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ABSTRACT

We introduce CuLE (CUDA Learning Environment), a CUDA port of the Atari
Learning Environment (ALE) which is used for the development of deep rein-
forcement algorithms. CuLE overcomes many limitations of existing CPU-based
emulators and scales naturally to multiple GPUs. It leverages GPU paralleliza-
tion to run thousands of games simultaneously and it renders frames directly on
the GPU, to avoid the bottleneck arising from the limited CPU-GPU communica-
tion bandwidth. CuLE generates up to 155M frames per hour on a single GPU,
a finding previously achieved only through a cluster of CPUs. Beyond highlight-
ing the differences between CPU and GPU emulators in the context of reinforce-
ment learning, we show how to leverage the high throughput of CuLE by effective
batching of the training data, and show accelerated convergence for A2C+V-trace.
CuLE is available at [URL revealed upon acceptance].

1 INTRODUCTION

Figure 1: In a typical DRL system, environments
run on CPUs and DNNs on GPUs. The limited
CPU-GPU communication bandwidth and small
set of environments prevent full GPU usage.

Initially triggered by the success of DQN Mnih
et al. (2015), research in Deep Reinforcement
Learning (DRL) has grown in popularity in
the last years Lillicrap et al. (2015); Mnih
et al. (2016; 2015), leading to intelligent agents
that solve non-trivial tasks in complex envi-
ronments. But DRL also soon proved to be a
challenging computational problem, especially
if one wants to achieve peak performance on
modern architectures.

Fig. 1 is a schematic representation of a modern
DRL algorithm implementation: CPU environ-
ments execute a set of actions {at−1} at time
t−1, and produce observable states {st} and re-
wards {rt}. These data are migrated to a Deep
Neural Network (DNN) on the GPU to even-
tually select the next action set, {at}, which is
copied back to the CPU. This sequence of operations defines the inference path, whose main aim is
to generate training data. A training buffer on the GPU stores the states generated on the inference
path; this is periodically used to update the DNN’s weights θ, according to the training rule of the
DRL algorithm (training path). A computationally efficient DRL system should balance the data
generation and training processes, while minimizing the communication overhead along the infer-
ence path and consuming, along the training path, as many data per second as possible Babaeizadeh
et al. (2016; 2017). The solution to this problem is however non-trivial and many DRL implementa-
tions do not leverage the full computational potential of modern systems Stooke & Abbeel (2018b).

We focus our attention on the inference path and move from the traditional CPU implementation of
the Atari Learning Environment (ALE), a set of Atari 2600 games that emerged as an excellent DRL
benchmark Bellemare et al. (2013); Machado et al. (2017). We show that significant performance
bottlenecks primarily stem from CPU environment emulation: the CPU cannot run a large set of
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environments simultaneously, the CPU-GPU communication bandwidth is limited, and the GPU
is consequently underutilized. To mitigate these limitations we introduce CuLE (CUDA Learning
Environment), a DRL library containing a CUDA enabled Atari 2600 emulator, that renders frames
directly in the GPU memory, avoids off-chip communication and achieves high GPU utilization by
processing thousands of environments in parallel—something so far achievable only through large
and costly distributed systems. Our contribution can be summarized as follow:

(1) We identify common computational bottlenecks in several DRL implementations that prevent
effective utilization of high throughput compute units and effective scaling to distributed systems.

(2) We introduce CuLE, a library for GPU emulation of Atari games, and demonstrate that GPU
emulation is a valid alternative to the CPU-based approach, as it improves the utilization of the
computational resources. Experiments on different machines show that CuLE on a single GPU
generates more Frames Per Second1 (FPS) on the inference path (between 39K and 125K, depending
on the game, see Table 1) compared to its CPU counterpart (between 12.5K and 19.8K).

(3) We introduce an effective batching strategy for large environment sets, that allows leveraging the
high throughput generated by CuLE to quickly reach convergence with A2C+V-trace Espeholt et al.
(2018), and show effective scaling on multiple GPUs. This leads to the consumption of 26-68K
FPS along the training path on a single GPU, and up to 187K FPS using four GPUs, comparable
(Table 1) to those achieved by large clusters Stooke & Abbeel (2018a); Espeholt et al. (2018).

(4) We analyze advantages and limitations of GPU emulation with CuLE in DRL, including the
effect of thread divergence and of the lower (compared to CPU) number of instructions per second
per thread, and hope that our insights may be of value for the development of efficient DRL systems.

Table 1: Average training times, raw frames to reach convergence, FPS, and computational resources
of existing accelerated DRL schemes, compared to CuLE. Data from Horgan et al. (2018); FPS are
taken from the corresponding papers, if available, and measured on the entire Atari suite for CuLE.

