dimensional
continuous skill space with a uniform prior over (−1, 1) in each dimension, and compare it to a dis-
crete skill space with a uniform prior over 20 skills. Similar to Eysenbach et al. (2018), we restrict
the observation space of the skill-dynamics q to the cartesian coordinates (x, y). We hereby call this
the x-y prior, and discuss its role in Section 6.2.

Trajectories in Discrete Skill Space Trajectories in Continuous Skill Space Orientation of Ant Trajectory

Figure 5: (Left, Centre) X-Y traces of Ant skills and (Right) Heatmap to visualize the learned continuous skill
space. Traces demonstrate that the continuous space offers far greater diversity of skills, while the heatmap
demonstrates that the learned space is smooth, as the orientation of the X-Y trace varies smoothly as a function
of the skill.

In Figure 5, we project the trajectories of the learned Ant skills from both discrete and continuous
spaces onto the Cartesian plane. From the traces of the skills, it is clear that the continuous latent
space can generate more diverse trajectories. We demonstrate in Section 6.3, that continuous prim-
itives are more amenable to hierarchical composition and generally perform better on downstream
tasks. More importantly, we observe that the learned skill space is semantically meaningful. The
heatmap in Figure 5 shows the orientation of the trajectory (with respect to the x-axis) as a func-
tion of the skill z ∈ Z , which varies smoothly as z is varied, with explicit interpolations shown in
Appendix D.

6.2 SKILL VARIANCE ANALYSIS

In an unsupervised skill learning setup, it is important to optimize the primitives to be diverse. How-
ever, we argue that diversity is not sufficient for the learned primitives to be useful for downstream
tasks. Primitives must exhibit low-variance behavior, which enables long-horizon composition of
the learned skills in a hierarchical setup. We analyze the variance of the x-y trajectories in the en-
vironment, where we also benchmark the variance of the primitives learned by DIAYN (Eysenbach
et al., 2018). For DIAYN, we use the x-y prior for the skill-discriminator, which biases the dis-
covered skills to diversify in the x-y space. This step was necessary for that baseline to obtain a
competitive set of navigation skills. Figure 6 (Top-Left) demonstrates that DADS, which optimizes
the primitives for predictability and diversity, yields significantly lower-variance primitives when

7

https://sites.google.com/view/dads-skill

Under review as a conference paper at ICLR 2020

Standard Deviation of Trajectories

DADS without x-y prior

DIAYN with x-y prior

DADS with x-y prior

Figure 6: (Top-Left) Standard deviation of Ant’s position as a function of steps in the environment, averaged
over multiple skills and normalized by the norm of the position. (Top-Right to Bottom-Left Clockwise) X-Y
traces of skills learned using DIAYN with x-y prior, DADS with x-y prior and DADS without x-y prior, where
the same color represents trajectories resulting from the execution of the same skill z in the environment. High
variance skills from DIAYN offer limited utility for hierarchical control.

compared to DIAYN, which only optimizes for diversity. This is starkly demonstrated in the plots
of X-Y traces of skills learned in different setups. Skills learned by DADS show significant control
over the trajectories generated in the environment, while skills from DIAYN exhibit high variance
in the environment, which limits their utility for hierarchical control. This is further demonstrated
quantitatively in Section 6.4.

While optimizing for predictability already significantly reduces the variance of the trajectories gen-
erated by a primitive, we find that using the x-y prior with DADS brings down the skill variance
even further. For quantitative benchmarks in the next sections, we assume that the Ant skills are
learned using an x-y prior on the observation space, for both DADS and DIAYN.

6.3 MODEL-BASED REINFORCEMENT LEARNING

The key utility of learning a parametric model qφ(s′|s, z) is to be enable use of planning algorithms
for downstream tasks, which can be extremely sample-efficient. In our setup, we can solve test-
time tasks in zero-shot, that is without any learning on the downstream task. We compare with
the state-of-the-art model-based RL method (Chua et al., 2018a), which learns a dynamics model
parameterized as p(s′|s, a), on the task of the Ant navigating to a specified goal with a dense reward.
Given a goal g, reward at any position u is given by r(u) = −‖g− u‖2. We benchmark our method
against the following variants:

• Random-MBRL (rMBRL): We train the model p(s′|s, a) on randomly collected trajecto-
ries, and test the zero-shot generalization of the model on a distribution of goals.
• Weak-oracle MBRL (WO-MBRL): We train the model p(s′|s, a) on trajectories generated

by the planner to navigate to a goal, randomly sampled in every episode. The distribution
of goals during training matches the distribution at test time.

8

Under review as a conference paper at ICLR 2020

• Strong-oracle MBRL (SO-MBRL): We train the model p(s′|s, a) on a trajectories generated
by the planner to navigate to a specific goal, which is fixed for both training and test time.

