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ABSTRACT

The difficulty of obtaining sufficient labeled data for supervised learning has mo-
tivated domain adaptation, in which a classifier is trained in one domain, source
domain, but operates in another, target domain. Reducing domain discrepancy has
improved the performance, but it is hampered by the embedded features that do
not form clearly separable and aligned clusters. We address this issue by propagat-
ing labels using a manifold structure, and by enforcing cycle consistency to align
the clusters of features in each domain more closely. Specifically, we prove that
cycle consistency leads the embedded features distant from all but one clusters
if the source domain is ideally clustered. We additionally utilize more informa-
tion from approximated local manifold and pursue local manifold consistency for
more improvement. Results for various domain adaptation scenarios show tighter
clustering and an improvement in classification accuracy.

1 INTRODUCTION

Classifiers trained through supervised learning have many applications (Bahdanau et al., 2015; Red-
mon et al., 2016), but it requires a great deal of labeled data, which may be impractical or too costly
to collect. Domain adaptation circumvents this problem by exploiting the labeled data available in
a closely related domain. We call the domain where the classifier will be used at, the target domain,
and assume that it only contains unlabeled data {xt}; and we call the closely related domain the
source domain and assume that it contains a significant amount of labeled data {xs, ys}.
Domain adaptation requires the source domain data to share discriminative features with the target
data (Pan et al., 2010). In spite of the common features, a classifier trained using only the source
data is unlikely to give satisfactory results in the target domain because of the difference between
two domains’ data distributions, called domain shift (Pan et al., 2010). This may be addressed by
fine-tuning on the target domain with a small set of labeled target data, but it tends to overfit to the
small labeled dataset (Csurka, 2017).

Another approach is to find discriminative features which are invariant between two domains by
reducing the distance between the feature distributions. For example, domain-adversarial neural
network (DANN) (Ganin et al., 2016) achieved remarkable result using generative adversarial net-
works (GANs) (Goodfellow et al., 2014). However, this approach still has room to be improved.
Because the classifier is trained using labels from the source domain, the source features become
clustered, and they determine the decision boundary. It would be better if the embedded features
from the target domain formed similar clusters to the source features in class-level so that the deci-
sion boundary does not cross the target features. Methods which only reduce the distance between
two marginal distributions bring the features into general alignment, but clusters do not match satis-
factorily, as shown in Fig. 1(a). As a consequence, the decision boundary is likely to cross the target
features, impairing accuracy.

In this work, we propose a novel domain adaptation method to align the manifolds of the source and
the target features in class-level, as shown in Fig. 1(b). We first employ label propagation to evaluate
the relation between manifolds. Then, to align them, we reinforce the cycle consistency that is the
correspondence between the original labels in the source domain and the labels that are propagated
from the source to the target and back to the source domain. The cycle consistency draws features
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(a) DANN model (b) Our model

Figure 1: Features from the SVHN→MNIST scenario visualized using t-SNE. Circle and x markers
represent the source and target domain features, respectively. In (a), features from DANN model are
aligned but the fit is far from perfect, and the boundaries between classes are not clear. In contrast,
our model in (b) produces clearly aligned and clustered features.

from both domains that are near to each other to converge, and those that are far apart to diverge. The
proposed method exploits manifold information using label propagation which had not been taken
into account in other cycle consistency based methods. As a result, our approach outperforms other
baselines on various scenarios as demonstrated in Sec. 4. Moreover, the role of cycle consistency is
theoretically explained in Sec. 3.2 that it leads to aligned manifolds in class-level. To acquire more
manifold information within the limited number of mini-batch samples, we utilize local manifold
approximation and pursue local manifold consistency. In summary, our contributions are as follows:

• We propose a novel domain adaptation method which exploits global and local manifold
information to align class-level distributions of the source and the target.

• We analyze and demonstrate the benefit of the proposed method over the most similar
baseline, Associative domain adaptation (AssocDA) (Haeusser et al., 2017).

• We present the theoretical background on why the proposed cycle consistency leads to
class-level manifold alignment, bringing better result in domain adaptation.

• We conduct extensive experiments on various scenarios and achieve the state-of-the-art
performance.