Algorithm Time Frames FPS Resources Notes

Ape-X DQN Horgan et al. (2018) 5 days 22,800M 50K 376 cores, 1 GPU —
Rainbow Hessel et al. (2017) 10 days 200M — 1 GPU —
Distributional (C51) Bellemare et al. (2017) 10 days 200M — 1 GPU —
A3C Mnih et al. (2016) 4 days — 2K 16 cores —
GA3C Babaeizadeh et al. (2016; 2017) 1 day — 8K 16 cores, 1 GPU —
Prioritized Dueling Wang et al. (2015) 9.5 days 200M — 1 GPU —
DQN Mnih et al. (2015) 9.5 days 200M — 1 GPU —

Gorila DQN Nair et al. (2015) 4 days — — > 100 cores —
Unreal Jaderberg et al. (2016) — 250M — 16 cores —

Stooke (A2C / DQN) Stooke & Abbeel (2018b) hours 200M 35K 40 CPUs, 8 GPUs (DGX-1) —
IMPALA (A2C + V-Trace) Espeholt et al. (2018) mins/hours 200M 250K 100-200 cores, 1 GPU —

CuLE (emulation only) — — 41K-155K System I (1 GPU) 4096 ALEs
CuLE (inference only, A2C, single batch) — — 39K-125K System I (1 GPU) 4096 ALEs
CuLE (training, A2C + V-trace, multiple batches) 1 hour 200M 26K-68K System I (1 GPU) 1200 ALEs
CuLE (training, A2C + V-trace, multiple batches)* mins 200M 142-187K System III (4 GPUs) 1200×4 ALEs

*FPS measured on Asterix, Assault, MsPacman, and Pong.

2 RELATED WORK

The wall clock convergence time of a DRL algorithm is determined by two main factors: its sample
efficiency, and the computational efficiency of its implementation. Here we analyze the sample and
computational efficiency of different DRL algorithms, in connection with their implementation.

We first divide DRL algorithms into policy gradient and Q-value methods, as in Stooke & Abbeel
(2018b). Q-learning optimizes the error on the estimated action values as a proxy for policy opti-

1Raw frames are reported here and in the rest of the paper, unless otherwise specified. These are the frames
that are actually emulated, but only 25% of them are rendered and used for training. Training frames are
obtained dividing the raw frames by 4—see also Espeholt et al. (2018).
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mization, whereas policy gradient methods directly learn the relation between a state, st, and the
optimal action, at; since at each update they follow, by definition, the gradient with respect to the
policy itself, they improve the policy more efficiently. Policy methods are also considered more gen-
eral, e.g. they can handle continuous actions easily. Also the on- or off-policy nature of an algorithm
profoundly affects both its sample and computational efficiency. Off-policy methods allow re-using
experiences multiple times, which directly improves the sample efficiency; additionally, old data
stored in the GPU memory (replay buffer in Fig. 1) can be used to continuously update the DNN on
the GPU, leading to high GPU utilization without saturating the inference path. The replay buffer
has a positive effect on the stability of learning as well Mnih et al. (2015). On-policy algorithms
saturate the inference path more easily, as frames have to be generated on-the-fly using the current
policy and moved from the CPU emulators to the GPU for processing with the DNN. On-policy up-
dates are generally effective but they are also more prone to fall into local minima because of noise,
especially if the number of environment is small — this is the reason why on-policy algorithms
largely benefit (in term of stability) from a significant increase of the number of environments.

Table 2: Systems used for experiments.

System Intel CPU NVIDIA GPU

I 12-core Core i7-5930K @3.50GHz Titan V
II 6-core Core i7-8086K @5GHz Tesla V100
III 20-core Core E5-2698 v4 @2.20GHz × 2 Tesla V100 × 8, NVLink

Among the policy gradient methods, A3C Mnih
et al. (2016) is an asynchronous, on-policy,
actor-critic algorithm where 16 CPU agents use
copies of the same DNN to interact with CPU
environments; N -step bootstrapping is used to
reduce the variance of the critic, V (st; θ): the
agents send updates to the DNN after every
N = 5 actions, and the new set of global θ
weights are broadcast to all agents after each
update. A3C can solve an Atari game in approximately 4 days; its hybrid CPU-GPU implemen-
tation (GA3C Babaeizadeh et al. (2016; 2017)) stores a single DNN on the GPU, collects CPU
data in a system of queues to send them to the GPU in large batches, and achieves convergence
in 1 day. Recent (and faster) policy gradient implementations, like PAAC Clemente et al. (2017),
PPO Schulman et al. (2017), or A2C OpenAI (2017), store training data directly in a GPU training
buffer, as depicted in Fig. 1, which is well representative of the flow of computation of modern DRL
algorithms.

Policy gradient algorithms are often on-policy: their efficient update strategy is counterbalanced by
the bottlenecks in the inference path and competition for the use of the GPU along the inference
and training path at the same time. Acceleration by scaling to a distributed system is possible but
inefficient in this case: in IMPALA Espeholt et al. (2018) a cluster with hundreds of CPU cores is
needed to accelerate A2C, while training is desynchronized to hide latency. As a consequence, the
algorithm becomes off-policy, and V-trace was introduced to deal with off-policy data (see details in
the Appendix). Acceleration on a DGX-1 has also been demonstrated for A2C and PPO, using large
batch sizes to increase the GPU occupancy, and asynchronous distributed models that hide latency,
but require periodic updates to remain synchronized Stooke & Abbeel (2018b) and overall achieves
sublinear scaling with the number of GPUs. In practice, the efficiency generally scales sub-linearly
on distributed systems, and though Atari games can be solved in a few hours or even minutes, the
cost of such systems makes them prohibitive for many researchers.

Q-value methods, like DQN Mnih et al. (2015) and its more recent, improved versions (Dou-
bleDQN van Hasselt et al. (2015), Dueling Networks Wang et al. (2015), Prioritized Replay Schaul
et al. (2015), n-step learning Peng & Williams (1996), NoisyNets Fortunato et al. (2017), Rain-
bow Hessel et al. (2017)) are generally off-policy and can be accelerated more easily, as the infer-
ence and training path can be decoupled, with the GPU continuously feed with training data from
the replay buffer in Fig.1. Mapping the two paths on different devices is natural and effective, and
indeed DQN methods have been significantly accelerated on distributed systems (see Nair et al.
(2015) and Jaderberg et al. (2016) in Table 1). The replay buffer increases the sample efficiency, but
the overall convergence time has to pay the cost of using a Q-value method. Furthermore, imple-
mentation on large scale systems still incurs a communication overhead and thus generally achieves
sub-linear scaling on large distributed systems.