Amongst the variants, only the rMBRL matches our assumptions of having an unsupervised task-
agnostic training. Both WO-MBRL and SO-MBRL benefit from goal-directed exploration dur-
ing training, a significant advantage over DADS, which only uses mutual-information-based explo-
ration.

We use ∆ =
∑H
t=1

r(u)
H‖g‖2 as the metric, which represents the distance to the goal g averaged over the

episode (with the same fixed horizon H for all models and experiments), normalized by the initial
distance to the goal g. Therefore, lower ∆ indicates better performance and 0 < ∆ ≤ 1 (assuming
the agent goes closer to the goal). The test set of goals is fixed for all the methods, sampled from
[−15, 15]2.

Figure 7 demonstrates that the zero-shot planning significantly outperforms all model-based RL
baselines, despite the advantage of the baselines being trained on the test goal(s). For the experi-
ment depicted in Figure 7 (Right), DADS has an unsupervised pre-training phase, unlike SO-MBRL
which is training directly for the task. A comparison with Random-MBRL shows the significance of
mutual-information-based exploration, especially with the right parameterization and priors. This
experiment also demonstrates the advantage of learning a continuous space of primitives, which
outperforms planning on discrete primitives.

Figure 7: (Left) The results of the MPPI controller on skills learned using DADS-c (continuous primitives)
and DADS-d (discrete primitives) significantly outperforms state-of-the-art model-based RL. (Right) Planning
for a new task does not require any additional training and outperforms model-based RL being trained for the
specific task.

6.4 HIERARCHICAL CONTROL WITH UNSUPERVISED PRIMITIVES

We benchmark hierarchical control for primitives learned without supervision, against our proposed
scheme using an MPPI based planner on top of DADS-learned skills. We persist with the task of
Ant-navigation as described in 6.3. We benchmark against Hierarchical DIAYN (Eysenbach et al.,
2018), which learns the skills using the DIAYN objective, freezes the low-level policy and learns
a meta-controller that outputs the skill to be executed for the next HZ steps. We provide the x-y
prior to the DIAYN’s disciminator while learning the skills for the Ant agent. The performance
of the meta-controller is constrained by the low-level policy, however, this hierarchical scheme is
agnostic to the algorithm used to learn the low-level policy. To contrast the quality of primitives
learned by the DADS and DIAYN, we also benchmark against Hierarchical DADS, which learns a
meta-controller the same way as Hierarchical DIAYN, but learns the skills using DADS.

From Figure 8 (Left) We find that the meta-controller is unable to compose the skills learned by
DIAYN, while the same meta-controller can learn to compose skills by DADS to navigate the Ant
to different goals. This result seems to confirm our intuition described in Section 6.2, that the high
variance of the DIAYN skills limits their temporal compositionality. Interestingly, learning a RL
meta-controller reaches similar performance to the MPPI controller, taking an additional 200, 000
samples per goal.

9

Under review as a conference paper at ICLR 2020

Figure 8: (Left) A RL-trained meta-controller is unable to compose primitive learned by DIAYN to navigate
Ant to a goal, while it succeeds to do so using the primitives learned by DADS. (Right) Goal-Conditioned RL
(GCRL-dense/sparse) does not generalize outside its training distribution, while MPPI controller on learned
skills (DADS-dense/sparse) experiences significantly smaller degrade in performance.

6.5 GOAL-CONDITIONED RL

To demonstrate the benefits of our approach over model-free RL, we benchmark against goal-
conditioned RL on two versions of Ant-navigation: (a) with a dense reward r(u) and (b) with a
sparse reward r(u) = 1 if ‖u− g‖2 ≤ ε, else 0. We train the goal-conditioned RL agent using soft
actor-critic, where the state variable of the agent is augmented with u − g, the position delta to the
goal. The agent gets a randomly sampled goal from [−10, 10]2 at the beginning of the episode.

In Figure 8 (Right), we measure the average performance of the all the methods as a function of
the initial distance of the goal, ranging from 5 to 30 metres. For dense reward navigation, we ob-
serve that while model-based planning on DADS-learned skills degrades smoothly as the initial
distance to goal to increases, goal-conditioned RL experiences a sudden deterioration outside the
goal distribution it was trained on. Even within the goal distribution observed during training of
goal-conditioned RL model, skill-space planning performs competitively to it. With sparse reward
navigation, goal-conditioned RL is unable to navigate, while MPPI demonstrates comparable perfor-
mance to the dense reward up to about 20 metres. This highlights the utility of learning task-agnostic
skills, which makes them more general while showing that latent space planning can be leveraged
for tasks requiring long-horizon planning.

