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ABSTRACT

Learning disentangled representations that correspond to factors of variation in
real-world data is critical to interpretable and human-controllable machine learn-
ing. Recently, concerns about the viability of learning disentangled representa-
tions in a purely unsupervised manner has spurred a shift toward the incorporation
of weak supervision. However, there is currently no formalism that identifies when
and how weak supervision will guarantee disentanglement. To address this issue,
we provide a theoretical framework—including a calculus of disentanglement—
to assist in analyzing the disentanglement guarantees (or lack thereof) conferred
by weak supervision when coupled with learning algorithms based on distribu-
tion matching. We empirically verify the guarantees and limitations of several
weak supervision methods (restricted labeling, match-pairing, and rank-pairing),
demonstrating the predictive power and usefulness of our theoretical framework.

1 INTRODUCTION

Many real-world data can be intuitively described via a data-generating process that first samples
an underlying set of interpretable factors, and then—conditional on those factors—generate an ob-
served data point. For example, in image generation, one might first generate the object identity and
pose, and then build an image of this object accordingly. The goal of disentangled representation
learning is to learn a distributed representation where each representation axis measures a distinct
factor of variation in the dataset (Bengio et al., 2013). Learning such representations that align with
the underlying factors of variation is critical to the development of machine learning models that are
explainable or human-controllable (Gilpin et al., 2018; Lee et al., 2019; Klys et al., 2018).

In recent years, disentanglement research has focused on the learning of such representations in an
unsupervised fashion, using only independent samples from the data distribution without access to
the true factors of variation (Higgins et al., 2017; Chen et al., 2018a; Kim & Mnih, 2018; Esmaeili
et al., 2018). However, Locatello et al. (2019) demonstrated that many existing methods for the
unsupervised learning of disentangled representations are brittle, requiring careful supervision-based
hyperparameter tuning. To build robust disentangled representation learning methods that do not
require large amounts of supervised data, recent work has turned to forms of weak supervision
(Chen & Batmanghelich, 2019; Gabbay & Hoshen, 2019). Weak supervision can allow one to
build models that have interpretable representations even when human labeling is challenging, for
example hair style in face generation, or style in music generation. While existing methods based
on weakly-supervised learning demonstrate empirical gains, there is no formalism for describing the
theoretical guarantees conferred by different forms of weak supervision that has been presented in
prior work (Kulkarni et al., 2015; Reed et al., 2015; Bouchacourt et al., 2018).

In this paper, we present a comprehensive theoretical framework for weakly supervised disentangle-
ment, and evaluate our framework on several datasets. Our contributions are several-fold.

1. We formalize weakly-supervised learning as distribution matching in an extended space.
2. We propose a set of definitions for disentanglement that can handle correlated factors and

are inspired by many existing definitions in the literature (Higgins et al., 2018; Suter et al.,
2018; Ridgeway & Mozer, 2018).

3. Using these definitions, we provide a conceptually useful and theoretically rigorous calcu-
lus of disentanglement.
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4. We apply our theoretical framework of disentanglement to analyze the theoretical guar-
antees of three notable weak supervision methods (restricted labeling, match pairing, and
rank pairing) and experimentally verify these guarantees.

2 FROM UNSUPERVISED TO WEAKLY SUPERVISED DISTRIBUTION MATCHING

Our goal in disentangled representation learning is to identify a latent-variable generative model
whose latent variables correspond to ground truth factors of variation in the data. To identify the
role that weak supervision plays in providing guarantees on disentanglement, we first formalize the
model families we are considering, the forms of weak supervision, and finally the metrics we will
use to evaluate and prove components of disentanglement.

We consider data-generating processes where S ∈ Rn are the factors of variation, with distribution
p∗(s), and X ∈ Rm is the observed data point which is a deterministic function of S, i.e., X =
g∗(S). Many existing algorithms in unsupervised learning of disentangled representations aim to
learn a latent-variable model with prior p(z) and generator g, where g(Z) d

= g∗(S). However,
simply matching the marginal distribution over data is not enough: the learned latent variables Z
and the true generating factors S could still be entangled with each other (Locatello et al., 2019).

To address the failures of unsupervised learning of disentangled representations, we leverage weak
supervision, where information about the data-generating process is conveyed through additional
observations. By performing distribution matching on an augmented space (instead of just on the
observation of X), we can provide guarantees on learned representations.
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Figure 1: Augmented data distributions derived from weak supervision. Shaded nodes denote ob-
served quantities, and unshaded nodes represent unobserved (latent) variables.

We consider three practical forms of weak supervision: restricted labeling, match pairing, and rank
pairing. All of these forms of supervision can be thought of as augmented forms of the original joint
distribution, where we partition the latent variables in two S = (SI , S\I), and either observe a subset
of the latent variables or share latents between multiple samples. A visualization of these augmented
distributions is presented in Figure 1, and below we detail each form of weak supervision.

In restricted labeling, we observe a subset of the ground truth factors, SI in addition to X . This
allows us to perform distribution matching on p∗(sI , x), the joint distribution over data and observed
factors, instead of just the data, p∗(x), as in unsupervised learning. This form of supervision is
often leveraged in style-content disentanglement, where labels are available for content but not style
(Kingma et al., 2014; Narayanaswamy et al., 2017; Chen et al., 2018b; Gabbay & Hoshen, 2019).

Match Pairing uses paired data, (x, x′) that share values for a known subset of factors, sI . This is a
weaker form of supervision than restricted labeling, as the learning algorithm no longer depends on
the underlying value sI . Several variants of match pairing have appeared in the literature (Kulkarni
et al., 2015; Bouchacourt et al., 2018; Ridgeway & Mozer, 2018), but typically focus on groups of
observations in contrast to the paired setting we consider here.

Rank Pairing is another form of paired data generation where the pairs (x, x′) are generated in
an i.i.d. fashion, and an additional indicator variable y is observed that determines whether the
corresponding latent si is greater than s′i: y = 1 {si ≥ s′i}. Although supervision via ranking
features prominently in the metric learning literature (McFee & Lanckriet, 2010; Wang et al., 2014),
our focus in this paper will be on rank pairing in the context of disentanglement guarantees.
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For each form of weak supervision, we can train generative models with the same structure as in
Figure 1, using data sampled from the ground truth model and a distribution matching objective.
For example, for match pairing, we train a generative model (p(z), g) such that the paired random
variable (g(ZI , Z\I), g(ZI , Z

′
\I)) from the generator matches the distribution of the corresponding

paired random variable (g∗(SI , S\I), g
∗(SI , S

′
\I)) from the augmented data distribution.

3 DEFINING DISENTANGLEMENT

To identify the role that weak supervision plays in providing guarantees on disentanglement, we
introduce a set of definitions that are consistent with our intuitions about what constitutes “disen-
tanglement” and amenable to theoretical analysis. Our new definitions decompose disentanglement
into two distinct concepts: consistency and restrictiveness. Different forms of weak supervision
can enable consistency or restrictiveness on subsets of factors, and in Section 4 we build up a cal-
culus of disentanglement from these primitives. We discuss the relationship to prior definitions of
disentanglement in Appendix A.

3.1 DECOMPOSING DISENTANGLEMENT INTO CONSISTENCY AND RESTRICTIVENESS
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Figure 2: Illustration of disentanglement, consistency, and restrictiveness of z1 with respect to the
factor of variation size. Each image of a shape represents the decoding g(z1:3) by the generative
model. Each column denotes a fixed choice of z1. Each row denotes a fixed choice of (z2, z3). For
simplicity of illustration, we omit the consideration of nuisance variables.

To ground our discussion of disentanglement in a concrete example, we shall consider an oracle
that generates shapes, with the underlying factors of variation size (S1), shape (S2), and color (S3).
We now wish to determine whether Z1 of our generative model disentangles the concept of size.
Intuitively, one way to check whether Z1 of the generative model disentangles size (S1) is to visually
inspect what happens as we vary Z1, Z2, and Z3, and see whether the resulting visualizations are
consistent with Figure 2a. In doing so, our visual inspection checks for two properties:

1. When Z1 is fixed, the size (S1) of the generated object never changes.

2. When Z1 is changed, the change is restricted to the size (S1) of the generated object.

We thus argue that disentanglement decomposes into these two properties, which we refer to as
generator consistency and generator restrictiveness. We shall formalize these two properties.