The best compromise between sample efficiency, computational efficiency and effectiveness of the
DNN update seems to be achieved by using an on-policy while correcting for stale data, gradient
policy methods like A2C+V-trace, which is therefore the algorithm analyzed in detail here, but still
suffers from computational bottlenecks in its CPU distributed implementation Espeholt et al. (2018).
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Other Data Generation Engines Frameworks to generate training experiences already exist, like
the well-known OpenAI Gym, built on top of the C++ Stella emulator Brockman et al. (2016) for
Atari games. Other frameworks that target specific problems, such as navigation Mirowski et al.
(2016), aim at creating large benchmark for DRL Tassa et al. (2018), or accelerate simulation on the
CPU with optimized C++ multi-threaded implementations, while also providing large, GPU-friendly
batches for inference and training Tian et al. (2017). To the best of our knowledge, however, none of
these attempts directly address the problem of optimizing the inference path, i.e., trying to increase
the number of environments while avoiding the CPU and bandwidth bottlenecks, by providing a
direct implementation of the environments on the GPU.

3 CUDA LEARNING ENVIRONMENT (CULE)

Figure 2: Our CUDA-based Atari emulator uses an
Atari CPU kernel to emulate the functioning of the
Atari CPU and advance the state of the game, and a sec-
ond TIA kernel to emulate the TIA and render frames
directly in GPU memory. For episode resetting we gen-
erate and store a cache of random initial states. Massive
parallelization on GPU threads allows the emulation of
thousands of Atari games in parallel.

Despite the number and variety of games
developed for the Atari 2600, it is rela-
tively simple to emulate the functioning
of its hardware much faster than real-time.
The Atari console has a 1.19Mhz CPU (to
execute the game instructions) and a 128
bytes RAM (containing the game state);
the code of each game is stored in a car-
tridge ROM (typically 2–4kB). The in-
struction set of each game contains both
game and rendering instructions; the first
ones are executed by the CPU, while the
second ones are sent to the Television In-
terface Adaptor (TIA), a secondary pro-
cessor embedded in the Atari hardware
that executes the rendering instructions to
update a limited set of registers and render
the 160 × 210 game screen using a 128-
colour palette.

In CuLE, we emulate the functioning of
many Atari consoles in parallel using the
CUDA programming model, where a se-
quential host program executes parallel
programs, known as kernels, on a GPU. In
a trivial mapping of the Atari emulator to
CUDA, a single thread emulates both the
Atari CPU and TIA to execute the ROM
code, update the Atari CPU and TIA reg-
isters as well as the game state in the 128 bytes RAM, and eventually render the pixels in the output
frame. However, the contrasting nature of the game code execution and renderings tasks, the first
dominated by reading from the RAM/ROM and writing tens of bytes to RAM, while the second
writes hundreds of pixels to the framebuffer, poses a serious issue in terms of performance, such
as thread divergence and an imbalanced number of registers required by the first and second tasks.
To mitigate these issues, CuLE uses two CUDA kernels: the first one first loads data from the GPU
global memory, where we store the state of each emulated Atari processor, and the 128 bytes RAM
data containing the current state of the game; it also reads ROM instructions from the constant GPU
memory, executes them to update the Atari CPU and game states, and stores the updated Atari CPU
and game states back into GPU global memory. It is important to notice that this first kernel does not
execute the TIA instructions read from the ROM, but copies them into the TIA instruction buffer in
GPU global memory, which we implemented to decouple the execution of the Atari CPU and TIA
instructions in CuLE. The second CuLE kernel emulates the functioning of the TIA processor: it first
reads the instructions stored in the TIA instruction buffer, execute them to update the TIA registers,
and renders the 160× 210 output framebuffer in global GPU memory. Despite this implementation
requires going through the TIA instruction twice, it has several advantages over the single-kernel
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trivial implementation. First of all, the requirements in terms of registers per thread and the chance
of having divergent code are different for the Atari CPU and TIA kernels, and the use of different
kernels achieves a better GPU usage. A second advantage that we exploit is that not all frames are
rendered in ALE: the input of the RL algorithm is the pixelwise maximum between the last two
frames in a sequence of four, so we can avoid calling the TIA kernel when rendering of the screen
is not needed. A last advantage, not exploited in our implementation yet, is that the TIA kernel may
be scheduled one the GPU with more than one thread per game, as rendering of diverse rows on the
screen is indeed a parallel operation - we leave this optimization for future developments of CuLE.

To better fit our execution model, our game reset strategy is also different from the one in the existing
CPU emulators, where 64 startup frames are executed at the end of each episode. Furthermore,
wrapper interfaces for RL, such as ALE, randomly execute an additional number of frames (up to
30) to introduce randomness into the initial state. This results into up to 94 frames to reset a game,
which may cause massive divergence between thousands of emulators executing in SIMD fashion on
a GPU. To address this issue, we generate and store a cache of random initial states (30 by default)
when a set of environments is initialized in CuLE. At the end of an episode, each emulator randomly
selects one of the cached states as a seed and copies it into the terminal emulator state.

