
Under review as a conference paper at ICLR 2020

DIVERSELY STALE PARAMETERS FOR EFFICIENT
TRAINING OF DEEP CONVOLUTIONAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The backpropagation algorithm is the most popular algorithm training neural net-
works nowadays. However, it suffers from the forward locking, backward locking
and update locking problems, especially when a neural network is so large that its
layers are distributed across multiple devices. Existing solutions either can only
handle one locking problem or lead to severe accuracy loss or memory ineffi-
ciency. Moreover, none of them consider the straggler problem among devices. In
this paper, we propose Layer-wise Staleness and a novel efficient training algo-
rithm, Diversely Stale Parameters (DSP), which can address all these challenges
without loss of accuracy nor memory issue. We also analyze the convergence of
DSP with two popular gradient-based methods and prove that both of them are
guaranteed to converge to critical points for non-convex problems. Finally, exten-
sive experimental results on training deep convolutional neural networks demon-
strate that our proposed DSP algorithm can achieve significant training speedup
with stronger robustness and better generalization than compared methods.

1 INTRODUCTION

The increasing depth and size of deep neural network (DNN) are shown to be one of the most impor-
tant factors leading to its success (Szegedy et al., 2015; Simonyan & Zisserman, 2014). However, as
the neural networks get deeper and larger (He et al., 2015; Ioffe & Szegedy, 2015; Hu et al., 2018;
Szegedy et al., 2016; Xie et al., 2017), the required expensive training time and hardware resources
have become the bottleneck. Data parallelism (Valiant, 1990; Li et al., 2014; Bottou, 2010) and
model parallelism (Lee et al., 2014; Krizhevsky, 2014) are two standard parallelism techniques to
utilize multiple devices to address this issue.

The data parallelism has been well studied and implemented in existing libraries (Szegedy et al.,
2016; Abadi et al., 2016; Chen et al., 2015), but the model parallelism is still underexplored. In this
paper, we focus on the model parallelism, where the DNN benefits from being split onto multiple
devices. But the resource utilization of standard model parallelism can be very low. The backpropa-
gation algorithm (Rumelhart et al., 1988; LeCun et al., 1989) typically requires two phases to update
the model in each training step: the forward pass and backward pass. But the sequential propagation
of activation and error gradient leads to backward locking and forward locking (Jaderberg et al.,
2017) respectively, because a layer’s computations have dependencies. The update locking (Jader-
berg et al., 2017) exists as the backward pass will not start until the forward pass has completed. This
sequential execution keeps a device inefficiently waiting for the activation input and error gradient.

Several works have been proposed to address these locking issues (Figure 1). (Jaderberg et al.,
2017) uses Decoupled Neural Interfaces (DNI) to predict the error gradient via auxiliary networks,
so that a layer uses the synthetic gradient and needs not to wait for the error gradient. (Nøkland,
2016) lets hidden layers receive error information directly from the output layer. However, these
methods can not converge when dealing with very deep neural networks. (Belilovsky et al., 2019)
proposes layer-wise decoupled greedy learning (DGL), which introduces an auxiliary classifier for
each block of layers so that a block updates its parameters according to its own classifier. But the
objective function of DGL based on greedy local predictions can be very different from the original
model. GPipe (Huang et al., 2018) proposes pipeline parallelism and divides each mini-batch into
micro-batches, which can be regarded as a combination of model parallelism and data parallelism.
However, the forward and backward lockings of the micro-batch still exist, and the update locking is

1

Under review as a conference paper at ICLR 2020

......

F B
F B

F B

F B
F B

F B

F R B
F R B

F B

F R B
F R B

F B

GPipe

Training Progress (K=3, two consecutive mini-batches displayed)
Backward

Locking
Forward
Locking

Method

BP

FR

DSP

Yes Yes

Yes No

No No

Yes
(micro-
batch)

Yes
(micro-
batch)

DDG Yes No

F

B

Micro-batch forward

Micro-batch backward

F

R

B

Mini-batch forward

Mini-batch recomputation

Mini-batch backward

Idle

time

F
R

B

F
R

B

F B

F
R

B

F
R

B

F B

F
F

F B
B

B F
F

F B
B

B

......

......

......

......

F
F F F B B B

B B B
B B

FF
FFF

F
F F F B B B

B B B
B B B

FF
FFFB

3 Blocks

Figure 1: Comparison of different methods with three blocks. The forward and recomputation are
overlapped in DSP.

not addressed because GPipe waits for the whole forward and backward pass to finish before updat-
ing the parameters. (Huo et al., 2018b) proposes Decoupled Parallel Backpropagation (DDG), which
divides the DNN into blocks and removes the backward locking by storing delayed error gradient
and intermediate activations at each block. But DDG suffers from large memory consumption due
to storing all the intermediate results, and cannot converge when the DNN goes further deeper. Fea-
tures Replay (FR) (Huo et al., 2018a) improves DDG via storing the history inputs and recomputing
the intermediate results. Nevertheless, blocks in DDG and FR still need to wait for the backward
error gradient. Besides, neither DDG nor FR addresses the forward locking problem.

To overcome the aforementioned drawbacks, we first propose Layer-wise Staleness, a fine-grained
staleness within the model to allow different parts to be trained independently. Incorporating stale-
ness is useful for efficient asynchronous execution without synchronization barrier (Ho et al., 2013),
which can be interpreted as another form of locking/dependency. The introduction of preset Layer-
wise Staleness enables each part of the convolutional neural network (CNN) to run in a very flexible
way with certain degree of asynchrony. Based on the concept of Layer-wise Staleness, we propose a
novel parallel CNN training algorithm named Diversely Stale Parameters (DSP), where lower layers
use more stale information to update parameters. DSP also utilizes recomputation technique (Chen
et al., 2016; Griewank, 1999) to reduce memory consumption, which is overlapped with the forward
pass. Our contributions are summarized as follows:

• We propose Layer-wise Staleness and Diversely Stale Parameters (Section 3) which breaks
the forward, backward and update lockings without memory issues.

• Then, we provide convergence analysis (Section 4) for the proposed method. Even faced
with parameters and data of different Layer-wise Staleness, we prove that DSP converges
to critical points for non-convex problems with SGD and momentum SGD.

• We evaluate our method via training deep convolutional neural networks (Section 5). Ex-
tensive experimental results show that DSP achieves significant training speedup, strong
robustness against random stragglers, and generalizes better.

2 BACKGROUND

We divide a CNN into K consecutive blocks so that the whole parameters x = (x0, x1, ..., xK−1) ∈
Rd, where xk ∈ Rdk denotes the partial parameters at block k ∈ {0, 1, ...,K − 1} and d =∑K−1
k=0 dk. Each block k computes activation hk+1 = fk(hk;xk), where hk denotes the input

of block k. In particular, h0 is the input data. For simplicity, we define F (h0;x0;x1; ...;xk) :=
fk(...f1(f0(h0;x0);x1)...;xk) = hk+1. The loss is L(hK , l), where l is the label. Minimizing the
loss of a K-block neural network can be represented by the following problem:

min
x∈Rd

f(x) := L(F (h0;x0;x1; ...;xK−1), l). (1)

Backpropagation algorithm computes the gradient for block k following chain rule via Eq. (2). The
forward locking exists because the input of each block is dependent on the output from the lower
block. The backward locking exists because each block cannot compute gradients until having
received the error gradient Gh from the upper block. Besides, the backward process can not start
until the whole forward process is completed, which is known as the update locking.

2

Under review as a conference paper at ICLR 2020

ℎ0 ℎ1 ℎ2 ℎ𝐾−2 ℎ𝐾−1 ℎ𝐾

𝑙𝑜𝑠𝑠

𝑔ℎ𝐾𝑔ℎ𝐾−1𝑔ℎ𝐾−2𝑔ℎ2𝑔ℎ1𝑔ℎ0

𝑥𝐾−1
𝑡𝐾−1𝑥𝐾−2

𝑡𝐾−2𝑥1
𝑡1𝑥0

𝑡0

𝑥𝐾−1
𝑡𝐾𝑥𝐾−2

𝑡𝐾+1𝑥1
𝑡2𝐾−2𝑥0

𝑡2𝐾−1

Block 0 Block 1 Block K-2 Block K-1

Figure 2: A DSP data traversal in a K-block neural network. Red arrows denote the forward pass;
blue arrows denote the backward pass. The arrows use parameters at different timestamps.