2 RELATED WORK

Unsupervised Domain Adaptation It has been shown (Ben-David et al., 2010) that the classifica-
tion error in the target domain is bounded by that in the source domain, the discrepancy between
the domains and the difference in labeling functions. Based on this analysis, a number of works
have endeavored to train domain-confusing features to minimize the discrepancy between the do-
mains (Ganin et al., 2016; Long et al., 2013; 2015; Tzeng et al., 2014; 2017). Maximum mean
discrepancy can be used (Long et al., 2015; Tzeng et al., 2014) as a measure of domain discrepancy.
In an approach inspired by GANs, a domain confusion can be converted (Ganin et al., 2016; Tzeng
et al., 2017) into a minmax optimization.

While minimization of domain discrepancy can be effective in reducing the upper bound on the
error, it does not guarantee that the feature representation in the target domain is sufficiently dis-
criminative. To address this issue, several techniques had been proposed. Explicit separation of the
shared representation from the individual characteristics of each domain may enhance the accuracy
of the model (Bousmalis et al., 2016). This approach has been implemented as a network with pri-
vate and shared encoders and a shared decoder. The centroid and prototype of each category can
be used for class-level alignment (Pinheiro, 2018; Xie et al., 2018). An alternative to such feature-
space adaptation techniques is the direct conversion of target data to source data (Bousmalis et al.,
2017; Hoffman et al., 2018; Yoo et al., 2017). Those proposed methods intend to transfer the style of
images to another domain while preserving the content. This performs well on datasets containing
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Figure 2: Overview of our method. The feature generator G projects the input data into the feature
space. The dashed line means weight sharing. The embedded source features fs and the target
features f t are organized into a graph and then used together to evaluate cycle consistency through
label propagation. The embedding classifier C learns from the source ground-truth labels. The
discriminator D determines whether features originated in the source or the target domain.

images that are similar at the pixel-level; they are problematic when the mapping between high-level
features and images is complicated (Tzeng et al., 2017).

Metric Learning Metric learning is learning an appropriate metric distance to measure the similarity
or dissimilarity between data (Bellet et al., 2013). Reducing the distances between similar data
and increasing the distances between distinct data has shown (Schroff et al., 2015) to improve the
accuracy of a classifier.

Metric learning is particularly beneficial when very little labeled data is available, which is the situ-
ation for domain adaptation. Sener et al. (2016) combined metric learning and unsupervised domain
adaptation with the enforcement of cycle consistency. In particular, the inner products of source
features and target features with the same label are maximized, and minimized between features
with different labels. AssocDA (Haeusser et al., 2017) enforces the feature alignment between the
source and target by forcing the two step round trip probability to be uniform in the same class and
to vanish between different classes.

Graph-based learning is closely related to metric learning, in that it achieves clustering using dis-
tance information. Label consistency (Zhou et al., 2004) is usually assumed, meaning that adjacent
data tend to have the same labels (Wang et al., 2009). Label propagation (Zhou et al., 2004) has im-
proved the performance of semi-supervised learning by enforcing label consistency by propagating
labels from labeled to unlabeled data. To overcome need for fixed graphs to be provided in advance,
the distances between each node can be adaptively learned (Liu et al., 2019; Oshiba et al., 2019), as
in metric learning, and this increases accuracy in both semi-supervised and few-shot learning.

3 METHOD

Our algorithm, shown in Fig. 2, uses label propagation and cycle consistency to learn features from
the source and the target domains which are both 1) indistinguishable each other and 2) close when
placed within the same class, but distant when placed in different classes. The details are as follows.

3.1 FEATURE EMBEDDING AND GRAPH CONSTRUCTION

Manifold learning (Nie et al., 2010) extracts intrinsic structures from both unlabeled and labeled
data. We obtain these structures by constructing a graph whose vertexes are the embedded features
and whose edges are the relations between data. We first embed the input data in the feature space,
using the feature generator composed of convolutional layers following previous work (Liu et al.,
2019; Oshiba et al., 2019). Subsequently, a fully connected graph is constructed according to the
distances between the features. The edge weights Wij between the input data xi, xj are determined

from the feature vectors using Gaussian similarity, Wij = exp(−‖fi−fj‖
2

2σ2 ), where fi, fj are the
embedded feature vectors of xi, xj , and σ is a scale parameter. It is known (Liu et al., 2019) that
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graph-based methods are sensitive to the scale parameter σ. A large σ results in an uniformly
connected graph that disregards the latent structure of the data, while a small σ produces a sparse
graph which fails to express all the relationship between the data. To adapt σ according to the
embedded features, we take σ as a trainable variable to be learned during training.