Let H be a hypothesis class of generative models from which we assume the true data-generating
function is drawn. Each element of the hypothesis class H is a tuple (p(s), g, e), where p(s) de-
scribes the distribution over factors of variation, the generator g is a function that maps from the
factor space S ∈ Rn to the observation space X ∈ Rm, and the encoder e is a function that maps
from X → S. S and X can consist of both discrete and continuous random variables. We impose
a few mild assumptions on H (see Appendix H.1). Notably, we assume every factor of variation is
exactly recoverable from the observation X , i.e. e(g(S)) = S.

Given an oracle model h∗ = (p∗, g∗, e∗) ∈ H, we would like to learn a model h = (p, g, e) ∈ H
whose latent variables disentangle the latent variables in h∗. We refer to the latent-variables in
the oracle h∗ as S and the alternative model h’s latent variables as Z. If we further restrict h to
only those models where g(Z) d

= g∗(S) are equal in distribution, it is natural to align Z and S via
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S = e∗◦g(Z). Under this relation between Z and S, our goal is to construct definitions that describe
whether the latent code Zi disentangles the corresponding factor Si.

Generator Consistency. Let I denote a set of indices and pI denote the generating process

zI ∼ p(zI) (1)

z\I , z
′
\I

iid∼ p(z\I | zI). (2)

This generating process samples ZI once and then conditionally samples ZI twice in an i.i.d. fash-
ion. We say that ZI is consistent with SI if

EpI‖e∗I ◦ g(zI , z\I)− e∗I ◦ g(zI , z′\I)‖
2 = 0, (3)

where e∗I is the oracle encoder restricted to the indices I .

Intuitively, Equation (3) states that, for any fixed choice of ZI , resampling of Z\I will not influence
the oracle’s measurement of the factors SI . Here, our assumption that g(Z) is identical in distribu-
tion to g∗(S) ensures that samples from the generative model remain within the domain of definition
of the oracle encoder e∗. An illustration of a generative model where Z1 is consistent with size (S1)
is provided in Figure 2b.

Generator Restrictiveness. Let p\I denote the generating process

z\I ∼ p(z\I) (4)

zI , z
′
I

iid∼ p(zI | z\I). (5)

We say that ZI is restricted to SI if

Ep\I‖e
∗
\I ◦ g(zI , z\I)− e

∗
\I ◦ g(z

′
I , z\I)‖2 = 0. (6)

Equation (6) states that, for any fixed choice of Z\I , resampling of ZI will not influence the ora-
cle’s measurement of the factors S\I . Thus, changing ZI is restricted to modifying only SI . An
illustration of a generative model where Z1 is restricted to size (S1) is provided in Figure 2c.

Generator Disentanglement. We now say that ZI disentangles SI if ZI is consistent with and
restricted to SI . If we denote consistency and restrictiveness via Boolean functions C(I) and R(I),
we can now concisely state that

D(I) := C(I) ∧R(I), (7)

where D(I) denotes whether ZI disentangles SI . An illustration of a generative model where Z1

disentangles size (S1) is provided in Figure 2a. Note that while size increases monotonically with
Z1 in the figure for convenience of illustration, we wish to clarify that monotonicity is orthogonal to
the concepts of consistency and restrictiveness.

3.2 ENCODER-BASED DEFINITIONS FOR DISENTANGLEMENT

Our proposed definitions are asymmetric—measuring the behavior of a generative model against an
encoder. So far, we have chosen to present the definitions from the perspective of a learned generator
(p, g) measured against an oracle encoder e∗. In this sense, they are generator-based definitions. We
can also develop a parallel set of definitions for encoder-based consistency, restrictiveness, and dis-
entanglement within our framework simply by using an oracle generator (p∗, g∗) measured against
a learned encoder e. We only present consistency for brevity.

Encoder Consistency. Let p∗I denote the generating process

sI ∼ p∗(sI) (8)

s\I , s
′
\I

iid∼ p∗(s\I , | sI). (9)

We say that SI is consistent with ZI if

Ep∗I ‖eI ◦ g
∗(sI , s\I)− eI ◦ g∗(sI , s′\I)‖

2 = 0. (10)

We now make two important observations. First, a valuable trait of our encoder-based definitions
is that one can check for encoder consistency / restrictiveness / disentanglement as long as one
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has access to match pairing data from the oracle generator. This is in contrast to the existing
disentanglement definitions and metrics, which require access to the ground truth factors (Higgins
et al., 2017; Kim & Mnih, 2018; Chen et al., 2018a; Suter et al., 2018; Ridgeway & Mozer, 2018;
Eastwood & Williams, 2018). The ability to check for our definitions in a weakly supervised fashion
is the key to why we can develop a theoretical framework using the language of consistency and
restrictiveness. Second, encoder-based definitions are tractable to measure when testing on synthetic
data, since the synthetic data directly serves the role of the oracle generator. As such, while we
develop our theory to guarantee both generator-based and the encoder-based disentanglement, all of
our measurements in the experiments will be conducted with respect to a learned encoder.

We make two remarks on notations. First, D(i) := D({i}). Second, D(∅) evaluates to true. We
apply these conventions toC andR analogously. Finally,D(I), C(I), R(I) are implicitly dependent
on either (p, g, e∗) (generator-based) or (p∗, g∗, e) (encoder-based). Where important, we shall make
this dependency explicit (e.g., let D(I ; p, g, e∗) denote generator-based disentanglement).

4 A CALCULUS OF DISENTANGLEMENT

We note several interesting relationships between restrictiveness and consistency. First, by defini-
tion, C(I) is equivalent to R(\I). Second, we can see from Figures 2b and 2c that C(I) and R(I)
do not imply each other. Based on these observations and given that consistency and restrictiveness
operate over subsets of the random variables, a natural question that arises is whether consistency or
restrictiveness over certain sets of variables imply additional properties over other sets of variables.
We develop a calculus for discovering implied relationships between learned latent variables Z and
ground truth factors of variation S given known relationships as follows.

Calculus of Disentanglement

Consistency and Restrictiveness
C(I) 6=⇒ R(I) R(I) 6=⇒ C(I) C(I)⇐⇒ R(\I)

Union Rules
C(I) ∧ C(J) =⇒ C(I ∪ J) R(I) ∧R(J) =⇒ R(I ∪ J)

Intersection Rules
C(I) ∧ C(J) =⇒ C(I ∩ J) R(I) ∧R(J) =⇒ R(I ∩ J)

Full Disentanglement∧n
i=1 C(i)⇐⇒

∧n
i=1D(i)

∧n
i=1R(i)⇐⇒

∧n
i=1D(i)

Our calculus provides a theoretically rigorous procedure for reasoning about disentanglement. In
particular, it is no longer necessary to prove whether the supervision method of interest satisfies
consistency and restrictiveness for each and every factor. Instead, it suffices to show that a super-
vision method guarantees consistency or restrictiveness for a subset of factors, and then combine
multiple supervision methods via the calculus to guarantee full disentanglement. We can also use
the calculus to gain consistency of individual factors when weak supervision is available only for
sets of variables. For example, achieving consistency on S1,2 and S2,3 implies consistency on S2.
Furthermore, these rules are also agnostic to using generator or encoder-based definitions. We defer
the complete proofs to Appendix H.2.

5 FORMALIZING WEAK SUPERVISION WITH GUARANTEES

In this section, we address the important question of how to distinguish when disentanglement arises
from the supervision method and when it comes from model inductive bias. This challenge was
first put forth by Locatello et al. (2019), which noted that unsupervised disentanglement is heavily
reliant on model inductive bias. As we transition toward supervised approaches, it is crucial that we
formalize what it means for disentanglement to be guaranteed by weak supervision.