ℎ1
𝑛−𝑝0−𝑚1

ℎ1
𝑛−𝑝0

1 +𝑚1

𝑓0

𝑖𝑛𝑝𝑢𝑡
𝑏0

ℎ0
𝑛−𝑚0

ℎ0
𝑛

1 +𝑚0

ℎ1
𝑛−𝑝0

ℎ1
𝑛

1 + 𝑝0

𝑓1

𝑏1

𝑔ℎ1
𝑛−𝑚

0

𝑔ℎ1
𝑛−𝑝

0
−𝑚

1

1 +𝑚0 − p0−m1

ℎ2
𝑛−𝑝

0
−𝑝

1

ℎ2
𝑛−𝑝0

1 + 𝑝1

ℎ2
𝑛−𝑝

0
−𝑝

1
−𝑚

2

ℎ2
𝑛−𝑝0−𝑝1

1 +𝑚2

𝑓2 𝑙𝑛−𝑝0−𝑝1−𝑚2

𝑙𝑜𝑠𝑠

𝑏2

𝑔ℎ2
𝑛−𝑝0−𝑚1

𝑔ℎ2
𝑛−𝑝0−𝑝1−𝑚2

1 +𝑚1 − 𝑝1−𝑚2

Block 0 Block 1 Block 2

Forward

Recomputation

Backward

𝑓𝑘

𝑏𝑘

forward

backward

ℎ𝑘 activation

𝑔ℎ𝑘
error

gradients

Figure 3: DSP (p0, p1, 0;m0,m1,m2) for parallel training (K=3). The input queue is at the L.H.S
of a block, while the output queue is at the R.H.S. The gradient queue is below the input queue.

Ghk
=
∂fk(hk;xk)

∂hk
Ghk+1

, GhK
=
∂L(hK , l)

∂hK
and Gxk

=
∂fk(hk;xk)

∂xk
Ghk+1

. (2)

After computing the gradients, stochastic gradient descent (SGD) (Robbins & Monro, 1951) and
its variants such as stochastic unified momentum (SUM) (Yang et al., 2016), RMSPROP (Tieleman
& Hinton, 2012) and ADAM (Kingma & Ba, 2014) are widely used for updating the model. SGD
updates via xn+1 = xn−αG(xn; ξ), where xn is the parameters when training with the nth feeding
data (batch), α is the learning rate, and G(xn; ξ) is the stochastic gradient. SUM updates the param-
eters via Eq. (3), where β is the momentum constant and y is the momentum term. When s = 1,
SUM reduces to stochastic Nesterov’s accelerated gradient (SNAG) (Nesterov, 2013).

yn+1 = xn−αG(xn; ξ), ys,n+1 = xn− sαG(xn; ξ) and xn+1 = yn+1 + β(ys,n+1− ys,n). (3)

3 DIVERSELY STALE PARAMETERS

In this section, we propose a novel training method named Diversely Stale Parameters. We will
describe how to apply DSP to training neural networks in parallel via layer-wise staleness and how
to compute the DSP gradient.

3.1 LAYER-WISE STALENESS

We preset each block’s Layer-wise Staleness to a different value to break the synchronization barrier
of backpropagation. In order to represent the Layer-wise Staleness explicitly, we mark the parame-
ters with a timestamp during the two-phase forward and backward training procedure.

As shown in Figure 2, the data is fowarded with parameters x0 at timestamp t0, x1 at timestamp
t1, . . ., and xK−1 at timestamp tK−1. For simplicity we denote the Forward Parameters as
{xtkk }k=0,...,K−1. Similarly we denote the Backward Parameters as {xt2K−1−k

k }k=0,...,K−1. Then
we define Layer-wise Staleness as,

∆tk = t2K−k−1 − tk ≥ 0 .

We also denote the maximum Layer-wise Staleness as ∆t = maxk=0,1,...,K−1 ∆tk. It is worth
noting that,

• Layer-wise Staleness ∆tk is a constant and set in advance.
• In standard backpropagation algorithm (Eq. (2)), Layer-wise Staleness ∆tk = 0.
• Feeding data index is not identical to timestamp / training step.

3

Under review as a conference paper at ICLR 2020

3.2 DSP GRADIENT

Here we introduce the DSP gradient based on the concept of Layer-wise Staleness. We first go back
to Figure 2 and set the constraints of DSP as

t0 < t1 < . . . < tK−1 ≤ tK < tK+1 < . . . < t2K−1,

such that both the dependencies in the forward and backward pass no longer exist, because we do
not need them to finish in the same timestamp anymore. The non-decreasing property corresponds
to the fact that the data needs to go through bottom layers before top layers, and the error gradient
needs to go through top layers before bottom layers.

Based on backpropagation algorithm and Eq. (2), we should compute the gradients according to the
following formulas as we are updating the Backward Parameters {xt2K−1−k

k }k=0,...,K−1 instead,

Gxk
=
∂F (h0;x

t2K−1

0 ; ...;x
t2K−1−k

k)

∂x
t2K−1−k

k

Ghk+1

Ghk
=
∂F (h0;x

t2K−1

0 ; ...;x
t2K−1−k

k)

∂F (h0;x
t2K−1

0 ; ...;x
t2K−2−k

k−1)
Ghk+1

and GhK
=
∂L(F (h0;x

t2K−1

0 ; ...;xtKK−1), l)

F (h0;x
t2K−1

0 ; ...;xtKK−1)
.

(4)

However, during the forward pass it is infeasible to acquire information from future timestamps
t2K−1, t2K−2, . . . , tK , and we can only compute activation as F (h0;xt00 ; ...;x

tk−1

k−1). Therefore we
incorporate the recomputation technique and utilize both the Forward Parameters and Backward
Parameters to compute DSP gradient as follows,

Gxk
=
∂F (h0;xt00 ; ...;x

tk−1

k−1 ;x
t2K−1−k

k)

∂x
t2K−1−k

k

Ghk+1

Ghk
=
∂F (h0;xt00 ; ...;x

tk−1

k−1 ;x
t2K−1−k

k)

∂F (h0;xt00 ; ...;x
tk−1

k−1)
Ghk+1

and GhK
=
∂L(F (h0;xt00 ; ...;x

tK−1

K−1), l)

F (h0;xt00 ; ...;x
tK−1

K−1)
.

(5)

The intuition behind the DSP gradient of Eq. (5) is that it is equivalent to Eq. (4) with parameters x∗

where the gradient is zero (xtkk = x
t2K−1−k

k afterwards), and as the training proceeds the parameters
gradually converge to the optima. It is reasonable considering the results on the optimality of the
local optima of DNN (Choromanska et al., 2015; Kawaguchi, 2016).

3.3 BATCH PIPELINE FOR PARALLEL TRAINING

The computation of DSP gradient breaks the forward and backward dependencies/lockings of the
same data as it will not appear in different blocks at the same timestamp. The update locking is
naturally broken. Algorithm 1 in the view of the traversal of a single data is explicitly formed based
on Figure 2 and Eq. (5). For parallel implementation of DSP, we incorporate data batch pipeline to
keep all the blocks being fed with different data batches and running as shown in Figure 3, which is
the same as Figure 2 if considering a single data batch’s behavior.

The detail of DSP for parallel training (Figure 3, Algorithm 2) is as follows. We let the data source
consecutively feeds and pipelines the data input. Different blocks process different data via FIFO
queues, as a result the data travels each block at different timestamps. The block k has an input queue
Mk, output queue Pk and gradient queueQk of length 1+mk, 1+pk and 1+qk respectively. It gets
data from Pk−1, stores it intoMk, computes the forward results and saves it into Pk. Then it gets
data fromMk and error gradient from Qk+1 to do forward (called recomputation) and backward,
and saves the backward error gradient into Qk. Note that P−1 is the input training data source, QK
contains error gradient directly from loss function, block K − 1 does not forward the data from
PK−2 and block 0 does not save the error gradient. pK−1 is 0 because block K − 1 has no upper
block to send output to; q0 is also 0 because the backward ends at block 0. We denote DSP under
this setting as DSP (p0, ..., pK−1;m0, ...,mK−1). Various settings can be chosen as long as the
following constraints are satisfied:

qk = mk−1 − pk−1 −mk > 0 ∀k ∈ {1, . . . ,K − 1}, q0 = 0,

mk > 0 ∀k ∈ {0, . . . ,K − 1},
pk > 0 ∀k ∈ {0, . . . ,K − 2}, pK−1 = 0.