7 CONCLUSION

We have proposed a novel unsupervised skill learning algorithm that is amenable to model-based
planning for hierarchical control on downstream tasks. We show that our skill learning method
can scale to high-dimensional state-spaces, while discovering a diverse set of low-variance skills.
In addition, we demonstrated that, without any training on the specified task, we can compose the
learned skills to outperform competitive model-based baselines that were trained with the knowl-
edge of the test tasks. We plan to extend the algorithm to work with off-policy data, potentially
using relabelling tricks (Andrychowicz et al., 2017; Nachum et al., 2018) and explore more nuanced
planning algorithms. We plan to apply the hereby-introduced method to different domains, such as
manipulation and enable skill/model discovery directly from images, culminating into unsupervised
skill discovery on robotic setups.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Watten-

10

Under review as a conference paper at ICLR 2020

berg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning
on heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. arXiv preprint arXiv:1807.10299, 2018.

David Barber Felix Agakov. The im algorithm: a variational approach to information maximization.
Advances in Neural Information Processing Systems, 16:201, 2004.

Alexander A Alemi and Ian Fischer. Therml: Thermodynamics of machine learning. arXiv preprint
arXiv:1807.04162, 2018.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. CoRR,
abs/1707.01495, 2017. URL http://arxiv.org/abs/1707.01495.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pp. 1471–1479, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016. URL http://arxiv.org/
abs/1606.01540.

Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal, and Sergey
Levine. Combining model-based and model-free updates for trajectory-centric reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 703–711. JMLR. org, 2017.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. CoRR, abs/1805.12114, 2018a.
URL http://arxiv.org/abs/1805.12114.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems, pp. 4759–4770, 2018b.

Imre Csiszár and Frantisek Matus. Information projections revisited. IEEE Transactions on Infor-
mation Theory, 49(6):1474–1490, 2003.

Christian Daniel, Gerhard Neumann, and Jan Peters. Hierarchical relative entropy policy search. In
Artificial Intelligence and Statistics, pp. 273–281, 2012.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes for data-
efficient learning in robotics and control. IEEE transactions on pattern analysis and machine
intelligence, 37(2):408–423, 2013.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical rein-
forcement learning. arXiv preprint arXiv:1704.03012, 2017.

Nir Friedman, Ori Mosenzon, Noam Slonim, and Naftali Tishby. Multivariate information bottle-
neck. In Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, pp.
152–161. Morgan Kaufmann Publishers Inc., 2001.

11

http://tensorflow.org/
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1606.01540
http://arxiv.org/abs/1805.12114

Under review as a conference paper at ICLR 2020

Justin Fu, Sergey Levine, and Pieter Abbeel. One-shot learning of manipulation skills with online
dynamics adaptation and neural network priors. In 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4019–4026. IEEE, 2016.

Justin Fu, John Co-Reyes, and Sergey Levine. Ex2: Exploration with exemplar models for
deep reinforcement learning. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30,
pp. 2577–2587. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
6851-ex2-exploration-with-exemplar-models-for-deep-reinforcement-learning.
pdf.

Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. Improving pilco with bayesian neural
network dynamics models. In Data-Efficient Machine Learning workshop, ICML, volume 4,
2016.

Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: theory and practicea
survey. Automatica, 25(3):335–348, 1989.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 3389–3396. IEEE, 2017.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In Advances
in Neural Information Processing Systems, pp. 2455–2467, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algo-
rithms and applications. CoRR, abs/1812.05905, 2018b. URL http://arxiv.org/abs/
1812.05905.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=rk07ZXZRb.

Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, and David Silver.
Learning and transfer of modulated locomotor controllers. arXiv preprint arXiv:1610.05182,
2016.

Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez,
Ziyu Wang, SM Eslami, Martin Riedmiller, et al. Emergence of locomotion behaviours in rich
environments. arXiv preprint arXiv:1707.02286, 2017.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel.
Curiosity-driven exploration in deep reinforcement learning via bayesian neural networks. CoRR,
abs/1605.09674, 2016. URL http://arxiv.org/abs/1605.09674.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, Geoffrey E Hinton, et al. Adaptive mixtures
of local experts. Neural computation, 3(1):79–87, 1991.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293,
2018.

Sanket Kamthe and Marc Peter Deisenroth. Data-efficient reinforcement learning with probabilistic
model predictive control. arXiv preprint arXiv:1706.06491, 2017.

12

http://papers.nips.cc/paper/6851-ex2-exploration-with-exemplar-models-for-deep-reinforcement-learning.pdf
http://papers.nips.cc/paper/6851-ex2-exploration-with-exemplar-models-for-deep-reinforcement-learning.pdf
http://papers.nips.cc/paper/6851-ex2-exploration-with-exemplar-models-for-deep-reinforcement-learning.pdf
http://arxiv.org/abs/1812.05905
http://arxiv.org/abs/1812.05905
https://openreview.net/forum?id=rk07ZXZRb
http://arxiv.org/abs/1605.09674

Under review as a conference paper at ICLR 2020

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. Empowerment: A universal agent-
centric measure of control. In 2005 IEEE Congress on Evolutionary Computation, volume 1, pp.
128–135. IEEE, 2005.