Sufficiency for Disentanglement. Let P denote a family of augmented distributions. We say that
a weak supervision method S : H → P is sufficient for learning a generator whose latent codes ZI
disentangle the factors SI if there exists a learning algorithmA : P → H such that for any choice of
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(p∗(s), g∗, e∗) ∈ H, the procedure A ◦ S(p∗(s), g∗, e∗) returns a model (p(z), g, e) for which both
D(I ; p, g, e∗) and D(I ; p∗, g∗, e) hold, and g(Z) d

= g∗(S).

The key insight of this definition is that we force the strategy and learning algorithm pair (S,A)
to handle all possible oracles drawn from the hypothesis class H. This prevents the exploitation of
model inductive bias, since any bias from the learning algorithm A toward a reduced hypothesis
class Ĥ ⊂ H will result in failure to handle oracles in the complementary hypothesis classH \ Ĥ.

The distribution matching requirement g(Z) d
= g∗(S) ensures latent code informativeness, i.e., pre-

venting trivial solutions where the latent code is uninformative (see Theorem 7 for formal statement).
Intuitively, distribution matching paired with a deterministic generator guarantees invertibility of the
learned generator and encoder, enforcing that ZI cannot encode less information than SI (e.g., only
encoding age group instead of numerical age) and vice versa.

6 ANALYSIS OF WEAK SUPERVISION METHODS

We now apply our theoretical framework to three practical weak supervision methods: restricted
labeling, match pairing, and rank pairing. Our main theoretical findings are that: (1) These methods
can be applied in a targeted manner to provide single factor consistency or restrictiveness guarantees.
(2) By enforcing consistency (or restrictiveness) on all factors, we can learn models with strong
disentanglement performance. Correspondingly, Figure 3 and Figure 5 are our main experimental
results, demonstrating that these theoretical guarantees have predictive power in practice.

6.1 THEORETICAL GUARANTEES FROM WEAK SUPERVISION

We prove that if a training algorithm successfully matches the generated distribution to data dis-
tribution generated via restricted labeling, match pairing, or rank pairing of factors SI , then ZI is
guaranteed to be consistent with SI :
Theorem 1. Given any oracle (p∗(s), g∗, e∗) ∈ H, consider the distribution-matching algorithmA
that selects a model (p(z), g, e) ∈ H such that:

1. (g∗(S), SI)
d
= (g(Z), ZI) (Restricted Labeling); or

2.
(
g∗(SI , S\I), g

∗(SI , S
′
\I)
)
d
=
(
g(ZI , Z\I), g(ZI , Z

′
\I)
)

(Match Pairing); or

3. (g∗(S), g∗(S′),1 {Si ≤ S′i})
d
= (g(Z), g(Z ′),1 {Zi ≤ Z ′i}) (Rank Pairing).

Then (p, g) satisfies C(I ; p, g, e∗) and e satisfies C(I ; p∗, g∗, e).

Note that the same supervision does not guarantee that ZI is restricted to SI (Theorem 9). For-
tunately, we can see from the calculus that if we also have restricted labeling for S\I , or match
pairing for S\I , then we have guaranteed R(I) ∧C(I) implying disentanglement of factor I . In the
experiments below, we empirically verify the theoretical guarantees provided in Theorem 1.

6.2 EXPERIMENTS

We conducted experiments on five prominent datasets in the disentanglement literature: Shapes3D
(Kim & Mnih, 2018), dSprites (Higgins et al., 2017), Scream-dSprites (Locatello et al., 2019), Small-
NORB (LeCun et al., 2004), and Cars3D (Reed et al., 2015). Since some of the underlying factors
are treated as nuisance variables in SmallNORB and Scream-dSprites, we show in Appendix B that
our theoretical framework can be easily adapted accordingly to handle such situations. We use gener-
ative adversarial networks (GANs, Goodfellow et al. (2014)) for learning (p, g) but any distribution
matching algorithm (e.g. maximum likelihood training in tractable models, or VI in latent-variable
models) could be applied. Our results are collected over a broad range of hyperparameter configu-
rations (see Appendix G for details).

Since existing quantitative metrics of disentanglement all measure the performance of an encoder
with respect to the true data generator, we trained an encoder post-hoc to approximately invert
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the learned generator, and measured all quantitative metrics (e.g. mutual information gap) on the
encoder. Our theory assumes that the learned generator must be invertible. While this is not true for
conventional GANs, our empirical results show that this is not an issue in practice (see Appendix F).

We present three sets of experimental results: (1) Single-factor experiments, where we show that
our theory can be applied in a targeted fashion to guarantee consistency or restrictiveness of a sin-
gle factor. (2) Consistency versus restrictiveness experiments, where we show the extent to which
single-factor consistency and restrictiveness are correlated even when the models are only trained
to maximize one or the other. (3) Full disentanglement experiments, where we apply our theory to
fully disentangle all factors. A more extensive set of experiments can be found in the Appendix.

6.2.1 SINGLE-FACTOR CONSISTENCY AND RESTRICTIVENESS
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Figure 3: Heatmap visualization of ablation studies that measure either single-factor consistency or
single-factor restrictiveness as a function of various supervision methods, conducted on Shapes3D.
Our theory predicts the diagonal components to achieve the highest scores. Note that share pairing,
change pairing, and change pair intersection are special cases of match pairing.

We empirically verify that single-factor consistency or restrictiveness can be achieved with the su-
pervision methods of interest. Note there are two special cases of match pairing: one where Si is
the only factor that is shared between x and x′ and one where Si is the only factor that is changed.
We distinguish these two conditions as share pairing and change pairing, respectively. Theorem 1
shows that restricted labeling, share pairing, and rank pairing of the ith factor are each sufficient su-
pervision strategies for guaranteeing consistency on Si. Change pairing at Si is equivalent to share
pairing at S\i; the complement rule C(I) ⇐⇒ R(\I) allows us to conclude that change pairing
guarantees restrictiveness. The first four heatmaps in Figure 3 show the results for restricted label-
ing, share pairing, change pairing, and rank pairing. The numbers shown in the heatmap are the
normalized consistency and restrictiveness scores. We define the normalized consistency score as

c̃(I ; p∗, g∗, e) = 1−
Ep∗I ‖eI ◦ g

∗(sI , s\I)− eI ◦ g∗(sI , s′\I)‖
2

E
s,s′

iid∼p∗
‖eI ◦ g∗(s)− eI ◦ g∗(s′)‖2

. (11)

This score is bounded on the interval [0, 1] and is maximal whenC(I ;p∗, g∗, e) is satisfied. This nor-
malization procedure is similar in spirit to that used in Suter et al. (2018)’s Interventional Robustness
Score. The normalized restrictiveness score r̃ can be analogously defined.

The final heatmap in Figure 3 demonstrates the calculus of intersection. In practice, it may be easier
to acquire paired data where multiple factors change simultaneously. If we have access to two kinds
of datasets, one where SI are changed and one where SJ are changed, our calculus predicts that
training on both datasets will guarantee restrictiveness on SI∩J . The final heatmap shows six such
intersection settings and measures the normalized restrictiveness score; in all but one setting, the
results are consistent with our theory. We show in Figure 6 that this inconsistency is attributable to
the failure of the GAN to distribution-match due to sensitivity to a specific hyperparameter.

6.2.2 CONSISTENCY VERSUS RESTRICTIVENESS

We now determine the extent to which consistency and restrictiveness are correlated in practice. In
Figure 4, we collected all 864 Shapes3D models that we trained in Section 6.2.1 and measured the
consistency and restrictiveness of each model on each factor, providing both the correlation plot
and scatterplots of c̃(i) versus r̃(i). Since the models trained in Section 6.2.1 only ever targeted the
consistency or restrictiveness of a single factor, and since our calculus demonstrates that consistency
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Figure 4: Correlation plot and scatterplots demonstrating the empirical relationship between c̃(i)
and r̃(i) across all 864 models trained on Shapes3D.

and restrictiveness do not imply each other, one might a priori expect to find no correlation in
Figure 4. Our results show that the correlation is actually quite strong. Since this correlation is not
guaranteed by our choice of weak supervision, it is necessarily a consequence of model inductive
bias. We believe this correlation between consistency and restrictiveness to have been a general
source of confusion in the disentanglement literature, causing many to either observe or believe
that restricted labeling or share pairing on Si (which only guarantees consistency) is sufficient for
disentangling Si (Kingma et al., 2014; Chen & Batmanghelich, 2019; Gabbay & Hoshen, 2019;
Narayanaswamy et al., 2017). It remains an open question why consistency and restrictiveness are
so strongly correlated when training existing models on real-world data.