(6)

4

Under review as a conference paper at ICLR 2020

Algorithm 1: DSP in the view of
the data traversal
Input: Data stream
P−1 := {hn0 , ln}N−1

n=0 ;
Initialize: parameters x0 and

learning rate {αn}N−1
n=0 ;

xtk = x0
k (t ≤ t0,2K−1−k);

for n=0,1,...,N-1 do
/* Forward Pass */
for k=0,1,...,K-1 do

Compute
hnk+1 = fk(hnk ;x

tn,K

k);

/* Backward Pass */
Compute error gradient
GhK

=
∂L(hn

K ,l
n)

∂hn
K

;
for k=K-1,K-2,...,0 do

Compute Ghk
=

∂fk(hn
k ;x

tn,2K−1−k
k)

∂hn
k

Ghk+1
;

Compute Gxk
=

∂fk(hn
k ;x

tn,2K−1−k
k)

∂x
tn,2K−1−k
k

Ghk+1
;

Update xtn,2K−1−k

k with
gradient Gxk

;

Algorithm 2: DSP in the view of the current timestamp

Input: Data stream P−1 := {hn0 , ln}N−1
n=0 ;

Initialize: parameters x0 and learning rate {αn}N−1
n=0 ;

FIFO queues {Pk}K−1
k=0 , {Mk}K−1

k=0 , {Qk}K−1
k=0 of length

{1 +mk}K−1
k=0 , {1 + pk}K−1

k=0 , {1 + qk}K−1
k=0 satisfying (6)

and filled with {mk}K−1
k=0 , {pk}K−1

k=0 , {qk}K−1
k=0 zeros;

Denote nk := n−
∑k−1
i=0 pi;

for n=0,1,...,N-1 do
for k=0,1,...,K-1 in parallel do

/* Forward Pass */
Pop hnk

k from Pk−1 and push intoMk;
Pop hnk−mk

k fromMk;
if k6=K-1 then

Compute H = fk(hnk−mk

k ;xk) and
hnk

k+1 = fk(hnk

k ;xk) in parallel;
Push hnk

k+1 into Pk;

else
Compute H = fk(hnk−mk

k ;xk);

Compute Ghk+1
= ∂L(H;lnk−mk)

∂H ;
/* Backward Pass */
Pop Ghk+1

from Qk+1 if k 6= K − 1;
Compute Ghk

= ∂H

∂h
nk−mk
k

Ghk+1
and Gxk

= ∂H
∂xk
Ghk+1

;

Push Ghk
into Qk if k 6= 0;

Update xk with gradient Gxk
;

The first constraint of Eq. (6) is to make the error gradient meet the activation of the same data.
Besides adopting recomputation to reduce memory consumption, DSP overlaps recomputation with
the forward pass to save time. Using queues also make DSP overlap the communication between
blocks with computation. The FIFO queues allow for some asynchrony which is effective for dealing
with random stragglers.
Complexity The ideal time complexity of DSP is O(TF +TB

K) and the space complexity is O(L+∑K−1
k=0 (mk + pk + qk)), where TF and TB are serial forward and backward time, and L is the

number of layers. mk also represents the Layer-wise Staleness of block k. K and the FIFO queues
length mk + 1, pk + 1, qk + 1� L for deep models, so the extra space cost is trivial.

4 CONVERGENCE ANALYSIS

The convergence of DSP with SGD is first analyzed, then DSP with Momentum SGD. For simplicity
we denote the Forward and Backward Parameters of data n as xn

′
and xn respectively.

Assumption 1. (Bounded variance) Assume that the DSP stochastic gradient G(x; ξ) satisfies:
Var [G(x; ξ)] ≤ σ2.

Here E [G(x; ξ)] = G(x) 6= ∇f(x).
Assumption 2. (Lipschitz continuous gradient) Assume that the loss and the output of
the blocks have Lipschitz continuous gradient, that is, ∀k ∈ {0, 1, ..,K − 1}, and
∀(x0,1, ..., xk,1), (x0,2, ..., xk,2) ∈ Rd0+d1+...+dk ,

‖∇F (h0;x0,1; ...;xk,1)−∇F (h0;x0,2; ...;xk,2)‖ ≤ Lk ‖(x0,1, ..., xk,1)− (x0,2, ..., xk,2)‖ ,

and ∀x1, x2 ∈ Rd,
‖∇f(x1)−∇f(x2)‖ ≤ LK ‖x1 − x2‖ .

We define L := maxk∈{0,1,...,K} Lk. Note that ∇F (h0;x0,1; ...;xk,1) and ∇F (h0;x0,2; ...;xk,2)
regarding parameters are Jacobian matrices. In fact, this is assuming that the partial model consisted
of the blocks that the data has traveled, has Lipschitz continuous gradient.

5

Under review as a conference paper at ICLR 2020

Assumption 3. (Bounded error gradient) Assume that the norm of the error gradient that a block
receives is bounded, that is, for any x ∈ Rd, ∀k ∈ {0, 1, ...,K − 2},∥∥∥∥∂fk+1(hk+1;xk+1)

∂hk+1
...
∂fK−1(hK−1;xK−1)

∂hK−1

∂L(hK , l)

∂hK

∥∥∥∥ ≤M and
∥∥∥∥∂L(hK , l)

∂hK

∥∥∥∥ ≤M.

This is assuming that the error gradient at each block does not explode. It is natural to make the
above two block-wise assumptions as we are breaking the neural networks into blocks.
Lemma 1. If Assumptions 2 and 3 hold, the difference between DSP gradient and BP gradient
regarding the parameters of block k ∈ {0, 1, ...,K − 1} satisfies:∥∥∥∇xk

L(F (h0;xt00 ; ...;x
tK−1

K−1), y)− Gxk
(x
t2K−1

0 ; ...;xtKK−1)
∥∥∥ ≤ LM K−1∑

i=k

∥∥∥xt2K−1−i

i − xtii
∥∥∥ .

4.1 DSP WITH SGD

Theorem 1. Assume Assumptions 1, 2 and 3 hold. Let c0 = M2K(K + 1)2, and c1 = −(∆t2 +

2) +
√

(∆t2 + 2)2 + 2c0∆t2. If the learning rate αn ≤ c1
Lc0∆t2 , then∑N−1

n=0 αnE
∥∥∥∇f(xn

′
)
∥∥∥2

∑N−1
n=0 αn

≤
2
[
f(x0)− f∗

]∑N−1
n=0 αn

+
Lσ2(2 +K∆t2 + 1

4Kc1)
∑N−1
n=0 α

2
n∑N−1

n=0 αn
.

Corollary 1.1. (Sublinear convergence rate) According to Theorem 1, by setting the learning rate
αn = min

{
1√
N
, c1
Lc0∆t2

}
, when N is large enough we have αn = 1√

N
and:

min
n=0,...,N−1

E
∥∥∥∇f(xn

′
)
∥∥∥2

≤ 2(f(x0)− f∗)√
N

+
Lσ2(2 +K∆t2 + 1

4Kc1)
√
N

.

Corollary 1.2. According to Theorem 1, if the learning rate αn diminishes and satisfies the re-
quirements in (Robbins & Monro, 1951): limN→∞

∑N−1
n=0 αn =∞ and limN→∞

∑N−1
n=0 α

2
n <∞,

choose xn randomly from {xn}N−1
n=0 with probabilities proportional to {αn}N−1

n=0 . Then we can prove
that it converges to critical points for the non-convex problem due to limn→∞ E ‖∇f(xn)‖2 = 0.