Some of the choices made for the implementation of CuLE are informed by ease of debugging,
like associating one state update kernel to one environment, or need for flexibility, like emulating
the Atari console instead of directly writing CUDA code for each Atari game. A 1-to-1 mapping
between threads and emulators is not the most computationally efficient way to run Atari games on
a GPU, but it makes the implementation relatively straightforward and has the additional advantage
that the same emulator code can be executed on the CPU for debugging and benchmarking (in the
following, we will refer to this implementation as CuLECPU). Despite of this, the computational
advantage provided by CuLE over traditional CPU emulation remains significant, as shows in the
next Section.

4 EXPERIMENTS

Atari emulation We measure the FPS under different conditions: we get an upper bound on the
maximum achievable FPS in the emulation only case, when we emulate the environments and use a
random policy to select actions. In the inference only case, we measure the FPS along the inference
path: a policy DNN selects the actions, CPU-GPU data transfer occur for CPU emulators, while both
emulation and DNN inference run on the GPU when CuLE is used. This is the maximum throughput
achievable by off-policy algorithms, when data generation and consumption are decoupled and run
on different devices. In the training case, the entire DRL system is at work: emulation, inference,
and training may all run on the same GPU. This is representative of the case of on-policy algorithms,
but the FPS are also affected by the computational cost of the specific DRL update algorithm; in our
experiments we use a vanilla A2C OpenAI (2017), with N-step bootstrapping, and N = 5 as the
baseline (for details of A2C and off-policy correction with V-trace, see the Appendix).

FPS FPS per environment

(a) emulation only (b) inference only (c) emulation only (d) inference only

Figure 3: FPS and FPS / environment on System I in Table 2, for OpenAI Gym OpenAI (2017),
CuLECPU, and CuLE, as a function of the number of environments, under different load conditions:
emulation only, and inference only. The boxplots indicate the minimum, 25th, 50th, 75th percentiles
and maximum FPS, for the entire set of 57 Atari games.
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Table 3: Training FPS, DNN’s Update Per Second (UPS), time to reach a given score, and corre-
sponding number of training frames for four Atari games, A2C+V-trace, and different configurations
of the emulation engines, measured on System I in Table 2 (System III for the multi-GPU case). The
best metric in each row is in bold.

Engine OpenAI Gym CuLE, 1 GPU CuLE, 4 GPUs Game

Envs 120 120 120 1200 1200 1200 1200 1200×4

—

Batches 1 5 20 20 1 5 20 20×4
N-steps 5 5 20 20 5 5 20 20

SPU 5 1 1 1 5 1 1 1

Training KFPS 4.2 3.4 3.0 4.9 10.6 11.5 11.0 42.7

A
ss

au
ltUPS 7.0 28.3 24.7 4.1 1.8 9.6 9.1 8.9

Time [mins] 20.2 — 42.6 44.2 18.8 9.4 9.9 7.9
Training Mframes (for average score: 800) 5.0 — 7.5 13.0 12.0 6.5 6.5 18.0

Training KFPS 4.3 3.3 3.0 4.9 11.9 12.5 12.1 46.6

A
st

er
ixUPS 7.1 27.9 24.8 4.1 2.0 10.4 10.0 9.7

Time [mins] 8.1 35.2 14.4 27.1 — 14.0 3.4 2.5
Training Mframes (for average score: 1,000) 2.0 7.0 2.5 8.0 — 10.5 2.5 7.0

Training KFPS 4.0 3.3 2.8 4.8 9.0 9.6 9.2 35.5

M
sP

ac
m

an

UPS 6.7 27.1 23.7 4.0 1.5 8.0 7.7 7.4
Time [mins] 16.6 20.5 14.7 12.4 — 6.9 11.8 2.4

Training Mframes (for average score: 1,500) 4.0 4.0 2.5 3.5 — 4.0 6.5 3.0

Training KFPS 4.3 3.4 3.0 4.8 10.5 11.2 10.6 41.7K

Po
ngUPS 7.2 28.1 24.9 4.0 1.8 9.3 8.9 8.7

Time [mins] 21.2 12.2 8.4 8.7 — 5.9 3.1 2.4
Training Mframes (for average score: 18) 5.5 2.5 1.5 2.5 — 4.0 2.0 6.0

Figs. 3(a)-3(b) show the FPS generated by OpenAI Gym, CuLECPU, and CuLE, on the entire set of
Atari games, as a function of the number of environments. In the emulation only case, CPU emula-
tion is more efficient for a number of environments up to 128, when the GPU computational power
is not leveraged because of the low occupancy. For a larger number of environments, CuLE sig-
nificantly overcomes OpenAI Gym, for which FPS are mostly stable for 64 environments or more,
indicating that the CPU is saturated: the ratio between the median FPS generated by CuLE with
4096 environment (64K) and the peak FPS for OpenAI Gym (18K) is 3.56×. In the inference only
case there are two additional overheads: CPU-GPU communication (to transfer observations), and
DNN inference on the GPU. Consequently, CPU emulators achieve a lower FPS in inference only
when compared to emulation only; the effects of the overheads is more evident for a small number
of environments, while the FPS slightly increase with the number of environments without reaching
the emulation only FPS. CuLE’s FPS are also lower for inference only, because of the latency intro-
duced by DNN inference, but the FPS grow with the number of environments, suggesting that the
computational capability of the GPU is still far from being saturated.