6.2.3 FULL DISENTANGLEMENT

None Share Change Rank Full-Label
Supervision Method

0.0

0.2

0.4

0.6

0.8

1.0

M
ut
ua

l I
nf
or
m
at
io
n 
Ga

p

Shapes3D

None Share Change Rank Full-Label
Supervision Method

0.0

0.1

0.2

0.3

0.4

0.5

0.6

dSprites

None Share Change Rank Full-Label
Supervision Method

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Scream-dSprites

None Share Change Rank Full-Label
Supervision Method

0.0

0.1

0.2

0.3

0.4

0.5

SmallNORB

None Share Change Rank Full-Label
Supervision Method

0.0

0.1

0.2

0.3

0.4

0.5
Cars3D

Figure 5: Disentanglement performance of a vanilla GAN, share pairing GAN, change pairing GAN,
rank pairing GAN, and fully-labeled GAN, as measured by the mutual information gap across sev-
eral datasets. A comprehensive set of performance evaluations on existing disentanglement metrics
is available in Figure 12.

If we have access to share / change / rank-pairing data for each factor, our calculus states that it
is possible to guarantee full disentanglement. We trained our generative model on either complete
share pairing, complete change pairing, or complete rank pairing, and measured disentanglement
performance via the discretized mutual information gap (Chen et al., 2018a; Locatello et al., 2019).
As negative and positive controls, we also show the performance of an unsupervised GAN and
a fully-supervised GAN where the latents are fixed to the ground truth factors of variation. Our
results in Figure 5 empirically verify that combining single-factor weak supervision datasets leads
to consistently high disentanglement scores.

7 CONCLUSION

In this work, we construct a theoretical framework to rigorously analyze the disentanglement guar-
antees of weak supervision algorithms. Our paper clarifies several important concepts, such as con-
sistency and restrictiveness, that have been hitherto confused or overlooked in the existing literature,
and provides a formalism that precisely distinguishes when disentanglement arises from supervi-
sion versus model inductive bias. Through our theory and a comprehensive set of experiments, we
demonstrated the conditions under which various supervision strategies guarantee disentanglement.
Our work establishes several promising directions for future research. First, we hope that our for-
malism and experiments inspire greater theoretical and scientific scrutiny of the inductive biases
present in existing models. Second, we encourage the search for other learning algorithms (besides
distribution-matching) that may have theoretical guarantees when paired with the right form of su-
pervision. Finally, we hope that our framework enables the theoretical analysis of other promising
weak supervision methods.
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Our appendix consists of eight sections. We provide a brief summary of each section below.

Appendix A: We elaborate on the connections between existing definitions of disentanglement and
our definitions of consistency / restrictiveness / disentanglement. In particular, we highlight three
notable properties of our definitions not present in many existing definitions.

Appendix B: We adapt our definitions to be able to handle nuisance variables. We do so through a
simple modification of the definition of restrictiveness.

Appendix C: We show several additional single-factor experiments. We first address one of the
results in the main text that is not consistent with our theory, and explain why it can be attributed to
hyperparameter sensitivity. We next unwrap the heatmaps into more informative boxplots.

Appendix D: We provide an additional suite of consistency versus restrictiveness experiments by
comparing the effects of training with share pairing (which guarantees consistency), change pairing
(which guarantees restrictiveness), and both.

Appendix E: We provide full disentanglement results on all five datasets as measured according to
six different metrics of disentanglement found in the literature.

Appendix F: We show visualizations of a weakly supervised generative model trained to achieve full
disentanglement.

Appendix G: We describe the set of hyperparameter configurations used in all our experiments.

Appendix H: We provide the complete set of assumptions and proofs for our theoretical framework.

A CONNECTIONS TO EXISTING DEFINITIONS

Numerous definitions of disentanglement are present in the literature (Higgins et al., 2017; 2018;
Kim & Mnih, 2018; Suter et al., 2018; Ridgeway & Mozer, 2018; Eastwood & Williams, 2018; Chen
et al., 2018a). We mostly defer to the terminology suggested by Ridgeway & Mozer (2018), which
decomposes disentanglement into modularity, compactness, and explicitness. Modularity means a
latent code Zi is predictive of at most one factor of variation Sj . Compactness means a factor of
variation Si is predicted by at most one latent code Zj . And explicitness means a factor of variation
Sj is predicted by the latent codes via a simple transformation (e.g. linear). Similar to Eastwood &
Williams (2018); Higgins et al. (2018), we suggest a further decomposition of Ridgeway & Mozer
(2018)’s explicitness into latent code informativeness and latent code simplicity. In this paper, we
omit latent code simplicity from consideration. Since informativeness of the latent code is already
enforced by our requirement that g(Z) is equal in distribution to g∗(S) (see Theorem 7), we focus on
comparing our proposed concepts of consistency and restrictiveness to modularity and compactness.
We make note of three important distinctions.

Restrictiveness is not synonymous with either modularity or compactness. In Figure 2c, it is
evident the factor of variation size is not predictable any individual Zi (conversely, Z1 is not pre-
dictable from any individual factor Si). As such, Z1 is neither a modular nor compact representation
of size, despite being restricted to size. To our knowledge, no existing quantitative definition of
disentanglement (or its decomposition) specifically measures restrictiveness.

Consistency and restrictiveness are invariant to correlated factors of variation. Many existing
definitions of disentanglement are instantiated by measuring the mutual information between Z and
S. For example, Ridgeway & Mozer (2018) defines that a latent code Zi to be “ideally modular”
if it has high mutual information with a single factor Sj and zero mutual information with all other
factors S\j . This presents a issue when the true factors of variation themselves are correlated; even
if Z1 = S1, the latent code Z1 would violate modularity if S1 itself has positive mutual information
with S2. Consistency and restrictiveness circumvent this issue by relying on conditional resampling.
Consistency, for example, only measures the extent to which SI is invariant to resampling of Z\I
when conditioned on ZI and is thus achieved as long as sI is a function of only zI—irrespective of
whether sI and s\I are correlated. In this regard, our definitions draw inspiration from Suter et al.
(2018)’s intervention-based definition but replaces the need for counterfactual reasoning with the
simpler conditional sampling.
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Consistency and restrictiveness arise in weak supervision guarantees. One of our goals is to
propose definitions that are amenable to theoretical analysis. As we can see in Section 4, consistency
and restrictiveness serve as the core primitive concepts that we use to describe disentanglement
guarantees conferred by various forms of weak supervision.

B HANDLING NUISANCE VARIABLES

Our theoretical framework can handle nuisance variables, i.e., variables we cannot measure or per-
form weak supervision on. It may be impossible to label, or provide match-pairing on that factor
of variation. For example, while many features of an image are measurable (such as brightness and
coloration), we may not be able to measure certain factors of variation or generate data pairs where
these factors are kept constant. In this case, we can let one additional variable η act as nuisance
variable that captures all additional sources of variation / stochasticity.

Formally, suppose the full set of true factors is S ∪ {η} ∈ Rn+1. We define η-consistency Cη(I) =
C(I) and η-restrictiveness Rη(I) = R(I ∪ {η}). This captures our intuition that, with nuisance
variable, for consistency, we still want changes to Z\I ∪ {η} to not modify SI ; for restrictiveness,
we want changes to ZI ∪ {η} to only modify SI ∪ {η}. We define η-disentanglement as Dη(I) =
Cη(I) ∧Rη(I).
All of our calculus still holds where we substitute Cη(I), Rη(I), Dη(I) for C(I), R(I), D(I); we
prove one of the new full disentanglement rule as an illustration:
Theorem 2.