Jonathan Ko, Daniel J Klein, Dieter Fox, and Dirk Haehnel. Gaussian processes and reinforce-
ment learning for identification and control of an autonomous blimp. In Proceedings 2007 ieee
international conference on robotics and automation, pp. 742–747. IEEE, 2007.

Juš Kocijan, Roderick Murray-Smith, Carl Edward Rasmussen, and Agathe Girard. Gaussian pro-
cess model based predictive control. In Proceedings of the 2004 American Control Conference,
volume 3, pp. 2214–2219. IEEE, 2004.

Vikash Kumar, Emanuel Todorov, and Sergey Levine. Optimal control with learned local models:
Application to dexterous manipulation. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 378–383. IEEE, 2016.

Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. Model-ensemble
trust-region policy optimization. arXiv preprint arXiv:1802.10592, 2018.

Ian Lenz, Ross A Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for
model predictive control. In Robotics: Science and Systems. Rome, Italy, 2015.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. In ICINCO (1), pp. 222–229, 2004.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsi-
cally motivated reinforcement learning. In Advances in neural information processing systems,
pp. 2125–2133, 2015.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In Advances in Neural Information Processing Systems, pp. 3307–3317,
2018.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 7559–7566. IEEE, 2018.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-conditional
video prediction using deep networks in atari games. In Advances in neural information process-
ing systems, pp. 2863–2871, 2015.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, 1:6, 2009.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In ICML, 2017.

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. Deeploco: Dynamic
locomotion skills using hierarchical deep reinforcement learning. ACM Transactions on Graphics
(TOG), 36(4):41, 2017.

13

Under review as a conference paper at ICLR 2020

Theodore J Perkins, Doina Precup, et al. Using options for knowledge transfer in reinforcement
learning. University of Massachusetts, Amherst, MA, USA, Tech. Rep, 1999.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on Machine
Learning, pp. 63–71. Springer, 2003.

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I Jordan, and Philipp Moritz. Trust region
policy optimization. In Icml, volume 37, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro, Ethan Holly, Sam Fishman,
Ke Wang, Ekaterina Gonina, Chris Harris, Vincent Vanhoucke, Eugene Brevdo. TF-Agents:
A library for reinforcement learning in tensorflow. https://github.com/tensorflow/
agents, 2018. URL https://github.com/tensorflow/agents. [Online; accessed
30-November-2018].

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

Noam Slonim, Gurinder S Atwal, Gasper Tkacik, and William Bialek. Estimating mutual informa-
tion and multi–information in large networks. arXiv preprint cs/0502017, 2005.

Bradly C. Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. CoRR, abs/1507.00814, 2015. URL http://arxiv.
org/abs/1507.00814.

Martin Stolle and Doina Precup. Learning options in reinforcement learning. In International
Symposium on abstraction, reformulation, and approximation, pp. 212–223. Springer, 2002.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. In Advances in neural information processing systems, pp. 2753–
2762, 2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 3540–
3549. JMLR. org, 2017.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in neural
information processing systems, pp. 2746–2754, 2015.

14

https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
http://arxiv.org/abs/1507.00814
http://arxiv.org/abs/1507.00814

Under review as a conference paper at ICLR 2020

Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A Theodorou. Aggres-
sive driving with model predictive path integral control. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1433–1440. IEEE, 2016.

A IMPLEMENTATION DETAILS

All of our models are written in the open source Tensorflow-Agents (Sergio Guadarrama, Anoop
Korattikara, Oscar Ramirez, Pablo Castro, Ethan Holly, Sam Fishman, Ke Wang, Ekaterina Gonina,
Chris Harris, Vincent Vanhoucke, Eugene Brevdo, 2018), based on Tensorflow (Abadi et al., 2015).

A.1 SKILL SPACES

When using discrete spaces, we parameterize Z as one-hot vectors. These one-hot vectors are ran-
domly sampled from the uniform prior p(z) = 1

D , where D is the number of skills. We experiment
with D ≤ 128. For discrete skills learnt for MuJoCo Ant in Section 6.3, we use D = 20. For
continuous spaces, we sample z ∼ Uniform(−1, 1)D. We experiment with D = 2 for Ant learnt
with x-y prior, D = 3 for Ant learnt without x-y prior (that is full observation space), to D = 5 for
Humanoid on full observation spaces. The skills are sampled once in the beginning of the episode
and fixed for the rest of the episode. However, it is possible to resample the skill from the prior
within the episode, which allows for every skill to experience a different distribution than the ini-
tialization distribution. This also encourages discovery of skills which can be composed temporally.
However, this increases the hardness of problem, especially if the skills are re-sampled from the
prior frequently.