(a) Asterix, GPU (b) Pong, GPU (c) Ms Pacman, GPU (d) Assault, GPU

Figure 4: FPS as a function of the environment step, measured on System I in Table 2 for emulation
only on four Atari games, 512 environments, for CuLE; each panel also shows the number of reset-
ting environments. FPS is higher at the beginning, when all environments are in similar states and
thread divergence within warps is minimized; after some steps, correlation is lost, FPS decreases
and stabilizes. Minor oscillations in FPS are possibly associated to more or less computational
demanding phases in the emulation of the environments (e.g., when a goal is scored in Pong).

Factors affecting the FPS Figs. 3(a)-3(b) shows that the throughput varies dramatically across
games: 4096 CuLECPU environments run at 27K FPS on Riverraid, but only 14K FPS for Boxing: a
1.93× difference, explained by the different complexity of the ROM code of each game. The ratio
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between the maximum and minimum FPS is amplified in the case of GPU emulation: Riverraid runs
in emulation only at 155K FPS when emulated by CuLE and 4096 environments, while UpNDown
runs at 41K FPS —a 3.78× ratio.

To better highlight the impact of thread divergence on throughput, we measure the FPS for CuLE,
emulation only, 512 environments, and four games (Fig. 4). All the environments share the same
initial state, but random action selection leads them to diverge after some steps. Each environment
resets at the end of an episode. The FPS is maximum at the very beginning, when all the envi-
ronments are in similar states and the chance to execute the same instruction in all the threads is
high. When they move towards different states, code divergence negatively impacts the FPS, until it
reaches an asymptotic value. This effect is present in all games and particularly evident for MsPac-
man in Fig. 4; it is not present in CPU emulation (see Appendix). Although divergence can reduce
FPS by 30% in the worst case, this has to be compared with case of complete divergence within each
thread and for each instruction, which would yield 1/32 ' 3% of the peak performances. Minor
oscillations of the FPS are also visible especially for games with a repetitive pattern (e.g. Pong),
where different environments can be more or less correlated with a typical oscillation frequency.

Figure 5: FPS generated by different
emulation engines on System I in Ta-
ble 2 for Assault, as a function of the
number of environments, and differ-
ent load conditions for A2C with N-
step bootstrapping, N = 5).

Performances during training Fig. 5 compares the FPS
generated by different emulation engines on a specific
game (Assault)2, for different load conditions, including the
training case, and number of environments. As expected,
when the entire training path is at work, the FPS decreases
even further. However, for CPU emulators, the difference
between FPS in the inference only and training cases de-
creases when the number of environments increases, as the
system is bounded by the CPU computational capability
and CPU-GPU communication bandwidth. In the case of
the CPU scaling to multiple GPUs would be ineffective for
on-policy algorithms, such GA3C Babaeizadeh et al. (2016;
2017), or sub-optimal, in the case of distributed systems Es-
peholt et al. (2018); Stooke & Abbeel (2018b). On the other
hand, the difference between inference only and training
FPS increases with the number of environments for CuLE,
because of the additional training overhead on the GPU.
The potential speed-up provided by CuLE for vanilla A2C
and Assault in Fig. 5 is 2.53× for 1,024 environments, but the system is bounded by the GPU com-
putational power; as a consequence, better batching strategies that reduce the training computational
overhead as well as scaling to multiple GPUs are effective to further increase the speed-up ratio, as
demonstrated later in this Section.

When data generation and training can be decoupled, like for off-policy algorithms, training can
be easily moved to a different GPU and the inference path can be used at maximum speed. The
potential speed-up provided by CuLE for off-policy algorithms is then given by the ratio between
the inference only median FPS for CuLE (56K) and CuLECPU (18K), which is 3.11× for 4,096
environments. Furthermore, since the FPS remains flat for CPU emulation, the advantage of CuLE
amplifies (for both on- and off-policy methods) with the number of environments.

Frames per second per environment Fig. 3(c)-3(d) show the FPS / environment for different
emulation engines on System I, as a function of the number of environments. For 128 environments
or fewer, CPU emulators generate frames at a higher rate (compared to CuLE), because CPUs are
optimized for low latency, and execute a high number of instructions per second per thread. How-
ever, the FPS / environment decrease with the number of environments, that have to share the same
CPU cores. Instead, the GPU architecture maximizes the throughput and has a lower number of
instructions per second per thread. As a consequence, the FPS / environment is smaller (compared
to CPU emulation) for a small number of environments, but they are almost constant up to 512 en-
vironments, and starts decreasing only after this point. In practice, CuLE environments provide an
efficient means of training with a diverse set of data and collect large statistics about the rewards
experienced by numerous agents, and consequently lowering the variance of the value estimate. On

2Other games for which we observe a similar behavior are reported in the Appendix, for sake of space.
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the other hand, samples are collected less efficiently in the temporal domain, which may worsen the
bias on the estimate of the value function by preventing the use of large N in N-step bootstrapping.
The last paragraph of this Section shows how to leverage the high throughput generated by CuLE,
considering these peculiarities.

Memory limitations Emulating a massively large number of environments can be problematic
considering the relatively small amount of GPU DRAM. Our PyTorch Paszke et al. (2017) imple-
mentation of A2C requires each environment to store 4 84x84 frames, plus some additional variables
for the emulator state. For 16K environments this translates into 1GB of memory, but the primary
issue is the combined memory pressure to store the DNN with 4M parameters and the meta-data dur-
ing training, including the past states: in practice training with 16K environments easily exhausts the
DRAM on a single GPU (while training on multiple GPUs naturally increases the amount of avail-
able RAM). Since we did not implement any data compression scheme as in Horgan et al. (2018),
we constrain our training configuration to fewer than 5K environments, but peak performance in
terms of FPS would be achieved for a higher number of environments - this is left as a possible
future improvement.