∧n
i=1 Cη(i)⇐⇒

∧n
i=1Dη(i).

Proof. On the one hand,
∧n
i=1 Cη(i) ⇐⇒

∧n
i=1 C(i) =⇒ C(1 : n) =⇒ R(η). On the other

hand,
∧n
i=1 C(i) =⇒

∧n
i=1D(i) =⇒

∧n
i=1R(i). Therefore LHS =⇒ ∀i ∈ [n], R(i) ∧

R(η) =⇒ Rη(i). The reverse direction is trivial.

In (Locatello et al., 2019), the “instance” factor in SmallNORB and the background image fac-
tor in Scream-dSprites are treated as nuisance variables. By Theorem 2, as long as we perform
weak supervision on all of the non-nuisance variables (via sharing-pairing, say) to guarantee their
consistency with respect to the corresponding true factor of variation, we still have guaranteed full
disentanglement despite the existence of nuisance variable and the fact that we cannot measure or
perform weak supervision on nuisance variable.
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C SINGLE-FACTOR EXPERIMENTS
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Figure 6: This is the same plot as Figure 6, but where we restrict our hyperparameter sweep to
always set extra dense = False. See Appendix G for details about hyperparameter sweep.
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Figure 7: Restricted pairing guarantees consistency. Each plot shows the normalized consistency
score of each model for each factor of variation. Our theory predicts each boxplot highlighted in
red to achieve the highest consistency. Due to the prevalence of restricted pairing in the existing
literature, we chose to only conduct the single-factor restricted labeling experiment on Shapes3D.
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Figure 8: Change pairing guarantees restrictiveness. Each plot shows normalized restrictiveness
score of each model for each factor of variation (row) across different datasets (columns). Dif-
ferent colors indicate models trained with change pairing on different factors. The appropriately-
supervised model for each factor is marked in red.
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Figure 9: Share pairing guarantees consistency. Each plot shows normalized consistency score of
each model for each factor of variation (row) across different datasets (columns). Different colors
indicate models trained with share pairing on different factors. The appropriately-supervised model
for each factor is marked in red.

15



Under review as a conference paper at ICLR 2020

0 1 2 3 4 5
Rank Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 0

Shapes3D

0 1 2 3 4 5
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 1

0 1 2 3 4 5
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 2

0 1 2 3 4 5
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 3

0 1 2 3 4 5
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 4

0 1 2 3 4 5
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 5

0 1 2 3 4
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 0

dSprites

0 1 2 3 4
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 1

0 1 2 3 4
Ra k Pairi g at Factor i

0.0

0.1

0.2

0.3

0.4

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 2

0 1 2 3 4
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 3

0 1 2 3 4
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 4

0 1 2 3 4
Ra k Pairi g at Factor i

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0.125

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 0

Scream-dSprites

0 1 2 3 4
Rank Pairi g at Factor i

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 1

0 1 2 3 4
Ra k Pairi g at Factor i

−0.050

−0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 2

0 1 2 3 4
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 3

0 1 2 3 4
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 4

0 1 2 3
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 0

SmallNORB

0 1 2 3
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 1

0 1 2 3
Ra k Pairi g at Factor i

0.0

0.1

0.2

0.3

0.4

0.5

0.6

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 2

0 1 2 3
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 3

0 1 2
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 0

Cars3D

0 1 2
Ra k Pairi g at Factor i

0.0

0.2

0.4

0.6

0.8

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 1

0 1 2
Ra k Pairi g at Factor i

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ize

d 
Co

 s
ist
e 
cy
 S
co
re
 fo

r F
ac
to
r 2

Figure 10: Rank pairing guarantees consistency. Each plot shows normalized consistency score of
each model for each factor of variation (row) across different datasets (columns). Different colors
indicate models trained with rank pairing on different factors. The appropriately-supervised model
for each factor is marked in red.
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Figure 11: Normalized consistency vs. restrictiveness score of different models on each factor (row)
across different datasets (columns). In many of the plots, we see that models trained via change-
sharing (blue) achieve higher restrictiveness; models trained via share-sharing (orange) achieve
higher consistency; models trained via both techniques (green) simultaneously achieve restrictive-
ness and consistency in most cases.
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E FULL DISENTANGLEMENT EXPERIMENTS
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Figure 12: Disentanglement performance of a vanilla GAN, share pairing GAN, change pairing
GAN, rank pairing GAN, and fully-labeled GAN, as measured by multiple disentanglement metrics
in existing literature (rows) across multiple datasets (columns). According to almost all metrics, our
weakly supervised models surpass the baseline, and in some cases, even outperform the fully-labeled
model.
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Figure 13: Performance of a vanilla GAN (blue), share pairing GAN (orange), change pairing GAN
(green), rank pairing GAN (red), and fully-labeled GAN (purple), as measured by normalized con-
sistency score of each factor (rows) across multiple datasets (columns). Factors {3, 4, 5} in the first
column shows that distribution matching to all six change / share pairing datasets is particularly
challenging for the models when trained on certain hyperparameter choices. However, since con-
sistency and restrictiveness can be measured in weakly supervised settings, it suffices to use these
metrics for hyperparameter selection. We see in Figure 15 and Appendix F that using consistency
and restrictiveness for hyperparameter selection serves as a viable weakly-supervised surrogate for
existing fully-supervised disentanglement metrics.
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Figure 14: Performance of a vanilla GAN (blue), share pairing GAN (orange), change pairing GAN
(green), rank pairing GAN (red), and fully-labeled GAN (purple), as measured by normalized re-
strictiveness score of each factor (rows) across multiple datasets (columns). Since restrictiveness
and consistency are complementary, we see that the anomalies in Figure 13 are reflected in the
complementary factors in this figure.
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Figure 15: Scatterplot of existing disentanglement metrics versus average normalized consistency
and restrictiveness. Whereas existing disentanglement metrics are fully-supervised, it is possible
to measure average normalized consistency and restrictiveness with weakly supervised data (share-
pairing and match-pairing respectively), making it viable to perform hyperparameter tuning under
weakly supervised conditions.
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F FULL DISENTANGLEMENT VISUALIZATIONS

As a demonstration of the weakly-supervised generative models, we visualize our best-performing
match-pairing generative models (as selected according to the normalized consistency score aver-
aged across all the factors). Recall from Figures 2a to 2c that, to visually check for consistency and
restrictiveness, it is important that we not only ablate a single factor (across the column), but also
show that the factor stays consistent (down the row). Each block of 3 × 12 images in Figures 16
to 20 checks for disentanglement of the corresponding factor.
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Figure 16: Shapes3D. Ground truth factors: floor color, wall color, object color, object size, object
type, and azimuth.
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Figure 17: dSprites. Ground truth factors: shape, scale, orientation, X-position, Y-position.
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Figure 18: Scream-dSprites. Ground truth factors: shape, scale, orientation, X-position, Y-position.
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Figure 19: SmallNORB. Ground truth factors: category, elevation, azimuth, lighting condition.
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Figure 20: Cars3D. Ground truth factors: elevation, azimuth, object type.
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G HYPERPARAMETERS

Table 1: We trained a probablistic Gaussian encoder to approximately invert the generative model.
The encoder is not trained jointly with the generator, but instead trained separately from the genera-
tive model (i.e. encoder gradient does not backpropagate to generative model). During training, the
encoder is only exposed to data generated by the learned generative model.

Encoder
4× 4 spectral norm conv. 32. lReLU
4× 4 spectral norm conv. 32. lReLU
4× 4 spectral norm conv. 64. lReLU
4× 4 spectral norm conv. 64. lReLU

flatten
128 spectral norm dense. lReLU
2× z-dim spectral norm dense

Table 2: Generative model architecture.

Generator
128 dense. ReLU. batchnorm.
1024 dense. ReLU. batchnorm.

4× 4× 64 reshape.
4× 4 conv. 64. lReLU. batchnorm.
4× 4 conv. 32. lReLU. batchnorm.
4× 4 conv. 32. lReLU. batchnorm.