A.2 AGENT

We use SAC as the optimizer for our agent π(a | s, z), in particular, EC-SAC (Haarnoja et al.,
2018b). The s input to the policy generally excludes global co-ordinates (x, y) of the centre-of-
mass, available for a lot of enviroments in OpenAI gym, which helps produce skills agnostic to the
location of the agent. We restrict to two hidden layers for our policy and critic networks. However,
to improve the expressivity of skills, it is beneficial to increase the capacity of the networks. The
hidden layer sizes can vary from (128, 128) for Half-Cheetah to (512, 512) for Ant and (1024, 1024)
for Humanoid. The critic Q(s, a, z) is similarly parameterized. The target function for critic Q is
updated every iteration using a soft updates with co-efficient of 0.005. We use Adam (Kingma &
Ba, 2014) optimizer with a fixed learning rate of 3e − 4 , and a fixed initial entropy co-efficient
β = 0.1. While the policy is parameterized as a normal distribution N (µ(s, z),Σ(s, z)) where Σ is
a diagonal covariance matrix, it undergoes through tanh transformation, to transform the output to
the range (−1, 1) and constrain to the action bounds.

A.3 SKILL-DYNAMICS

Skill-dynamics, denoted by q(s′ | s, z), is parameterized by a deep neural network. A common trick
in model-based RL is to predict the ∆s = s′ − s, rather than the full state s′. Hence, the prediction
network is q(∆s | s, z). Note, both parameterizations can represent the same set of functions.
However, the latter will be easy to learn as ∆s will be centred around 0. We exclude the global co-
ordinates from from the state input to q. However, we can (and we still do) predict ∆x,∆y , because
reward functions for goal-based navigation generally rely on the position prediction from the model.
This represents another benefit of predicting state-deltas, as we can still predict changes in position
without explicitly knowing the global position.

The output distribution is modelled as a Mixture-of-Experts (Jacobs et al., 1991). We fix the number
of experts to be 4. We model each expert as a Gaussian distribution. The input (s, z) goes through
two hidden layers (the same capacity as that of policy and critic networks, for example (512, 512)
for Ant). The output of the two hidden layers is used as an input to the mixture-of-experts, which
is linearly transformed to output the parameters of the Gaussian distribution, and a discrete distribu-
tion over the experts using a softmax distribution. In practice, we fix the covariance matrix of the
Gaussian experts to be an identity matrix, so we only need to output the means for the experts. We

15

Under review as a conference paper at ICLR 2020

use batch-normalization for both input and the hidden layers. We normalize the output targets using
their batch-average and batch-standard deviation, similar to batch-normalization.

A.4 OTHER HYPERPARAMETERS

The episode horizon is generally kept shorter for stable agents like Ant (200), while longer for
unstable agents like Humanoid (1000). For Ant, longer episodes do not add value, but Humanoid
can benefit from longer episodes as it helps it filter skills which are unstable. The optimization
scheme is on-policy, and we collect 2000 steps for Ant and 4000 steps for Humanoid in one iteration.
The intuition is to experience trajectories generated by multiple skills (approximately 10) in a batch.
Re-sampling skills can enable experiencing larger number of skills. Once a batch of episodes is
collected, the skill-dynamics is updated using Adam optimizer with a fixed learning rate of 3e − 4.
The batch size is 128, and we carry out 32 steps of gradient descent. To compute the intrinsic
reward, we need to resample the prior for computing the denominator. For continuous spaces, we
set L = 500. For discrete spaces, we can marginalize over all skills. After the intrinsic reward is
computed, the policy and critic networks are updated for 128 steps with a batch size of 128. The
intuition is to ensure that every sample in the batch is seen for policy and critic updates about 3− 4
times in expectation.

A.5 PLANNING AND EVALUATION SETUPS

For evaluation, we fix the episode horizon to 200 for all models in all evaluation setups. Depending
upon the size of the latent space and planning horizon, the number of samples from the planning
distribution P is varied between 10 − 200. For HP = 1, HZ = 10 and a 2D latent space, we use
50 samples from the planning distribution P . The co-efficient γ for MPPI is fixed to 10. We use
a setting of HP = 1 and HZ = 10 for dense-reward navigation, in which case we set the number
of refine steps R = 10. However, for sparse reward navigation it is important to have a longer
horizon planning, in which case we set HP = 4, HZ = 25 with a higher number of samples from
the planning distribution (200 from P). Also, when using longer planning horizons, we found that
smoothing the sampled plans help. Thus, if the sampled plan is z1, z2, z3, z4 . . ., we smooth the plan
to make z2 = βz1 + (1− β)z2 and so on, with β = 0.9.