A2C We analyze in detail the case of A2C with CuLE on a single GPU. As a baseline, we consider
vanilla A2C, using 120 OpenAI Gym CPU environments that send training data to the GPU to update
the DNN (Fig. 6(a)) every N = 5 steps. This configuration takes, on average, 21.2 minutes (and
5.5M training frames) to reach a score of 18 for Pong and 16.6 minutes (4.0M training frames)
for a score of 1,500 on Ms-Pacman (Fig. 7, red line; first column of Table 3). CuLE with 1,200
environments generates approximately 2.5× more FPS compared to OpenAI Gym, but this alone is
not sufficient to improve the convergence speed (blue line, Fig. 7). CuLE generates larger batches
but, because FPS / environment is lower when compared to CPU emulation, fewer Updates Per
Second (UPS) are performed for training the DNN (Table 3), which is detrimental for learning.

(a) Single batch strategy (b) Multi batch strategy

Figure 6: Different batching strategies are defined
by the number of batches, N-Steps and Steps Per
Update (SPU) parameters. The on-policy single
batch case (panel a) is a special case of the more
general, off-policy multi batch approach (panel b).
The batching strategy affects both the computa-
tional and convergence aspects of the DRL algo-
rithm, as shown in Fig. 7 and in Table 3.

A2C+V-trace and batching strategy To bet-
ter leverage CuLE, and similar in spirit to the
approach in IMPALA Espeholt et al. (2018),
we employ a different batching strategy, illus-
trated in Fig. 6(b): environment steps occur in
parallel on the GPU, but training data are read
in batches to update the DNN every Steps Per
Update (SPU) steps. This batching strategy sig-
nificantly increases the DNN’s UPS at the cost
of a slight decrease in FPS (second columns of
OpenAI Gym and CuLE in Table 3), due to the
fact that the GPU has to dedicate more time to
training. Furthermore, as only the most recent
data in a batch are generated with the current
policy, we use V-trace Espeholt et al. (2018)
for off-policy correction. The net result is an
increase of the overall training time when 120
OpenAI Gym CPU environments are used, as this configuration pays for the increased training and
communication overhead, while the smaller batch size increases the variance in the estimate of the
value function and leads to noisy DNN updates (second column in Table 3, orange lines in Fig. 7).
Since CuLE does not suffer from the same computational bottlenecks, and at the same time benefits
from the variance reduction associated with the large number (1,200) of environments, using the
same batching strategy with CuLE reduces the time to reach a score of 18 for Pong and 1,500 for
Pacman respectively to 5.9 and 6.9 minutes. The number of frames required to reach the same score
is sometimes higher for CuLE (Table 3), which can lead to less sample efficient implementation
when compared to the baseline, but the higher FPS largely compensates for this. Extending the
batch size in the temporal dimension (N-steps bootstrapping, N = 20) increases the GPU compu-
tational load and reduces both the FPS and UPS, but it also reduces the bias in the estimate of the
value function, making each DNN update more effective, and leads to an overall decrease of the
wall clock training time, the fastest convergence being achieved by CuLE with 1,200 environments.
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Using OpenAI Gym with the same configuration results in a longer training time, because of the
lower FPS generated by CPU emulation.

(a) Assault (20M training frames total) (b) Asterix (20M training frames total)

(c) Ms-Pacman (20M training frames
total)

(d) Pong (8M training frames total)

Figure 7: Average testing score and standard deviation on four Atari
games as a function of the training time, for A2C+V-trace and System III
in Table 2, and different batching strategies (see also Table 3). Training
frames are double for the multi-GPU case (black line).

Scaling to multiple
GPUs The black line
in Fig. 7 represents the
case of A2C+V-Trace
with CuLE and 4 GPUs,
each emulating 1,200
environments. The FPS
grow almost linearly
with the number of
GPUs under this training
load: CuLE running on 4
GPUs allows generating
and consuming a com-
parable number of FPS
with respect to IMPALA
on a large CPU cluster
(Table 1)). This leads to
a dramatic reduction of
the convergence time, as
documented in Table 3,
with Pong almost solved
in less than 3 minutes.

Beyond A2C+V-trace,
we report in Table 4 the
time to generate 200M

frames for PPO and Rainbow DQN by running CuLE on 1 to 8 GPUs on a single system. We
use the PyTorch multiprocessing facilities to launch 1 process for each GPU and update gradients
in a distributed manner using the NVIDIA NCCL multi-GPU communication backend. This
Table shows efficient scaling of the training FPS with the number of GPUs. As in the case of
A2C+V-trace, an efficient batching strategy is then required to fully leverage the high throughput
generated by CuLE and can significantly improve these figures.

Table 4: Hours to complete 50M training frames (200M raw
frames) on System III in Table 2, by GPU count, for two
different DRL algorithms, 2,048 environments per GPU.

Algo 1 GPU 2 GPUs 4 GPUs 8 GPUs

PPO 9.38 4.45 2.12 1.1
Rainbow DQN 10.5 5.1 3.2 2.1

Generalization for different sys-
tems Table 5 reports the FPS for
the implementations of vanilla DQN,
A2C, and PPO, on System I and II
in Table 2. The speed-up in terms of
FPS provided by CuLE is consistent
across different systems, different al-
gorithms, and larger in percentage for
a large number of environments. Dif-
ferent DRL algorithms achieve differ-
ent FPS depending on the complexity
and frequency of the training step on the GPU.