4.2 DSP WITH MOMENTUM SGD

Theorem 2. Assume Assumption 1, 2 and 3 hold. Let c2 = ((1−β)s−1)2

(1−β)2 , c3 = M2K(K +

1)2∆t2(c2 + s2), c4 = 3 + β2c2 + 2(1− β)2∆t2(c2 + s2), and c5 = 2+β2c2
1−β + 2(1− β)∆t2(c2 +

s2) +
−c4+
√
c24+4(1−β)2c3
2(1−β) . If the fixed learning rate α satisfies α ≤ −c4+

√
c24+4(1−β)2c3

2(1−β)c3L
, then

1

N

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

≤ 2(1− β)(f(x0)− f∗)
Nα

+ c5σ
2Lα.

Corollary 2.1. (Sublinear convergence rate) According to Theorem 2, by setting the learning rate

α = min{ 1√
N
,
−c4+
√
c24+4(1−β)2c3

2(1−β)c3L
}, when N is large enough we have α = 1√

N
and:

min
n=0,...,N−1

E
∥∥∥∇f(xn

′
)
∥∥∥2

≤ 2(1− β)(f(x0)− f∗)√
N

+
c5σ

2L√
N

.

Remark 2.1. The convergence performance of DSP is affected by Layer-wise Staleness rather than
the staleness between different blocks.

5 EXPERIMENTS

Experiment Settings We implement DSP in TensorFlow (Abadi et al., 2016) and run the experi-
ments on Nvidia Tesla P40 GPUs. The model is divided intoK blocks and distributed ontoK GPUs.
Data augmentation procedures include random cropping, random flipping and standardization. We
use SGD with the momentum constant of 0.9. In CIFAR experiments, the batch size is 128. We train
ResNet98 and ResNet164 for 300 epochs. The weight decay is 5×10−4 and the initial learning rate

6

Under review as a conference paper at ICLR 2020

0 50 100 150 200 250 300
Epoch

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet98, K=3

BP
FR
DSP(1,1,0,4,2,0)
DSP(2,2,0;6,3,0)
DSP(5,5,0;14,7,0)
DNI

0 50 100 150 200 250 300
Epoch

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet164, K=3

BP
FR
DSP(1,1,0;4,2,0)
DSP(2,2,0;6,3,0)
DSP(5,5,0;14,7,0)
DNI

0 50 100 150 200 250 300
Epoch

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet164, K=4

BP
FR
DSP(1,1,1,0;6,4,2,0)
DSP(2,2,2,0;9,6,3,0)
DSP(3,3,3,0;15,10,5,0)
DNI

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (s) ×104

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet98, K=3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s) ×104

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet164, K=3

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (s) ×104

10 3

10 2

10 1

100

101

Lo
ss

CIFAR-10, ResNet164, K=4

Figure 4: Training loss (solid line) and testing loss (dash line) for ResNet98, ResNet164 on CIFAR-
10. The first row and second row plots the loss regarding the training epochs and time respectively.

0 50 100 150 200 250 300
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Av
er

ag
e

G
ra

di
en

t
D

iff
er

en
ce

×10 4 CIFAR-10, ResNet164, K=4
DSP(1,1,1,0;6,4,2,0) block0
DSP(1,1,1,0;6,4,2,0) block1
DSP(1,1,1,0;6,4,2,0) block2
DSP(1,1,1,0;6,4,2,0) block3
DSP(3,3,3,0;15,10,5,0) block0
DSP(3,3,3,0;15,10,5,0) block1
DSP(3,3,3,0;15,10,5,0) block2
DSP(3,3,3,0;15,10,5,0) block3

0 1 2 3 4 5
Time (s) ×103

10 2

10 1

100

Lo
ss

CIFAR-10, VGG-19, K=3

BP
FR
DSP(1,1,0;4,2,0)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 T
op

-1
 A

cc
ur

ac
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s) ×104

10 2

10 1

100

Lo
ss

CIFAR-10, ResNeXt-29, 8x64d, K=4

BP
FR
DSP(1,1,1,0;6,4,2,0)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 T
op

-1
 A

cc
ur

ac
y

0.0 0.5 1.0 1.5 2.0 2.5
Time (s) ×105

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

CIFAR-100, ResNet1001, K=4

BP-4
FR
DSP(1,1,1,0;6,4,2,0)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 T
op

-1
 A

cc
ur

ac
y

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Time (s) ×105

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

ImageNet, ResNet18, K=3

BP
FR
DSP(1,1,0;4,2,0)

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 T
op

-1
 A

cc
ur

ac
y

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time (s) ×106

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

ImageNet, ResNet50, K=3

BP-3
FR
DSP(1,1,0;4,2,0)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Te
st

 T
op

-1
 A

cc
ur

ac
y

Figure 5: Top left: Average difference of DSP and BP gradient regarding the number of parameters.
The rest: Training loss (solid line), testing loss (dash line) and test top-1 accuracy(dot line).

is 0.01 (test performance could be a little lower than 0.1 (Liu et al., 2018)) with a decay of 0.1 at
epoch 150, 225; ResNet1001 is trained for 250 epochs. The weight decay is 2× 10−4 and the initial
learning rate is 0.1 with a decay of 0.1 at epoch 100, 150, 200; VGG-19 and ResNext-29 are trained
for 200 epochs. The weight decay is 5 × 10−4 and the initial learning rate is 0.01 with a decay of
0.1 at epoch 100, 150. We also train ResNet on ImageNet for 90 epochs. The batch size is 256, the
weight decay is 1× 10−4 and the initial learning rate is 0.1 with a decay of 0.1 at epoch 30, 60, 80.
There are four compared methods:

• BP: The standard implementation in TensorFlow. BP (or BP-K) runs on one (or K) GPUs.

• DNI: The Decoupled Neural Interface algorithm in (Jaderberg et al., 2017). The auxiliary
network consists of two hidden and one output convolution layers with 5 × 5 filters and
padding size of 2. The hidden layers also use batch-normalization and ReLU.

• FR: The Features Replay algorithm proposed by (Huo et al., 2018a).

• DSP: Our Diversely Stale Parameters.

7

Under review as a conference paper at ICLR 2020

Table 1: Speedup Comparison.

CIFAR-10 CIFAR-100 ImageNet

ResNet164 ResNext-29 VGG-19 ResNet1001 ResNet50 ResNet101
K, batch size (4, 128) (4, 128) (3, 128) (4, 128) (3, 256) (4, 128)

BP / BP-K x1 / - x1 / - x1 / - - / x1 - / x1 x1 / -
FR x1.7 x1.3 x1.1 x1.9 x1.6 x1.7
GPipe - - - - - x2.2
DSP x2.7 x2.4 x1.5 x4.8 x3.0 x2.7

Faster Convergence The DSP convergence curves regarding training epochs are nearly the same
as FR and BP, while DNI does not converge (Figure 4). But the epoch time of DSP is much less.
Due to the overlap of communication and computation, the overheads of DSP are much less than
model parallel BP and the speedup can even exceed K. To further demonstrate the scalability, we
also run experiments on VGG-19 (Simonyan & Zisserman, 2014), ResNeXt-29 (Xie et al., 2017),
ResNet1001 and ImageNet (Deng et al., 2009) as shown in Figure 5. The speedup is summarized in
Table 1 (GPipe paper only reports speedup of ResNet101 and AmoebaNet-D (4,512)). Note that the
implementation of DSP involves some inefficient copy operations due to limited supported features
of the deep learning framework, which means DSP could achieve a potentially even faster speedup.

Table 2: Slowdown (CIFAR-10, ResNet164, K=3)

Slow down percentage

GPU 20% 50% 100%

FR 8.977% 28.52% 97.06%
DSP(1,1,0;4,2,0) 6.017% 16.14% 37.44%
DSP(2,2,0;6,3,0) 7.465% 16.01% 36.57%
DSP(3,3,0;10,5,0) 7.391% 18.15% 32.10%

Stronger robustness We slow down
each GPU by a certain percentage with a
probability of 1

3 and run the experiments
on ResNet164 (Table 2). The performance
of FR degrades a lot because it does not
break the forward locking nor completely
decouple the backward pass. DSP is very
robust with the best slow down percentage
less than 1

3 of the GPU slow down percent-
age. Longer queues improve DSP’s resilience to random stragglers.