4× 4 conv. 3. sigmoid

Table 3: Discriminator used for restricted labeling. Parts in red are part of hyperparameter search.

Discriminator Body
4× 4 spectral norm conv. 32× width. lReLU
4× 4 spectral norm conv. 32× width. lReLU
4× 4 spectral norm conv. 64× width. lReLU
4× 4 spectral norm conv. 64× width. lReLU

flatten
if extra dense: 128× width spectral norm dense. lReLU

Discriminator Auxiliary Channel for Label
128× width spectral norm dense. lReLU

If extra dense: 128× width spectral norm dense. lReLU

Discriminator head
concatenate body and auxiliary.

128× width spectral norm dense. lReLU
128× width spectral norm dense. lReLU

1 spectral norm dense with bias.
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Table 4: Discriminator used for match pairing. We use a projection discriminator (Miyato &
Koyama, 2018) and thus have an unconditional and conditional head. Parts in red are part of hyper-
parameter search.

Discriminator Body Applied Separately to x and x′

4× 4 spectral norm conv. 32× width. lReLU
4× 4 spectral norm conv. 32× width. lReLU
4× 4 spectral norm conv. 64× width. lReLU
4× 4 spectral norm conv. 64× width. lReLU

flatten
If extra dense: 128× width spectral norm dense. lReLU

concatenate the pair.
128× width spectral norm dense. lReLU
128× width spectral norm dense. lReLU

Unconditional Head
1 spectral norm dense with bias

Conditional Head
128× width spectral norm dense

Table 5: Discriminator used for rank pairing. For rank-pairing, we use a special variant of the
projection discriminator, where the conditional logit is computed via taking the difference between
the two pairs and multiplying by y ∈ {−1,+1}. The discriminator is thus implicitly taking on
the role of an adversarially trained encoder that checks for violations of the ranking rule in the
embedding space. Parts in red are part of hyperparameter search.

Discriminator Body Applied Separately to x and x′

4× 4 spectral norm conv. 32× width. lReLU
4× 4 spectral norm conv. 32× width. lReLU
4× 4 spectral norm conv. 64× width. lReLU
4× 4 spectral norm conv. 64× width. lReLU

flatten
If extra dense: 128× width spectral norm dense. lReLU

concatenate the pair.

Unconditional Head Applied Separately to x and x′

1 spectral norm dense with bias.

Conditional Head Applied Separately to x and x′

y-dim spectral norm dense.
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For all models, we use the Adam optimizer with β1 = 0.5, β2 = 0.999 and set the generator learning
rate to 1× 10−3. We use a batch size of 64 and set the leaky ReLU negative slope to 0.2.

To demonstrate some degree of robustness to hyperparameter choices, we considered five different
ablations:

1. Width multiplier on the discriminator network ({1, 2})
2. Whether to add an extra fully-connected layer to the discriminator ({True,False}).
3. Whether to add a bias term to the head ({True,False}).
4. Whether to use two-time scale learning rate by setting encoder+discriminator learning rate

multipler to ({1, 2}).
5. Whether to use the default PyTorch or Keras initialization scheme in all models.

As such, each of our experimental setting trains a total of 32 distinct models. The only exception is
the intersection experiments where we fixed the width multiplier to 1.1

To give a sense of the scale of our experimental setup, note that the 864 models in Figure 4 originate
as follows:

1. 32 hyperparameter conditions × 6 restricted labeling conditions.
2. 32 hyperparameter conditions × 6 match pairing conditions.
3. 32 hyperparameter conditions × 6 share pairing conditions.
4. 32 hyperparameter conditions × 6 rank pairing conditions.
5. 16 hyperparameter conditions × 6 intersection conditions.

1Due to time constraints.
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H PROOFS

H.1 ASSUMPTIONS ON H

Assumption 1. Let D ⊆ [n] indexes discrete random variables SD. Assume that the remaining
random variables SC = S\D have probability density function p(sC |sD) for any set of values sD
where p(SD = sD) > 0.
Assumption 2. Without loss of generality, suppose S1:n = [SC , SD] is ordered by concatenating
the continuous variables with the discrete variables. Let B(sD) = [int(supp(p(sC | sD))), sD]
denote the interior of the support of the continuous conditional distribution of SC concatenated
with its conditioning variable sD drawn from SD. With a slight abuse of notation, let B(S) =⋃
sD:p(sD>0) B(sD). We assume B(S) is zig-zag connected, i.e., for any I, J ⊆ [n], for any two

points s1:n, s
′
1:n ∈ B(S) that only differ in coordinates in I ∪ J , there exists a path {st1:n}t=0:T

contained in B(S) such that

s0
1:n = s1:n (12)

sT1:n = s′1:n (13)

∀ 0 ≤ t < T, either st\I = st+1
\I or st\J = st+1

\J , (14)

Intuitively, this assumption allows transition from s1:n to s′1:n via a series of modifications that
are only in I or only in J . Note that zig-zag connectedness is necessary for restrictiveness union
(Theorem 4) and consistency intersection (Theorem 5). Fig. 21 gives examples where restrictiveness
union is not satisfied when zig-zag connectedness is violated.
Assumption 3. For arbitrary coordinate j ∈ [m] of g that maps to a continuous variable Xj , we
assume that gj(s) is continuous at s, ∀s ∈ B(S); For arbitrary coordinate j ∈ [m] of g that maps to
a discrete variableXj , ∀sD where p(sD) > 0, we assume that gj(s) is constant over each connected
component of int(supp(p(sC | sD)).
Define B(X) analogously to B(S). Symmetrically, for arbitrary coordinate i ∈ [n] of e that maps
to a continuous variable Si, we assume that ei(x) is continuous at x, ∀x ∈ B(X); For arbitrary
coordinate i ∈ [n] of e that maps to a discrete Si, ∀xD where p(xD) > 0, we assume that ei(x) is
constant over each connected component of int(supp(p(xC | xD)).
Assumption 4. Assume that every factor of variation is recoverable from the observation X . For-
mally, (p, g, e) satisfies the following property

Ep(s1:n)‖e ◦ g(s1:n)− s1:n‖2 = 0. (15)

H.2 CALCULUS OF DISENTANGLEMENT

H.2.1 A USEFUL LEMMA

Lemma 1. Let x, y be two random variables with distribution p, f(x, y) be arbitrary function. Then

Ex∼p(x)Ey,y′∼p(y|x)‖f(x, y)− f(x, y′)‖2 ≤ E(x,y),(x′,y′)∼p(x,y)‖f(x, y)− f(x′, y′)‖2.

Proof. Assume w.l.o.g that E(x,y)∼p(x,y)f(x, y) = 0.

LHS = 2E(x,y)∼p(x,y)‖f(x, y)‖2 − 2Ex∼p(x)Ey,y′∼p(y|x)f(x, y)
T f(x, y′) (16)

= 2E(x,y)∼p(x,y)‖f(x, y)‖2 − 2Ex∼p(x)Ey∼p(y|x)f(x, y)
TEy′∼p(y|x)f(x, y

′) (17)

= 2E(x,y)∼p(x,y)‖f(x, y)‖2 − 2Ex∼p(x)‖Ey∼p(y|x)f(x, y)‖2 (18)

≤ 2E(x,y)∼p(x,y)‖f(x, y)‖2 (19)

= 2E(x,y)∼p(x,y)‖f(x, y)‖2 − 2‖E(x,y)∼p(x,y)f(x, y)‖2 (20)

= 2E(x,y)∼p(x,y)‖f(x, y)‖2 − 2E(x,y),(x′,y′)∼p(x,y)f(x, y)
T f(x′, y′) (21)

= RHS. (22)
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H.2.2 CONSISTENCY UNION

Let L = I ∩ J ,K = \ (I ∪ J), M = I − L,N = J − L.
Theorem 3. C(I) ∧ C(J) =⇒ C(I ∪ J).

Proof.

C(I) =⇒ EzM ,zLEzN ,z′N ,zK ,z′K‖rI ◦G(zM , zL, zN , zK)− rI ◦G(zM , zL, z′N , z′K)‖2 = 0.