The same Table also reports the minimum and maximum GPU utilization measured while running
each DRL algorithm. In its vanilla implementation DQN is characterized by long GPU idle times
occurring during CPU emulation, leading to a low GPU utilization. The GPU utilization increases
when emulation is moved to the GPU, while GPU peak utilization is reached during the DNN train-
ing step. GPU underutilization can be observed also for policy-gradient algorithms (A2C, PPO) and
CPU emulation; peak utilization is higher for PPO, because of its larger computational complexity.
Nearly full GPU utilization is achieved only by CuLE for a large number of environments.
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Algorithm Emulation engine FPS [GPU utilization %]
System I [256 envs] System I [1024 envs] System II [256 envs] System II [1024 envs]

OpenAI 6.4K [15-42%] 8.4K [0-69%] 10.8K [26-32%] 21.2K [28-75%]
DQN CuLECPU 7.2K [16-43%] 8.6K [0-72%] 6.8K [17-25%] 20.8K [8-21%]

CuLE 14.4K [16-99%] 25.6K [17-99%] 11.2K [48-62%] 33.2K [57-77%]

OpenAI 12.8K [2-15%] 15.2K [0-43%] 24.4K [5-23%] 30.4K [3-45%]
A2C CuLECPU 10.4K [2-15%] 14.2K [0-43%] 12.8K [1-18%] 25.6K [3-47%]

CuLE 19.6K [97-98%] 51K [98-100%] 23.2K [97-98%] 48.0K [98-99%]

OpenAI 12K [3-99%] 10.6K [0-96%] 16.0K [4-33%] 19.2K [4-62%]
PPO CuLECPU 10K [2-99%] 10.2K [0-96%] 9.2K [2-28%] 18.4K [3-61%]

CuLE 14K [95-99%] 36K [95-100%] 14.4K [43-98%] 28.0K [45-99%]

Table 5: Average FPS and min/max GPU utilization during training for Pong with different algo-
rithms and using different emulation engines on different systems (see Table 2); CuLE consistently
leads to higher FPS and GPU utilization.

5 DISCUSSION AND CONCLUSION

The common allocation of the tasks in a DRL system dictates that the environment should run on
CPUs, whereas GPUs should be dedicated to DNN operations. With most of the existing frame-
works Brockman et al. (2016); Mirowski et al. (2016); Tassa et al. (2018); Tian et al. (2017) follow-
ing this paradigm, the limited CPU-GPU communication bandwidth and CPU capability to emulate
a large number of environments represent two limiting factors to effectively accelerate DRL algo-
rithms, even when mapped to expensive distributed systems. By rendering frames directly on the
GPU, CuLE overcomes these limitations and generate as many FPS as those generated by large,
expensive CPU systems. CuLE promises to be an effective tool to develop and test DRL algorithms
by significantly reducing the experiment turnaround time.

As already shown by others in the case of DRL on distributed system, our experiments show that
proper batching coupled with a slight off-policy gradient policy algorithm can significantly acceler-
ate the wall clock convergence time; CuLE has the additional advantage of allowing effective scaling
of this implementation to a system with multiple GPUs. CuLE effectively allows increasing the num-
ber of parallel environments but, because of the low number of instructions per second per thread on
the GPU, training data can be narrow in the time direction. This can be problematic for problems
with sparse temporal rewards, but rather than considering this as a pure limitation of CuLE, we be-
lieve that this peculiarity opens the door to new interesting research questions, like active sampling
of important states Hessel et al. (2017); Wang et al. (2015) that can then be effectively analyzed on
a large number of parallel environments with CuLE. CuLE also hits a new obstacle, which is the
limited amount of DRAM available on the GPU; studying new compression schemes, like the one
proposed in Hessel et al. (2017), as well as training methods with smaller memory footprints may
help extend the utility of CuLE to even larger environment counts, and design better GPU-based
simulator for RL in the future. Since these are only two of the possible research directions for which
CuLE is an effective investigation instrument, CuLE comes with a python interface that allows easy
experimentation and is freely available to any researcher at [URL revealed upon acceptance].
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A APPENDIX

A.1 REINFORCEMENT LEARNING, A2C AND V-TRACE

Reinforcement learning In RL, an agent observes a state st at time t and follows a policy π =
π(st) to select an action at; the agent also receives a scalar reward rt from the environment. The
goal of RL is optimizing π to maximize the sum of the expected rewards.

In policy gradient, model-free, DRL methods, π(at|st; θ) is the output of a policy DNN with weights
θ, and represents the probability to select the action at in the state st. Updates to the DNN are gen-
erally aligned to the direction of the gradient of E[Rt], where Rt =

∑∞
i=0 γ

irt+i is the discounted
reward from time t, with discount factor γ ∈ (0, 1] (see also REINFORCE Williams (1992)) The
vanilla implementation updates θ along ∇θ log π(at|st; θ)Rt, which is an unbiased estimator of
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∇θE[Rt]. The training procedure can be improved by reducing the variance of the estimator by
subtracting a learned baseline bt(st) and using the gradient∇θ log π(at|st; θ)[Rt − bt(st)] instead.
One common baseline is the value function V π(st) = E[Rt|st], which is the expected return for the
policy π starting from st. The policy π and the baseline bt can be viewed as actor and critic in an
actor-critic architecture Sutton & Barto (1998).