For hierarchical controllers being learnt on top of low-level unsupervised primitives, we use PPO
(Schulman et al., 2017) for discrete action skills, while we use SAC for continuous skills. We keep
the number of steps after which the meta-action is decided as 10 (that is HZ = 10). The hidden
layer sizes of the meta-controller are (128, 128). We use a learning rate of 1e−4 for PPO and 3e−4
for SAC.

For our model-based RL baseline PETS, we use an ensemble size of 3, with a fixed planning hori-
zon of 20. For the model, we use a neural network with two hidden layers of size 400. In our
experiments, we found that MPPI outperforms CEM, so we report the results using the MPPI as our
controller.

B GRAPHICAL MODELS, INFORMATION BOTTLENECK AND UNSUPERVISED
SKILL LEARNING

We now present a novel perspective on unsupervised skill learning, motivated from the literature on
information bottleneck. This section takes inspiration from (Alemi & Fischer, 2018), which helps
us provide a rigorous justification for our objective proposed earlier. To obtain our unsupervised RL
objective, we setup a graphical model P as shown in Figure 9, which represents the distribution of
trajectories generated by a given policy π. The joint distribution is given by:

p(s1, a1 . . . aT−1, sT , z) = p(z)p(s1)

T−1∏
t=1

π(at|st, z)p(st+1|st, at). (8)

We setup another graphical modelN , which represents the desired model of the world. In particular,
we are interested in approximating p(s′|s, z), which represents the transition function for a particular
primitive. This abstraction helps us get away from knowing the exact actions, enabling model-based

16

Under review as a conference paper at ICLR 2020

z

a1

s1

a2

s2

aT

sT

. . .

. . .

Figure 9: Graphical model for the world P in which
the trajectories are generated while interacting with
the environment. Shaded nodes represent the distri-
butions we optimize.

z

a1 a2 aT

s1 s2 sT. . .

. . .

Figure 10: Graphical model for the worldN which is
the desired representation of the world.

planning in behavior space (as discussed in the main paper). The joint distribution for N shown in
Figure 10 is given by:

η(s1, a1, . . . sT , aT , z) = η(z)η(s1)

T−1∏
t=1

η(at)η(st+1|st, z). (9)

The goal of our approach is to optimize the distribution π(a|s, z) in the graphical model P to min-
imize the distance between the two distributions, when transforming to the representation of the
graphical model Z. In particular, we are interested in minimizing the KL divergence between p and
η, that is DKL(p||η). Note, if N had the same structure as P , the information lost in projection
would be 0 for any valid P . Interestingly, we can exploit the following result from in Friedman et al.
(2001) to setup the objective for π, without explicitly knowing η:

min
η
DKL(p||η) = IP − IN , (10)

where IP and IN represents the multi-information for distribution P on the respective graphical
models. Note, minη∈N DKL(p||η), which is the reverse information projection (Csiszár & Matus,
2003). The multi-information (Slonim et al., 2005) for a graphical model G with nodes gi is defined
as:

IG =
∑
i

I(gi;Pa(gi)), (11)

where Pa(gi) denotes the nodes upon which gi has direct conditional dependence in G. Using this
definition, we can compute the multi-information terms:

IP =
T∑
t=1

I(at; {st, z}) +
T∑
t=2

I(st; {st−1, at−1}) and IN =
T∑
t=2

I(st; {st−1, z}). (12)

Following the Optimal Frontier argument in (Alemi & Fischer, 2018), we introduce Lagrange mul-
tipliers βt ≥ 0, δt ≥ 0 for the information terms in IP to setup an objective R(π) to be maximized
with respect to π:

R(π) =

T−1∑
t=1

I(st+1; {st, z})− βtI(at; {st, z})− δtI(st+1; {st, at}) (13)

(14)

As the underlying dynamics are fixed and unknown, we simplify the optimization by setting δt =
0 which intuitively corresponds to us neglecting the unchangeable information of the underlying
dynamics. This gives us

R(π) =

T−1∑
t=1

I(st+1; {st, z})− βtI(at; {st, z}) (15)

≥
T−1∑
t=1

I(st+1; z | st)− βtI(at; {st, z}) (16)

17

Under review as a conference paper at ICLR 2020

Here, we have used the chain rule of mutual information: I(st+1; {st, z}) = I(st+1; st) +
I(st+1; z | st) ≥ I(st+1; z | st), resulting from the non-negativity of mutual information. This
yield us an information bottleneck style objective where we maximize the mutual information moti-
vated in Section 3, while minimizing I(at; {st, z}). We can show that the minimization of the latter
mutual information corresponds to entropy regularization of π(at | st, z), as follows:

I(at; {st, z}) = Eat∼π(at|st,z),st,z∼p
[

log
π(at | st, z)

π(at)

]
(17)

= Eat∼π(at|st,z),st,z∼p
[

log
π(at | st, z)

p(at)

]
−DKL(π(at) || p(at)) (18)

≤ Eat∼π(at|st,z),st,z∼p
[

log
π(at | st, z)

p(at)

]
(19)

for some arbitrary distribution log p(at) (for example uniform). Again, we have used the non-
negativity of DKL to get the inequality. We use Equation 19 in Equation 16 to get:

R(π) ≥
T−1∑
t=1

I(st+1; z | st)− βtEat∼π(at|st,z),st,z∼p
[

log π(at | st, z)
]

(20)

where we have ignored p(at) as it is a constant with respect to optimization for π. This motivates
the use of entropy regularization. We can follow the arguments in Section 3 to obtain an approxi-
mate lower bound for I(st+1; z | st). The above discussion shows how DADS can be motivated
from a graphical modelling perspective, while justifying the use of entropy regularization from an
information bottleneck perspective. This objective also explicates the temporally extended nature of
z, and how it corresponds to a sequence of actions producing a predictable sequence of transitions
in the environment.

z

a

s

Figure 11: Graphical model for the world P rep-
resenting the stationary state, action distribution.
Shaded nodes represent the distributions we opti-
mize.

z

s

Figure 12: Graphical model for the world N using
which we is the representation we are interested in.

We can carry out the exercise for the reward function in Eysenbach et al. (2018) (DIAYN) to provide
a graphical model interpretation of the objective used in the paper. To conform with objective
in the paper, we assume to be sampling to be state-action pairs from skill-conditioned stationary
distributions in the world P , rather than trajectories. The objective to be maximized is given by:

R(π) = −IP + IQ (21)
= −I(a; {s, z}) + I(z; s) (22)

= Eπ[log
p(z|s)
p(z)

− log
π(a|s, z)
π(a)

] (23)

≥ Eπ[log qφ(z|s)− log p(z)− log π(a|s, z)] = R(π, qφ) (24)
where we have used the variational inequalities to replace p(z|s) with qφ(z|s) and π(a) with a
uniform prior over bounded actions p(a) (which is ignored as a constant).

C APPROXIMATING THE REWARD FUNCTION

We revisit Equation 4 and the resulting approximate reward function constructed in Equation 6. The
maximization objective for policy was:

R(π | qφ) = Ez,s,s′
[

log qφ(s′ | s, z)− log p(s′ | s)
]

(25)

18

Under review as a conference paper at ICLR 2020

The computational problem arises from the intractability of p(s′ | s) =
∫
p(s′ | s, z)p(z | s)dz,

where both p(s′ | s, z) and p(z | s) ∝ p(s | z)p(z) are intractable. Unfortunately, any variational
approximation results in an improper lower bound for the objective. To see that:

R(π | qφ) = Ez,s,s′
[

log qφ(s′ | s, z)− log q(s′ | s)
]
−DKL(p(s′ | s) || q(s′ | s)) (26)

≤ Ez,s,s′
[

log qφ(s′ | s, z)− log q(s′ | s)
]

(27)

where the inequality goes the wrong way for any variational approximation q(s′ | s). Our ap-
proximation can be seen as a special instantiation of q(s′ | s) =

∫
qφ(s′ | s, z)p(z)dz. This

approximation is simple to compute as generating samples from the prior p(z) is inexpensive and
effectively requires only a forward pass through qφ. Reusing qφ to approximate p(s′ | s) makes
intuitive sense because we want qφ to reasonably approximate p(s′ | s, z) (which is why we collect
large batches of data and take multiple steps of gradient descent for fitting qφ). While sampling from
the prior p(z) is crude, sampling p(z | s) can be computationally prohibitive. For a certain class
of problems, especially locomotion, sampling from p(z) is a reasonable approximation as well. We
want our primitives/skills to be usable from any state, which is especially the case with locomotion.
Empirically, we have found our current approximation provides satisfactory results. We also discuss
some other potential solutions (and their limitations):

(a) One could potentially use another network qβ(z | s) to approximate p(z | s) by minimizing
Es,z∼p

[
DKL(p(z | s) || qβ(z | s))

]
. Note, the resulting approximation would still be an improper

lower bound for R(π | qφ). However, sampling from this qβ might result in a better approximation
than sampling from the prior p(z) for some problems.

(b) We can bypass the computational intractability of p(s′ | s) by exploiting the variational lower
bounds from Agakov (2004). We use the following inequality, used in Hausman et al. (2018):

H(x) ≥
∫
p(x, z) log

q(z|x)

p(x, z)
dxdz (28)

where q is a variational approximation to the posterior p(z|x).