Table 3: Best Top-1 Test Accuracy (K=3)

ResNet164 ResNet98

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

BP 92.84% 70.74% 92.91% 69.48%

FR 92.99% 71.25% 93.10% 69.87%
DSP(1,1,0;4,2,0) 93.05% 71.05% 92.86% 69.59%
DSP(2,2,0;6,3,0) 92.76% 71.00% 93.18% 70.30%
DSP(3,3,0;10,5,0) 92.79% 71.29% 92.78% 69.98%

Better generalization
Table 3 shows the best
top-1 test accuracy. The
test performance of DSP
is better than BP and FR.
From Lemma 1 we know
that the DSP gradient
deviates from the BP
gradient. This difference
becomes small as the
training proceeds, but could impose small noise and help find a better local minimum.

Difference of DSP and BP gradient We attest our theoretical analysis of Lemma 1 via checking
the difference between DSP and BP gradient. From the first figure of Figure 5 we can see that the
difference drops very fast as the training proceeds and it drops faster for upper blocks, which con-
firms the rationality of the DSP gradient. Moreover, the lower blocks suffer from a larger difference,
and as the Layer-wise Staleness increases the difference will also increase, which matches Lemma 1
well. As the learning rate drops, the difference drops a lot. This verifies that a smaller learning rate
can deal with a larger number of blocks and Layer-wise Staleness in Theorem 1 and 2.

6 CONCLUSION

In this paper, we have proposed Layer-wise Staleness and DSP, a novel way to train neural networks.
DSP is proved to converge to critical points for non-convex problems. We apply DSP to train
CNNs in parallel and the experiment results confirm our theoretical analysis. Our proposed method
achieves significant speedup, resilience to random stragglers, and better generalization. The speedup
can exceed K compared with model parallel BP.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI’ 16), pp. 265–283, 2016.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy learning of cnns.
arXiv preprint arXiv:1901.08164, 2019.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Yves Lechevallier
and Gilbert Saporta (eds.), Proceedings of COMPSTAT’2010, pp. 177–186, Heidelberg, 2010.
Physica-Verlag HD. ISBN 978-3-7908-2604-3.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks. In Artificial Intelligence and Statistics, pp. 192–204, 2015.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Andreas Griewank. An implementation of checkpointing for the reverse or adjoint model of differ-
entiation. ACM Trans. Math. Software, 26(1):1–19, 1999.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B Gibbons, Garth A
Gibson, Greg Ganger, and Eric P Xing. More effective distributed ml via a stale synchronous
parallel parameter server. In Advances in neural information processing systems, pp. 1223–1231,
2013.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7132–7141, 2018.

Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, and
Zhifeng Chen. Gpipe: Efficient training of giant neural networks using pipeline parallelism. arXiv
preprint arXiv:1811.06965, 2018.

Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using features replay. In
Advances in Neural Information Processing Systems, pp. 6659–6668, 2018a.

Zhouyuan Huo, Bin Gu, qian Yang, and Heng Huang. Decoupled parallel backpropagation with
convergence guarantee. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 2098–2106, Stockholmsmssan, Stockholm Sweden, 10–15 Jul 2018b. PMLR. URL
http://proceedings.mlr.press/v80/huo18a.html.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In Pro-
ceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1627–1635.
JMLR. org, 2017.

9

http://proceedings.mlr.press/v80/huo18a.html

Under review as a conference paper at ICLR 2020

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in neural information
processing systems, pp. 586–594, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A Gibson, and Eric P Xing. On model
parallelization and scheduling strategies for distributed machine learning. In Advances in neural
information processing systems, pp. 2834–2842, 2014.

Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communication efficient distributed ma-
chine learning with the parameter server. In Advances in Neural Information Processing Systems,
pp. 19–27, 2014.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270, 2018.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. In Advances
in neural information processing systems, pp. 1037–1045, 2016.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, pp. 400–407, 1951.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representations by
back-propagating errors. Cognitive modeling, 5(3):1, 1988.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2818–2826, 2016.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

Leslie G Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):
103–111, 1990.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5987–5995, 2017.

Tianbao Yang, Qihang Lin, and Zhe Li. Unified convergence analysis of stochastic momentum
methods for convex and non-convex optimization. arXiv preprint arXiv:1604.03257, 2016.

10

Under review as a conference paper at ICLR 2020

A BASIC LEMMAS

Lemma 1. If Assumptions 2 and 3 hold, the difference between DSP gradient and BP gradient
regarding the parameters of block k satisfies:∥∥∥∇xk

L(F (h0;xt00 ; ...;x
tK−1

K−1), y)− Gxk
(x
t2K−1

0 ; ...;xtKK−1)
∥∥∥ ≤ LM K−1∑

i=k

∥∥∥xt2K−1−i

i − xtii
∥∥∥ .

Proof. We gradually move the DSP gradient of the block k towards the BP gradient by replacing
one block’s backward parameters with its forward parameters at a time. K − k steps in total are
needed, and each step will introduce an error. After all the replacement is done, it becomes the BP
gradient at the forward parameters. Firstly we replace xt2K−1−k

k with xtkk , and calculate the error
introduced as follows,

‖∆k‖ =

∥∥∥∥∥
(
∂F (h0;xt00 ; ...;x

tk−1

k−1 ;x
t2K−1−k

k)

∂x
t2K−1−k

k

−
∂F (h0;xt00 ; ...;x

tk−1

k−1 ;xtkk)

∂xtkk

)
·

∂F (h0;xt00 ; ...;xtkk ;x
t2K−2−k

k+1)

∂F (h0;xt00 ; ...;xtkk)
· · ·

∂F (h0;xt00 ; ...;x
tK−2

K−2 ;xtKK−1)

∂F (h0;xt00 ; ...;x
tK−2

K−2)
·

∂L
(
F (h0;xt00 ; ...;x

tK−1

K−1), l
)

∂F (h0;xt00 ; ...;x
tK−1

K−1)

∥∥∥∥∥∥
≤

∥∥∥∥∥∂F (h0;xt00 ; ...;x
tk−1

k−1 ;x
t2K−1−k

k)

∂x
t2K−1−k

k

−
∂F (h0;xt00 ; ...;x

tk−1

k−1 ;xtkk)

∂xtkk

∥∥∥∥∥ ·∥∥∥∥∥∂F (h0;xt00 ; ...;xtkk ;x
t2K−2−k

k+1)

∂F (h0;xt00 ; ...;xtkk)
· · ·

∂F (h0;xt00 ; ...;x
tK−2

K−2 ;xtKK−1)

∂F (h0;xt00 ; ...;x
tK−2

K−2)
·

∂L
(
F (h0;xt00 ; ...;x

tK−1

K−1), l
)

∂F (h0;xt00 ; ...;x
tK−1

K−1)

∥∥∥∥∥∥
≤ LM

∥∥∥xt2K−1−k

k − xtkk
∥∥∥ .