A2C A2C OpenAI (2017) is the synchronous version of A3C Mnih et al. (2016), a successful RL
actor-critic algorithm where the same DNN outputs a softmax layer for the policy π (at|st; θ), and
a linear layer for V (st; θ). In A2C, multiple agents perform simultaneous steps in a set of parallel
environments, while the DNN is updated every tmax actions using the experiences collected by all
the agents in the last tmax steps. This means that the variance of the critic V (st; θ) is reduced (at
the price of an increase in the bias) by N-step bootstrapping, with N = tmax. The cost function for
the policy is then:

log π (at|st; θ)
[
R̃t − V (st; θt)

]
+ βH [π (st; θ)] , (1)

where θt are the DNN weights θ at time t, R̃t =
∑k−1
i=0 γ

irt+i + γkV (st+k; θt) is the bootstrapped
discounted reward from t to t + k and k is upper-bounded by tmax, and H [π (st; θ)] is an entropy
term that favors exploration, weighted by the hyper-parameter β. The cost function for the estimated
value function is: [

R̃t − V (st; θ)
]2
, (2)

which uses again the bootstrapped estimate R̃t. Gradients ∇θ are collected from both of the cost
functions; standard optimizers like Adam or RMSProp can then be used for the optimization.

V-trace When a large number of environments is available, like in the case of CuLE or IM-
PALA Espeholt et al. (2018), the synchronous nature of A2C become detrimental for the learning
speed, as one should wait for all the environments to complete tmax steps before computing a single
DNN update. Faster convergence is achieved (both in our paper and in Espeholt et al. (2018)) by
desynchronizing data generation and DNN updates, which in practice means sampling a subset of
experiences from those generated by the agents, and update the policy consequently, which makes
the algorithm slightly off-policy.

To correct for the off-policy nature of the data, that may lead to inefficiency or, even worse, insta-
bilities, in the training process, V-trace is introduced in Espeholt et al. (2018). In few word, the
aim of off-policy correction is to give less weights to experiences that have been generated with a
policy µ, called the behaviour policy, when it differs from the target policy, pi; for a more principled
explanation we remand the curios reader to Espeholt et al. (2018).

For a set of experiences collected from time t = t0 to time t = t0 +N following some policy µ, the
N -steps V-trace target for V (st0; θ) is defined as:

vt0 = V (st0; θ) +
∑t0+N−1
t=t0 γt−t0

(∏t−1
i=t0 ci

)
δtV , (3)

δtV = ρt
(
rt + γV (st+1; θ)− V (st; θ)

)
(4)

ρt = min
(
ρ̄,
π(at|st)
µ(at|st)

)
(5)

ci = min
(
c̄,
π(ai|si)
µ(ai|si)

)
; (6)

ρt and ci are truncated importance sampling (IS) weights, and
∏t−1
i=t0 ci = 1 for s = t, and ρ̄ ≥

c̄. Notice that, when we adopt the proposed multibatching strategy, there are multiple behaviour
policies µ that have been followed to generate the training data — e.g., N different policies are used
when SPU=1 in Fig. 6(b). Eqs. 5-6 do not need to be changed in this case, but we have to store
all the µ(ai|si) in the training buffer in Fig. 1 to allow the V-trace computation when the DNN is
updated. In our implementation, we compute V-trace recursively as:

vt = V (st; θ) + δtV + γcs
(
vt+1 − V (st+1; θ)

)
. (7)

At training time t, we update θ along the gradient on the loss to the target vs, given by:(
vt − V (st; θ)

)
∇θV (st; θ), (8)

13



Under review as a conference paper at ICLR 2020

whereas the gradient to update the policy is given by:

ρt∇ω log πω(as|st)
(
rt + γvt+1 − V (st; θ)

)
. (9)

An entropy regularization term that favors exploration and prevent premature convergence (as in
Eq. 1) is added also in this case.

A.2 THREAD DIVERGENCE IS NOT PRESENT IN THE CASE OF CPU EMULATION

We show here that thread divergence, that affects GPU-based emulation (see Fig. 4), does not affect
CPU-based emulation. Fig. 8 shows the FPS on four Atari games where all the environments share
the same initial state. Differently from the case of GPU emulation, the FPS do not peak at the
beginning of the emulation period, where many environments are correlated.

(a) Asterix, CPU (b) Pong, CPU (c) Ms Pacman, CPU (d) Assault, CPU

Figure 8: FPS as a function of the environment step, measured on System I in Table 2 for emulation
only on four Atari games, 512 environments, for CuLECPU; each panel also shows the number of
resetting environments. A peak in the FPS at the beginning of the emulation period, as in the case
of GPU emulation in Fig. 4, is not visible in this case.

A.3 PERFORMANCE DURING TRAINING - OTHER GAMES

For sake of space, we report here (Fig. 9) the FPS measured on system I in Table 2 for three addi-
tional games, as a function of different load conditions and number of environments.

(a) Pong (b) MsPacman (c) Asterix

Figure 9: FPS generated by different emulation engines on System I in Table 2 for different
Atari games, as a function of the number of environments, and different load conditions (the main
A2C OpenAI (2017) loop is run here, with N-step bootstrapping, N = 5.

14


	Introduction
	Related Work
	CUDA Learning Environment (CuLE)
	Experiments
	Discussion and Conclusion
	Appendix
	Reinforcement Learning, A2C and V-trace
	Thread divergence is not present in the case of CPU emulation
	Performance during training - other games