(23)

For any fixed value of zM , zL,

EzN ,z′N ,zK ,z′K‖rI ◦G(zM , zL, zN , zK)− rI ◦G(zM , zL, z′N , z′K)‖2 (24)

≥ EzNEzK ,z′K‖rI ◦G(zM , zL, zN , zK)− rI ◦G(zM , zL, zN , z′K)‖2. (25)

by plugging in x = zN , y = zK into Lemma 1. Therefore

C(I) =⇒ EzM ,zL,zNEzK ,z′K‖rI ◦G(zM , zL, zN , zK)− rI ◦G(zM , zL, zN , z′K)‖2 = 0. (26)

Similarly we have

C(J) =⇒ EzM ,zL,zNEzK ,z′K‖rJ ◦G(zM , zL, zN , zK)− rJ ◦G(zM , zL, zN , z′K)‖2 = 0 (27)

=⇒ EzM ,zL,zNEzK ,z′K‖rN ◦G(zM , zL, zN , zK)− rN ◦G(zM , zL, zN , z′K)‖2 = 0. (28)

As I ∩N = ∅, I ∪N = I ∪ J , adding the above two equations gives us C(I ∪ J).

H.2.3 RESTRICTIVENESS UNION

1

z1

z2

1
1

z1

z2

1

2
z1

z2

1
2

z1

z2

Figure 21: Zig-zag connectedness is necessary for restriveness union. Here n = m = 3. Colored
areas indicate the support of p(z1, z2); the marked numbers indicate the measurement of s3 given
(z1, z2). Left two panels satisfy zig-zag connectedness (the paths are marked in gray) while the right
two do not (indeedR(1)∧R(2) ; R({1, 2})). In the right-most panel, any zig-zag path connecting
two points from blue and orange areas has to pass through boundary of the support (disallowed).

Similarly define index sets L,K,M,N .
Theorem 4. Under assumptions specified in Appendix H.1, R(I) ∧R(J) =⇒ R(I ∪ J).

Proof. Denote f = e∗K ◦ g. We claim that

R(I)⇐⇒ Ez\IEzI ,z′I‖f(zI , z\I)− f(z
′
I , z\I)‖2 = 0. (29)

⇐⇒ ∀(zI , z\I), (z′I , z\I) ∈ B(Z), f(zI , z\I) = f(z′I , z\I). (30)

We first prove the backward direction: When we draw z\I ∼ p(z\I), zI , z
′
I ∼ p(zI |z\I), let E1

denote the event that (zI , z\I) /∈ B(Z), and E2 denote the event that (z′I , z\I) /∈ B(Z). Reorder the
indices of (zI , z\I) as (zC , zD). The probability that (zI , z\I) /∈ B(Z) (i.e.,zC is on the boundary
of B(zD)) is 0. Therefore Pr[E1] = Pr[E2] = 0. Therefore Pr[E1 ∪ E2] ≤ Pr[E1] + Pr[E2] = 0,
i.e., with probability 1, ‖f(zI , z\I)− f(z′I , z\I)‖2 = 0.
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Now we prove the forward direction: Assume for the sake of contradiction that
∃(zI , z\I), (z′I , z\I) ∈ B(Z) such that f(zI , z\I) < f(z′I , z\I). Denote U = I ∩ D, V = I ∩ C,
W = \I ∩D, Q = \I ∩ C. We have f(zU , zV , zW , zQ) < f(z′U , z

′
V , zW , zQ). Since f is contin-

uous (or constant) at (zU , zV , zW , zQ) in the interior of B([zU , zW ]), and f is also continuous (or
constant) at (z′U , z

′
V , zW , zQ) in the interior of B([z′U , zW ]), we can draw open balls of radius r > 0

around each point, i.e., Br(zV , zQ) ⊂ B([zU , zW ]) and Br(z′V , zQ) ⊂ B([z′U , zW ]), where

∀(z∗V , z∗Q) ∈ Br(zV , zQ),∀(z∆
V , z

∆
Q ) ∈ Br(z′V , zQ), f(zU , z∗V , zW , z∗Q) < f(z′U , z

∆
V , zW , z

∆
Q ).

(31)

When we draw z\I ∼ p(z\I), zI , z
′
I ∼ p(zI |z\I), let C denote the event that (zI , z\I) =

(z∗V , zU , z
#
Q , zW ), (z′I , z\I) = (z∆

V , z
′
U , z

#
Q , zW ) where (z∗V , z

#
Q ) ∈ Br(zV , zQ) and

(z∆
V , z

#
Q ) ∈ Br(z

′
V , zQ). Since both balls have positive volume, Pr[C] > 0. However,

‖f(zI , z\I) − f(z′I , z\I)‖2 > 0 whenever event C happens, which contradicts R(I). Therefore
∀(zI , z\I), (z′I , z\I) ∈ B(Z), f(zI , z\I) = f(z′I , z\I).

We have shown that

R(I)⇐⇒ ∀(zM , zL, zN , zK), (z′M , z
′
L, zN , zK) ∈ B(Z), f(zM , zL, zN , zK) = f(z′M , z

′
L, zN , zK).

(32)

Similarly

R(J)⇐⇒ ∀(zM , zL, zN , zK), (zM , z
′
L, z
′
N , zK) ∈ B(Z), f(zM , zL, zN , zK) = f(zM , z

′
L, z
′
N , zK).

(33)

R(I ∪ J)⇐⇒ ∀(zM , zL, zN , zK), (z′M , z
′
L, z
′
N , zK) ∈ B(Z), f(zM , zL, zN , zK) = f(z′M , z

′
L, z
′
N , zK)

(34)

Let the zig-zag path between (zM , zL, zN , zK) and (z′M , z
′
L, z
′
N , zK) ∈ B(Z) be

{(ztM , ztL, ztN , zK)}Tt=0. Repeatedly applying the equivalent conditions of R(I) and R(J) gives
us

f(zM , zL, zN , zK) = f(z1
M , z

1
L, z

1
N , zK) = · · · = f(zT−1

M , zT−1
L , zT−1

N , zK) = f(z′M , z
′
L, z
′
N , zK).

(35)

H.3 CONSISTENCY AND RESTIVENESS INTERSECTION

Theorem 5. Under the same assumptions as restrictiveness union, C(I) ∧ C(J) =⇒ C(I ∩ J).

Proof.

C(I) ∧ C(J) =⇒ R(\I) ∧R(\J) (36)
=⇒ R(\I ∪ \J) (37)
=⇒ C(\(\I ∪ \J)) (38)
=⇒ C(I ∩ J). (39)

Theorem 6. R(I) ∧R(J) =⇒ R(I ∩ J).

Proof is analogous to Theorem 5.

H.4 DISTRIBUTION MATCHING GUARANTEES LATENT CODE INFORMATIVENESS

Theorem 7. If (p∗, g∗, e∗) ∈ H, and (p, g, e) ∈ H, and g∗(S) d
= g(Z), then there exists a continu-

ous function r such that

Ep(s1:n)‖r ◦ e ◦ g∗(s)− s‖ = 0. (40)
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Proof. We show that r = e∗ ◦ g satisfies Theorem 7. By Assumption 4,

Es‖e∗ ◦ g∗(s)− s‖2 = 0. (41)

Ez‖e ◦ g(z)− z‖2 = 0. (42)

By the same reasoning as in the proof of Theorem 4,

Es‖e∗ ◦ g∗(s)− s‖2 = 0 =⇒ ∀s ∈ B(S), e∗ ◦ g∗(s) = s. (43)

Ez‖e ◦ g(z)− z‖2 = 0 =⇒ ∀z ∈ B(Z), e ◦ g(z) = z. (44)

Let s ∼ p(s). We claim that Pr[E1] = 1, where E1 denote the event that ∃z ∈ B(Z) such that
g∗(s) = g(z). Suppose to the contrary that there is a measure-non-zero set S ⊆ supp(p(s)) such
that ∀s ∈ S , no z ∈ B(Z) satisfies g∗(s) = g(z). Let X = {g(s) : s ∈ S}. As g∗(S) d

= g(Z),
Prs[g

∗(s) ∈ X ] = Prz[g(z) ∈ X ] > 0. Therefore ∃Z ⊆ supp(p(z))−B(Z) such that X ⊆ {g(z) :
z ∈ Z)}. But supp(p(z))− B(Z) has measure 0. Contradiction.