Secondly we replace xt2K−2−k

k+1 with xtk+1

k+1 , and calculate the error introduced,

‖∆k+1‖ =

∥∥∥∥∥
(
∂F (h0;xt00 ; ...;xtkk ;x

t2K−2−k

k+1)

∂xtkk
−
∂F (h0;xt00 ; ...;xtkk ;x

tk+1

k+1)

∂xtkk

)
·

∂F (h0;xt00 ; ...;x
tk+1

k+1 ;x
t2K−3−k

k+2)

∂F (h0;xt00 ; ...;x
tk+1

k+1)
· · ·

∂F (h0;xt00 ; ...;x
tK−2

K−2 ;xtKK−1)

∂F (h0;xt00 ; ...;x
tK−2

K−2)
·

∂L
(
F (h0;xt00 ; ...;x

tK−1

K−1), l
)

∂F (h0;xt00 ; ...;x
tK−1

K−1)

∥∥∥∥∥∥
≤

∥∥∥∥∥∂F (h0;xt00 ; ...;xtkk ;x
t2K−2−k

k+1)

∂xtkk
−
∂F (h0;xt00 ; ...;xtkk ;x

tk+1

k+1)

∂xtkk

∥∥∥∥∥ ·∥∥∥∥∥∂F (h0;xt00 ; ...;x
tk+1

k+1 ;x
t2K−3−k

k+2)

∂F (h0;xt00 ; ...;x
tk+1

k+1)
· · ·

∂F (h0;xt00 ; ...;x
tK−2

K−2 ;xtKK−1)

∂F (h0;xt00 ; ...;x
tK−2

K−2)
·

∂L
(
F (h0;xt00 ; ...;x

tK−1

K−1), l
)

∂F (h0;xt00 ; ...;x
tK−1

K−1)

∥∥∥∥∥∥
≤ LM

∥∥∥xt2K−2−k

k+1 − xtk+1

k+1

∥∥∥ .
11

Under review as a conference paper at ICLR 2020

We repeatedly perform the above procedure, until we get the error in the last step,

‖∆K−1‖ =

∥∥∥∥∥
(
∂F (h0;xt00 ; ...;x

tK−2

K−2 ;xtKK−1)

∂xtkk
−
∂F (h0;xt00 ; ...;x

tK−2

K−2 ;x
tK−1

K−1)

∂xtkk

)
·

∂L
(
F (h0;xt00 ; ...;x

tK−1

K−1), l
)

∂F (h0;xt00 ; ...;x
tK−1

K−1)

∥∥∥∥∥∥
≤

∥∥∥∥∥∂F (h0;xt00 ; ...;x
tK−2

K−2 ;xtKK−1)

∂xtkk
−
∂F (h0;xt00 ; ...;x

tK−2

K−2 ;x
tK−1

K−1)

∂xtkk

∥∥∥∥∥ ·∥∥∥∥∥∥
∂L
(
F (h0;xt00 ; ...;x

tK−1

K−1), l
)

∂F (h0;xt00 ; ...;x
tK−1

K−1)

∥∥∥∥∥∥
≤ LM

∥∥∥xtKK−1 − x
tK−1

K−1

∥∥∥ .
Add them together and we will have

∥∥∥∇xk
L(F (h0;xt00 ;xt11 ; ...;x

tK−1

K−1), l)− Gxk
(x
t2K−1

0 ;x
t2K−2

1 ; ...;xtKK−1)
∥∥∥

= ‖∆k + ∆k+1 + ...+ ∆K−1‖
≤ ‖∆k‖+ ‖∆k+1‖+ ...+ ‖∆K−1‖

≤ LM
K−1∑
i=k

∥∥∥xt2K−1−i

i − xtii
∥∥∥ .

Lemma 2. Assume Assumption 2 and 3 exist. The second moment of the difference between DSP
and BP gradient satisfies,

∥∥∥∇f(xt00 ; ...;x
tK−1

K−1)− G(x
t2K−1

0 ; ...;xtKK−1)
∥∥∥2

≤ 1

2
L2c0

K−1∑
k=0

k + 1

K + 1

∥∥∥xt2K−1−k

k − xtkk
∥∥∥2

.

Proof. Via summation of Lemma 1 we can get,

∥∥∥∇f(xt00 ;xt11 ; ...;x
tK−1

K−1)− G(x
t2K−1

0 ;x
t2K−2

1 ; ...;xtKK−1)
∥∥∥ ≤ LM K−1∑

k=0

(k + 1)
∥∥∥xt2K−1−k

k − xtkk
∥∥∥ .

Then we have,

12

Under review as a conference paper at ICLR 2020

∥∥∥∇f(xt00 ;xt11 ; ...;x
tK−1

K−1)− G(x
t2K−1

0 ;x
t2K−2

1 ; ...;xtKK−1)
∥∥∥2

≤ L2M2

(
K−1∑
k=0

(k + 1)
∥∥∥xt2K−1−k

k − xtkk
∥∥∥)2

= L2M2

(
K−1∑
k=0

(k + 1)

)2(K−1∑
k=0

k + 1∑K−1
k=0 (k + 1)

∥∥∥xt2K−1−k

k − xtkk
∥∥∥)2

≤ L2M2

(
K−1∑
k=0

(k + 1)

)2 K−1∑
k=0

k + 1∑K−1
k=0 (k + 1)

∥∥∥xt2K−1−k

k − xtkk
∥∥∥2

=
1

2
L2M2K(K + 1)

K−1∑
k=0

(k + 1)
∥∥∥xt2K−1−k

k − xtkk
∥∥∥2

.

B DSP WITH SGD

Theorem 1. Assume Assumptions 1, 2 and 3 hold. Let c0 = M2K(K + 1)2, and c1 = −(∆t2 +

2) +
√

(∆t2 + 2)2 + 2c0∆t2. If the learning rate αn ≤ c1
Lc0∆t2 , then

∑N−1
n=0 αnE

∥∥∥∇f(xn
′
)
∥∥∥2

∑N−1
n=0 αn

≤
2
[
f(x0)− f∗

]∑N−1
n=0 αn

+
Lσ2(2 +K∆t2 + 1

4Kc1)
∑N−1
n=0 α

2
n∑N−1

n=0 αn
.

Proof. According to Lipschitz continuous, we have

f(xn+1)− f(xn) ≤
〈
∇f(xn), xn+1 − xn

〉
+
L

2

∥∥xn+1 − xn
∥∥2

= −αn 〈∇f(xn),G(xn; ξ)〉+
Lα2

n

2
‖G(xn; ξ)‖2

= −αn
〈
∇f(xn)−∇f(xn

′
),G(xn; ξ)

〉
− αn

〈
∇f(xn

′
),G(xn; ξ)

〉
+
Lα2

n

2
‖G(xn; ξ)‖2

≤ 1

2L

∥∥∥∇f(xn)−∇f(xn
′
)
∥∥∥2

+
Lα2

n

2
‖G(xn; ξ)‖2 − αn

〈
∇f(xn

′
),G(xn; ξ)

〉
+
Lα2

n

2
‖G(xn; ξ)‖2

≤ L

2

∥∥∥xn − xn′∥∥∥2

− αn
〈
∇f(xn

′
),G(xn; ξ)

〉
+ Lα2

n ‖G(xn; ξ)‖2 .

Take expectation regarding ξ on both sides,

13

Under review as a conference paper at ICLR 2020

E
[
f(xn+1)

]
− f(xn) ≤ L

2

∥∥∥xn − xn′∥∥∥2

− αn
〈
∇f(xn

′
),G(xn)

〉
+ Lα2

nE ‖G(xn; ξ)‖2

=
L

2

∥∥∥xn − xn′∥∥∥2

+
αn
2

(∥∥∥∇f(xn
′
)− G(xn)

∥∥∥2

−
∥∥∥∇f(xn

′
)
∥∥∥2

− ‖G(xn)‖2
)

+ Lα2
n

(
‖G(xn)‖2 + Var [G(xn; ξ)]

)
≤ L

2

∥∥∥xn − xn′∥∥∥2

+
αn
2

∥∥∥∇f(xn
′
)− G(xn)

∥∥∥2

−
(αn

2
− Lα2

n

)
‖G(xn)‖2

− αn
2

∥∥∥∇f(xn
′
)
∥∥∥2

+ Lα2
nσ

2

≤
K−1∑
k=0

[
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

] ∥∥∥xnk − xn′k ∥∥∥2

−
(αn

2
− Lα2

n

)
‖G(xn)‖2

− αn
2

∥∥∥∇f(xn
′
)
∥∥∥2

+ Lα2
nσ

2.

The last inequality utilizes Lemma 2. Consider the first term and take expectation,

E
∥∥∥xnk − xn′k ∥∥∥2

= E

∥∥∥∥∥
n−1∑

i=n−∆tk

−αiGxk
(xi; ξ)

∥∥∥∥∥
2

≤ ∆tk

n−1∑
i=n−∆tk

α2
iE
∥∥Gxk(xi; ξ)

∥∥2

≤ ∆t

n−1∑
i=n−∆t

α2
i

(∥∥Gxk
(xi)

∥∥2
+ σ2

)
.