I(s′; z|s) = −H(s′|s, z) +H(s′|s) (29)

≥ Ez,s,s′∼p
[

log qφ(s′|s, z)] + Ez,s,s′∼p
[

log qα(z|s′, s)
]

+H(s′, z|s) (30)

= Ez,s,s′∼p
[

log qφ(s′|s, z) + log qα(z|s′, s)] +H(s′, z|s) (31)

where we have used the inequality for H(s′|s) to introduce the variational posterior for skill infer-
ence qα(z | s′, s) besides the conventional variational lower bound to introduce q(s′ | s, z). Further
decomposing the leftover entropy:

H(s′, z|s) = H(z|s) +H(s′|s, z)

Reusing the variational lower bound for marginal entropy from Agakov (2004), we get:

H(s′|s, z) ≥ Es,z
[∫

p(s′, a|s, z) log
q(a|s′, s, z)
p(s′, a|s, z)

ds′da
]

(32)

= − log c+H(s′, a|s, z) (33)

= − log c+H(s′|s, a, z) +H(a|s, z) (34)

Since, the choice of posterior is upon us, we can choose q(a|s′, s, z) = 1/c to induce a uniform
distribution for the bounded action space. For H(s′|s, a, z), notice that the underlying dynamics
p(s′|s, a) are independent of z, but the actions do depend upon z. Therefore, this corresponds to
entropy-regularized RL when the dynamics of the system are deterministic. Even for stochastic
dynamics, the analogy might be a good approximation , assuming the underlying dynamics are not
very entropic. The final objective (making this low-entropy dynamics assumption) can be written
as:

I(s′; z|s) ≥ EsEp(s′,z|s)[log qφ(s′|s, z) + log qα(z|s′, s)− log p(z|s)] +H(a|s, z) (35)

While this does bypass the intractability of p(s′ | s), it runs into the intractable p(z | s), despite
deploying significant mathematical machinery and additional assumptions. Any variational approx-
imation for p(z | s) would again result in an improper lower bound for I(s′; z | s).

19

Under review as a conference paper at ICLR 2020

(c) One way to a make our approximation q(s′ | s) to more closely resemble p(s′ | s) is to change
our generative model p(z, s, s′). In particular, if we resample z ∼ p(z) for every timestep of the
rollout from π, we can indeed write p(z | s) = p(z). Note, p(s′ | s) is still intractable to compute,
but marginalizing qφ(s′ | s, z) over p(z) becomes a better approximation of p(s′ | s). However,
this severely dampens the interpretation of our latent space Z as temporally extended actions (or
skills). It becomes better to interpret the latent space Z as dimensional reduction of action space.
Empirically, we found that this significantly throttles the learning, not yielding useful or interpretable
skills.

D INTERPOLATION IN CONTINUOUS LATENT SPACE

Figure 13: Interpolation in the continuous primitive space learned using DADS on the Ant environment cor-
responds to interpolation in the trajectory space. (Left) Interpolation from z = [1.0, 1.0] (solid blue) to
z = [−1.0, 1.0] (dotted cyan); (Middle) Interpolation from z = [1.0, 1.0] (solid blue) to z = [−1.0,−1.0]
(dotted cyan); (Right) Interpolation from z = [1.0, 1.0] (solid blue) to z = [1.0,−1.0] (dotted cyan).

E MODEL PREDICTION

Figure 14: (Left) Prediction error in the Ant’s co-ordinates (normalized by the norm of the actual position)
for skill-dynamics. (Right) X-Y traces of actual trajectories (colored) compared to trajectories predicted by
skill-dynamics (dotted-black) for different skills.

From Figure 14, we observe that skill-dynamics can provide robust state-predictions over long plan-
ning horizons. When learning skill-dynamics with x−y prior, we observe that the error in prediction
rises slower with horizon as compared to the norm of the actual position. This provides strong ev-
idence of cooperation between the primitives and skill-dynamics learned using DADS with x − y
prior. As the error-growth for skill-dynamics learned on full-observation space is sub-exponential,
similar argument can be made for DADS without x− y prior as well (albeit to a weaker extent).

20

	Introduction
	Preliminaries
	Dynamics-Aware Discovery of Skills (DADS)
	Planning using Skill Dynamics
	Related Work
	Experiments
	Qualitative Analysis
	Skill Variance Analysis
	Model-Based Reinforcement Learning
	Hierarchical Control with Unsupervised Primitives
	Goal-conditioned RL

	Conclusion
	Implementation Details
	Skill Spaces
	Agent
	Skill-Dynamics
	Other Hyperparameters
	Planning and Evaluation Setups

	Graphical models, Information Bottleneck and Unsupervised Skill Learning
	Approximating the Reward Function
	Interpolation in Continuous Latent Space
	Model Prediction