When we draw s, let E2 denote the event that s ∈ B(S). Pr[E2] = 1, so Pr[E1 ∧ E2] = 1. When
E1 ∧ E2 happens, e∗ ◦ g ◦ e ◦ g∗(s) = e∗ ◦ g ◦ e ◦ g(z) = e∗ ◦ g(z) = e∗ ◦ g∗(s) = s. Therefore

Es‖e∗ ◦ g ◦ e ◦ g∗(s)− s‖ = 0. (45)

H.5 THEOREM 1: RESTRICTED LABELING GUARANTEES CONSISTENCY

Theorem 8. Given any oracle (p∗(s1:n), g
∗, e∗) ∈ H, consider the distribution-matching algorithm

A that selects a model (p(z1:n), g, e) ∈ H such that (g∗(S1:n), SI)
d
= (g(Z1:n), ZI). Then g

satisfies C(I ; p, g, e∗) and e satisfies C(I ; p∗, g∗, e).

Proof. Since (xd, sI)
d
= (xg, zI), consider the measurable function

f(a, b) = ‖e∗I(a)− b‖2. (46)

We have

E‖e∗I(xd)− sI‖2 = E‖e∗I(xg)− zI‖2 = 0. (47)

By the same reasoning as in the proof of Theorem 4,

Ez‖e∗I ◦ g(z)− zI‖2 = 0 =⇒ ∀z ∈ B(Z), e∗I ◦ g(z) = zI . (48)

Therefore

EzIEz\I ,z′\I‖e
∗
I ◦ g(zI , z\I)− e∗I ◦ g(zI , z′\I)‖

2 = 0. (49)

i.e., g satisfies C(I ; p, g, e∗). By symmetry, e satisfies C(I ; p∗, g∗, e).

H.6 RESTRICTED LABELING OF sI DOES NOT GUARANTEE RESTRICTIVENESS OF zI

Theorem 9. Weak supervision via labeling of sI is not sufficient for learning a generative model
whose latent code zI is restricted to sI .

Proof. We construct the following counterexample. Let n = m = 3 and I = {1}. The data
generation process is s1 ∼ unif([0, 2π)), (s2, s3) ∼ unif({(x, y) : x2 + y2 <= 1}), g∗(s) =
[s1, s2, s3]. Consider a generator z1 ∼ unif([0, 2π)), (s2, s3) ∼ unif({(x, y) : x2 + y2 <=

1}), g(z) = [z1, cos (z1)z2 − sin (z1)z3, sin (z1)z2 + cos (z1)z3]. Then (xd, sI)
d
= (xg, zI) but

R(I; p, g, e∗) does not hold.
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H.7 THEOREM 1: MATCH PAIRING GUARANTEES CONSISTENCY

Theorem 10. Given any oracle (p∗(s1:n), g
∗, e∗) ∈ H, consider the distribution-matching algo-

rithm A that selects a model (p(z1:n), g, e) ∈ H such that(
g∗(SI , S\I), g

∗(SI , S
′
\I)
)
d
=
(
g(ZI , Z\I), g(ZI , Z

′
\I)
)
. (50)

Then g satisfies C(I ; p, g, e∗) and e satisfies C(I ; p∗, g∗, e).

Proof. (
g∗(SI , S\I), g

∗(SI , S
′
\I)
)
d
=
(
g(ZI , Z\I), g(ZI , Z

′
\I)
)

(51)

=⇒ ‖e∗I ◦ g∗(SI , S\I)− e∗I ◦ g∗(SI , S′\I)‖
2 d
= ‖e∗I ◦ g(ZI , Z\I)− e∗I ◦ g(ZI , Z ′\I)‖

2

(52)

=⇒ EzIEz\I ,z′\I‖e
∗
I ◦ g(zI , z\I)− e∗I ◦ g(zI , z′\I)‖

2 = 0. (53)

So g satisfies C(I ; p, g, e∗). By symmetry, e satisfies C(I ; p∗, g∗, e).

H.8 THEOREM 1: RANK PAIRING GUARANTEES CONSISTENCY

Theorem 11. Given any oracle p∗(s1:n, g
∗, e∗) ∈ H, consider the distribution-matching algorithm

A that selects a model (p(z1:n), g, e) ∈ H such that

(g∗(S1:n), g
∗(S′1:n),1 {Si ≤ S′i})

d
= (g(Z1:n), g(Z

′
1:n),1 {Zi ≤ Z ′i}) . (54)

Then g satisfies C(i ; p, g, e∗) and e satisfies C(i ; p∗, g∗, e).

Proof. Let I = {i}, f = e∗I ◦ g. Distribution matching implies that, with probability 1 over random
draws of Z,Z ′, the following event P happens:

ZI <= Z ′I =⇒ f(Z) <= f(Z ′). (55)

i.e.,

Ez,z′1[¬P ] = 0. (56)

Let W = \I ∩D, Q = \I ∩ \D. We showed in the proof of Theorem 4 that

C(I)⇐⇒ ∀(zI , zW , zQ), (zI , z′W , z′Q) ∈ B(Z), f(zI , zW , zQ) = f(zI , z
′
W , z

′
Q). (57)

We prove by contradiction. Suppose ∃(zI , zW , zQ), (zI , z′W , z′Q) ∈ B(Z) such that
f(zI , zW , zQ) < f(zI , z

′
W , z

′
Q).

1. Case 1: ZI is discrete.

Since f is constant both at (zI , zW , zQ) in the interior of B([zI , zW ]), and at (zI , z′W , z
′
Q)

in the interior of B([zI , z′W ]), we can draw open balls of radius r > 0 around each point,
i.e., Br(zQ) ⊂ B([zI , zW ]) and Br(z′Q) ⊂ B([zI , z′W ]), where

∀z∗Q ∈ Br(zQ),∀z∆
Q ∈ Br(z′Q), f(zI , zW , z∗Q) < f(zI , z

′
W , z

∆
Q ). (58)

When we draw z, z′ ∼ p(z), let C denote the event that this specific value of zI is picked
for both z, z′, and we picked z\I ∈ Br(z′Q), z′\I ∈ Br(zQ). Since both balls have positive
volume, Pr[C] > 0. However, P does not happen whenever event C happens, since zI =
z′I but f(z) > f(z′), which contradicts Pr[P ] = 1.

2. Case 2: zI is continuous.

Similar to case 1, we can draw open balls of radius r > 0 around each point, i.e.,
Br(zI , zQ) ⊂ B(zW ) and Br(zI , z′Q) ⊂ B(z′W ), where

∀(z∗I , z∗Q) ∈ Br(zI , zQ),∀(z∆
I , z

∆
Q ) ∈ Br(zI , z′Q), f(z∗I , zW , z∗Q) < f(z∆

I , z
′
W , z

∆
Q ).

(59)
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Let H1 = {(z∗I , z∗Q) ∈ Br(zI , zQ) : z∗I >= zI}, H2 = {(z∆
I , z

∆
Q ) ∈ Br(zI , z′Q) : z∆

I <=

zI}. When we draw z, z′ ∼ p(z), let C denote the event that we picked z′ ∈ H1 × {zW },
z ∈ H2 × {z′W }. Since H1, H2 have positive volume, Pr[C] > 0. However, P does not
happen whenever event C happens, since zI <= z′I but f(z) > f(z′), which contradicts
Pr[P ] = 1.

Therefore we showed

∀(zI , zW , zQ), (zI , z′W , z′Q) ∈ B(Z), f(zI , zW , zQ) = f(zI , z
′
W , z

′
Q), (60)

i.e., g satisfies C(I ; p, g, e∗). By symmetry, e satisfies C(I ; p∗, g∗, e).
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