Take the total expectation and perform summation for it,

N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
E
∥∥∥xnk − xn′k ∥∥∥2

≤
N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t

n−1∑
i=n−∆t

α2
i

(
E
∥∥Gxk

(xi)
∥∥2

+ σ2
)

≤
N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t ·∆t · α2

n

(
E ‖Gxk

(xn)‖2 + σ2
)
.

Take the total expectation and perform summation for all the terms,

14

Under review as a conference paper at ICLR 2020

E
[
f(xN)

]
− f(x0)

≤
N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t2α2

n

(
E ‖Gxk

(xn)‖2 + σ2
)

−
N−1∑
n=0

(αn
2
− Lα2

n

)
E
K−1∑
k=0

‖Gxk
(xn)‖2 −

N−1∑
n=0

αn
2
E
∥∥∥∇f(xn

′
)
∥∥∥2

+ Lσ2
N−1∑
n=0

α2
n

=

N−1∑
n=0

K−1∑
k=0

((
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t2α2

n −
αn
2

+ Lα2
n

)
E ‖Gxk

(xn)‖2

+

N−1∑
n=0

K−1∑
k=0

(
L

2
+

1

4
αnL

2M2K(K + 1)(k + 1)

)
∆t2α2

nσ
2 −

N−1∑
n=0

αn
2
E
∥∥∥∇f(xn

′
)
∥∥∥2

+ Lσ2
N−1∑
n=0

α2
n

≤
N−1∑
n=0

K−1∑
k=0

1

4
αn
(
L2M2K(K + 1)2∆t2α2

n +
(
2∆t2 + 4

)
Lαn − 2

)
E ‖Gxk(xn)‖2

+

N−1∑
n=0

(
1

2
LK +

1

8
αnL

2M2K2(K + 1)2

)
∆t2α2

nσ
2 −

N−1∑
n=0

αn
2
E
∥∥∥∇f(xn

′
)
∥∥∥2

+ Lσ2
N−1∑
n=0

α2
n

≤
N−1∑
n=0

(
1

2
LK +

1

8
αnL

2M2K2(K + 1)2

)
∆t2α2

nσ
2 −

N−1∑
n=0

αn
2
E
∥∥∥∇f(xn

′
)
∥∥∥2

+ Lσ2
N−1∑
n=0

α2
n.

The last inequality utilizes the restriction on the learning rate. Then we have

∑N−1
n=0 αnE

∥∥∥∇f(xn
′
)
∥∥∥2

∑N−1
n=0 αn

≤
2
[
f(x0)− f∗

]∑N−1
n=0 αn

+
Lσ2

∑N−1
n=0 α

2
n

[
2 +K∆t2 + 1

4αnLM
2K2(K + 1)2∆t2

]∑N−1
n=0 αn

.

C DSP WITH MOMENTUM SGD

The SUM method also implies the following recursions,

xn+1 +
β

1− β
vn+1 = xn +

β

1− β
vn − α

1− β
G(xn; ξ), n ≥ 0

vn+1 = βvn + ((1− β)s− 1)αG(xn; ξ), n ≥ 0.

(7)

where vn is given by

vn =

{
xn − xn−1 + sαG(xn−1; ξ), n ≥ 1

0, n = 0.
(8)

Let zn = xn + β
1−β v

n.

15

Under review as a conference paper at ICLR 2020

Lemma 3. Assume Assumption 1 exists. Let c2 = ((1−β)s−1)2

(1−β)2 , then

N−1∑
n=0

E ‖vn‖2 ≤ c2α2
N−1∑
n=0

E ‖G(xn)‖2 + c2σ
2α2N.

Proof. Let α̂ = ((1− β)s− 1)α. From Eq. (7),

vn+1 = βvn + α̂G(xn; ξ).

Note that v0 = 0. Then

vn = α̂

n−1∑
i=0

βn−1−iG(xi; ξ).

Then we have,

E ‖vn‖2 = α̂2E

∥∥∥∥∥
n−1∑
i=0

βn−1−iG(xi; ξ)

∥∥∥∥∥
2

= α̂2

(
n−1∑
i=0

βn−1−i

)2

E

∥∥∥∥∥
n−1∑
i=0

βn−1−i∑n−1
i=0 β

n−1−i
G(xi; ξ)

∥∥∥∥∥
2

≤ α̂2

(
n−1∑
i=0

βn−1−i

)2 n−1∑
i=0

βn−1−i∑n−1
i=0 β

n−1−i
E
∥∥G(xi; ξ)

∥∥2

= α̂2
n−1∑
i=0

βn−1−i
n−1∑
i=0

βn−1−i ∥∥G(xi)
∥∥2

+ α̂2σ2

(
n−1∑
i=0

βn−1−i

)2

≤ α̂2

1− β

n−1∑
i=0

βn−1−i ∥∥G(xi)
∥∥2

+
α̂2σ2

(1− β)2

= (1− β)c2α
2
n−1∑
i=0

βn−1−i ∥∥G(xi)
∥∥2

+ c2α
2σ2.

Take the total expectation and perform summation,

N−1∑
n=0

E
[
‖vn‖2

]
≤ (1− β)c2α

2
N−1∑
n=0

n−1∑
i=0

βn−1−iE
∥∥G(xi)

∥∥2
+ c2α

2σ2N

= (1− β)c2α
2
N−2∑
i=0

N−1∑
n=i+1

βn−1−iE
∥∥G(xi)

∥∥2
+ c2α

2σ2N

= (1− β)c2α
2
N−2∑
i=0

1− βN−1−i

1− β
E
∥∥G(xi)

∥∥2
+ c2α

2σ2N

≤ c2α2
N−2∑
n=0

E ‖G(xn)‖2 + c2σ
2α2N ≤ c2α2

N−1∑
n=0

E ‖G(xn)‖2 + c2σ
2α2N.

Lemma 4. Assume Assumption 1 exists, then

N−1∑
n=0

E
∥∥∥xn − xn′∥∥∥2

≤ 2∆t2(c2 + s2)α2
N−1∑
n=0

E ‖G(xn)‖2 + 2∆t2σ2(c2 + s2)α2N.

16

Under review as a conference paper at ICLR 2020

Proof. First take expectation regarding ξ,

E
∥∥∥xn − xn′∥∥∥2

=

K−1∑
k=0

E
∥∥∥xnk − xn′k ∥∥∥2

=

K−1∑
k=0

E

∥∥∥∥∥
n−1∑

i=n−∆tk

vi+1
k − sαGxk

(xi; ξ)

∥∥∥∥∥
2

≤
K−1∑
k=0

∆tk

n−1∑
i=n−∆tk

E
∥∥vi+1
k − sαGxk

(xi; ξ)
∥∥2

≤
K−1∑
k=0

2∆tk

n−1∑
i=n−∆tk

(
E
∥∥vi+1
k

∥∥2
+ s2α2E

∥∥Gxk
(xi; ξ)

∥∥2
)

≤
K−1∑
k=0

2∆t

n−1∑
i=n−∆t

(
E
∥∥vi+1
k

∥∥2
+ s2α2E

∥∥Gxk
(xi; ξ)

∥∥2
)

= 2∆t

n−1∑
i=n−∆t

(
E
∥∥vi+1

∥∥2
+ s2α2E

∥∥G(xi; ξ)
∥∥2
)

≤ 2∆t

n−1∑
i=n−∆t

(
E
∥∥vi+1

∥∥2
+ s2α2

∥∥G(xi)
∥∥2

+ s2α2σ2
)
.

Take total expectation on both sides and perform summation,

N−1∑
n=0

E
∥∥∥xn − xn′∥∥∥2

≤ 2∆t

N−1∑
n=0

n−1∑
i=n−∆t

(
E
∥∥vi+1

∥∥2
+ s2α2E

∥∥G(xi)
∥∥2

+ s2α2σ2
)

≤ 2∆t2
N−2∑
n=0

(
E
∥∥vn+1

∥∥2
+ s2α2E ‖G(xn)‖2 + s2α2σ2

)
≤ 2∆t2

N−1∑
n=0

E ‖vn‖2 + 2∆t2s2α2
N−1∑
n=0

E ‖G(xn)‖2 + 2∆t2s2α2σ2N

≤ 2∆t2(c2 + s2)α2
N−1∑
n=0

E
[
‖G(xn)‖2

]
+ 2∆t2σ2(c2 + s2)α2N.

Theorem 2. Assume Assumption 1, 2 and 3 hold. Let c2 = ((1−β)s−1)2

(1−β)2 , c3 = M2K(K +

1)2∆t2(c2 + s2), c4 = 3 + β2c2 + 2(1− β)2∆t2(c2 + s2), and c5 = 2+β2c2
1−β + 2(1− β)∆t2(c2 +

s2) +
−c4+
√
c24+4(1−β)2c3
2(1−β) . If the learning rate α is fixed and satisfies α ≤ −c4+

√
c24+4(1−β)2c3

2(1−β)c3L
,

then

1

N

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

≤ 2(1− β)(f(x0)− f∗)
Nα

+ c5σ
2Lα.

Proof. According to Lipschitz continuous gradient,

17

Under review as a conference paper at ICLR 2020

f(zn+1)− f(zn)

≤
〈
∇f(zn), zn+1 − zn

〉
+
L

2

∥∥zn+1 − zn
∥∥2

= − α

1− β
〈∇f(zn),G(xn; ξ)〉+

Lα2

2(1− β)2
‖G(xn; ξ)‖2

= − α

1− β
〈∇f(zn)−∇f(xn),G(xn; ξ)〉 − α

1− β
〈∇f(xn),G(xn; ξ)〉

+
Lα2

2(1− β)2
‖G(xn; ξ)‖2

≤ 1

2

(
1

L
‖∇f(zn)−∇f(xn)‖2 +

Lα2

(1− β)2
‖G(xn; ξ)‖2

)
− α

1− β
〈∇f(xn),G(xn; ξ)〉+

Lα2

2(1− β)2
‖G(xn; ξ)‖2

=
1

2L
‖∇f(zn)−∇f(xn)‖2 − α

1− β
〈∇f(xn),G(xn; ξ)〉+

Lα2

(1− β)2
‖G(xn; ξ)‖2 .

Take expectation regarding ξ on both sides,

E
[
f(zn+1)

]
− f(zn)

≤ 1

2L
‖∇f(zn)−∇f(xn)‖2 − α

1− β
〈∇f(xn),G(xn)〉+

Lα2

(1− β)2
‖G(xn)‖2 +

Lα2

(1− β)2
σ2

=
1

2L
‖∇f(zn)−∇f(xn)‖2 − α

1− β

〈
∇f(xn)−∇f(xn

′
),G(xn)

〉
− α

1− β

〈
∇f(xn

′
),G(xn)

〉
+

Lα2

(1− β)2
‖G(xn)‖2 +

Lα2

(1− β)2
σ2

≤ 1

2L
‖∇f(zn)−∇f(xn)‖2 +

1

2

(
1

L

∥∥∥∇f(xn)−∇f(xn
′
)
∥∥∥2

+
Lα2

(1− β)2
‖G(xn)‖2

)
+

α

2(1− β)

(∥∥∥∇f(xn
′
)− G(xn)

∥∥∥2

−
∥∥∥∇f(xn

′
)
∥∥∥2

− ‖G(xn)‖2
)

+
Lα2

(1− β)2
‖G(xn)‖2 +

Lα2

(1− β)2
σ2

= − α

2(1− β)

∥∥∥∇f(xn
′
)
∥∥∥2

+
1

2L
‖∇f(zn)−∇f(xn)‖2 +

1

2L

∥∥∥∇f(xn)−∇f(xn
′
)
∥∥∥2

+
α

2(1− β)

∥∥∥∇f(xn
′
)− G(xn)

∥∥∥2

−
(

α

2(1− β)
− 3Lα2

2(1− β)2

)
‖G(xn)‖2 +

Lα2

(1− β)2
σ2.

Take the total expectation and perform summation,

N−1∑
n=0

E
[

1

2L
‖∇f(zn)−∇f(xn)‖2

]
≤
N−1∑
n=0

L

2
E ‖zn − xn‖2 =

N−1∑
n=0

Lβ2

2(1− β)2
E ‖vn‖2 .

18

Under review as a conference paper at ICLR 2020

N−1∑
n=0

E
[

1

2L

∥∥∥∇f(xn)−∇f(xn
′
)
∥∥∥2

+
α

2(1− β)

∥∥∥∇f(xn
′
)− G(xn)

∥∥∥2
]

≤
N−1∑
n=0

L

2
E
∥∥∥xn − xn′∥∥∥2

+
α

4(1− β)
L2M2K(K + 1)

K−1∑
k=0

(k + 1)

N−1∑
n=0

E
∥∥∥xnk − xn′k ∥∥∥2

≤
N−1∑
n=0

L

2
E
∥∥∥xn − xn′∥∥∥2

+
α

4(1− β)
L2M2K(K + 1)2

N−1∑
n=0

E
∥∥∥xn − xn′∥∥∥2

≤
N−1∑
n=0

L

2

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
E
∥∥∥xn − xn′∥∥∥2

.

Then we have,

E
[
f(zN)

]
− f(z0)

≤ − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

−
(

α

2(1− β)
− 3Lα2

2(1− β)2

)N−1∑
n=0

E ‖G(xn)‖2 +
Lσ2α2

(1− β)2
N

+

N−1∑
n=0

Lβ2

2(1− β)2
E ‖vn‖2 +

N−1∑
n=0

L

2

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
E
∥∥∥xn − xn′∥∥∥2

≤ − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

−
(

α

2(1− β)
− 3Lα2

2(1− β)2

)N−1∑
n=0

E ‖G(xn)‖2 +
Lσ2α2

(1− β)2
N

+
Lβ2

2(1− β)2

(
c2α

2
N−1∑
n=0

E ‖G(xn)‖2 + c2σ
2α2N

)

+
L

2

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
·[

2∆t2(c2 + s2)α2
N−1∑
n=0

E ‖G(xn)‖2 + 2∆t2σ2(c2 + s2)α2N

]

= − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

−
[

α

2(1− β)
− α2

(
3L

2(1− β)2
+

Lβ2c2
2(1− β)2

+

L

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
∆t2(c2 + s2)

)]
·
N−1∑
n=0

E ‖G(xn)‖2

+ σ2α2N

[
L

(1− β)2
+

Lβ2c2
2(1− β)2

+ L

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
∆t2(c2 + s2)

]
= − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

+
α

2(1− β)2
[(1− β)M2K(K + 1)2∆t2(c2 + s2)L2α2+

(
3 + β2c2 + 2(1− β)2∆t2(c2 + s2)

)
Lα− (1− β)] ·

N−1∑
n=0

E ‖G(xn)‖2

+ σ2α2N

[
L

(1− β)2
+

Lβ2c2
2(1− β)2

+ L

(
1 +

α

2(1− β)
LM2K(K + 1)2

)
∆t2(c2 + s2)

]
.

19

Under review as a conference paper at ICLR 2020

The second inequality utilizes Lemma 3 and 4. According to the restriction on the learning rate, we
can remove the second term in the last equality,

f∗ − f(x0) ≤ − α

2(1− β)

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

+ σ2Lα2N

[
1

(1− β)2
+

β2c2
2(1− β)2

+(
1 +

α

2(1− β)
LM2K(K + 1)2

)
∆t2(c2 + s2)

]
.

Therefore we have,

1

N

N−1∑
n=0

E
∥∥∥∇f(xn

′
)
∥∥∥2

≤ 2(1− β)(f∗ − f(x0))

Nα

+ σ2Lα

[
2 + β2c2

1− β
+
(
2(1− β) + αLM2K(K + 1)2

)
∆t2(c2 + s2)

]
.

20

	Introduction
	Background
	Diversely Stale Parameters
	Layer-wise Staleness
	DSP Gradient
	Batch Pipeline for Parallel Training

	Convergence Analysis
	DSP with SGD
	DSP with Momentum SGD

	Experiments
	Conclusion
	Basic Lemmas
	DSP with SGD
	DSP with Momentum SGD