3.2 LABEL PROPAGATION AND CYCLE CONSISTENCY

Label propagation (Zhou et al., 2004) is a method of manifold regularization, which in turn produces
a classifier that is robust against small perturbations. Label propagation can be seen as a repeated
random walk through the graph of features using an affinity matrix to assign the labels of target
data (Xiaojin & Zoubin, 2002).

A label matrix yn ∈ R(Ns+Nt)×C refers to the labels assigned to data in both domains at the n-th
step random walk. The dimension of yn is determined by Ns, Nt, and C which are the numbers of
source and target data points and the number of classes, respectively. The first Ns rows of yn contain
the labels of the source data, and the remaining Nt rows contain the labels of the target data. The
initial label vector y0 contains ys for the source data, which is one-hot coded ground-truth labels
and zero vectors for the target data.

The one step of the random walk transforms the label vector as follows:

yn+1 = Tyn. (1)

where, T =

(
I 0
Tts Ttt

)
= normalize(W ) and W =

(
I 0
Wts Wtt

)
. Wts is a similarity matrix

between the target and source data, andWtt is a similarity matrix which represents the interrelations
in the target data. These are described in the Sec. 3.1. The normalization operation normalize(·)
transforms the sum of each row to 1. The identity matrix in the normalized transition matrix T
signifies that the labels of source data do not change because its labels are already known. In graph
theory, these source data points would be called absorbing nodes.

In label propagation, the labels of the target domain is assigned to the propagated labels ŷt by infinite
transition, formulated as ŷt = limn→∞

∑n
i=1 T

i−1
tt Ttsy

s, which converges as follows (Xiaojin &
Zoubin, 2002):

ŷt = (I − Ttt)−1Ttsys. (2)

In our method, ŷt is used to obtain the propagated labels of the source data in the same way as
ŷs = (I−Tss)−1Tstŷt where Tss and Tst are defined analogous to Ttt and Tts, so that we can learn
the features of which clusters match each other. We then refer to the property that ŷs should be the
same as the original label ys as cycle consistency. Pursuing cycle consistency forces not perfectly
aligned features to move toward the nearest cluster, as shown in Fig. 3. The following theorem shows
that enforcing cycle consistency on ideally clustered source data will segregate different classes of
the source and the target data and gather the same classes.

Theorem 1. Let {ei|1 ≤ i ≤ C} be the standard bases of C-dimensional Euclidean space. For
the sake of simplicity, source data x1, x2, · · · , xNs

are assumed to be arranged so that the first n1
data belong to class 1, the n2 data to class 2, and so forth. Assume that 1) the source data is ideally
clustered, in the sense that Tss has positive values if the row and the column are the same class
and zero otherwise, i.e., Tss = diag(T1, T2, · · · , TC), the block diagonal where Ti is a ni × ni
positive matrix for i = 1, 2, · · · ,C and 2) ŷs = ys. Then for all 1 ≤ j ≤ C, there exists a
nonnegative vector vj ∈ RNs such that 1) the part where source data belongs to jth class (from
[n1 + n2 + · · ·+ nj−1 + 1]th element to [n1 + n2 + · · ·+ nj ]

th element) are positive and the other
elements are all zero and 2) v>j Tstŷ

tei = 0 for all 1 ≤ i ≤ C, i 6= j.

Proof. The illustration and the proof is given in Appx. A.

In Thm. 1, ŷtei refers to the assigned probability as ith class to the target data. The conclusion
implies that if a target data is enough to be predicted as ith class through label propagation, i.e.,
ith elements of the row in ŷt corresponding to the target data is nonzero, then the elements of
Tst which represent the transitions from source data of all but ith class to the target data should
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(a) Graph construction (b) Effect of cycle consistency

Figure 3: Graphical interpretation of the effect of cycle loss in the SVHN→MNIST scenario. (a)
The model constructs a graph in the feature space, and the darkness of each line is proportional to
similarity of the features. (b) Features with high similarity, expressed as both direct and indirect
connections, cluster together by class to enforce cycle consistency.

vanish, i.e., the target data is segregated from the source data in different classes. As described in
Sec. 3.4, we employed DANN to prevent the target data distribution to be distinct from the source
data distribution. If a column of Tst is a zero vector, the feature of the corresponding target data for
the column is considerably distant from all source data features. However, minimizing the DANN
loss makes target features lie around source features, and thus each column of Tst is not likely to be a
zero vector. Combining this conjecture with Thm. 1, each row of ŷt has only one nonzero value, i.e.,
every target data belongs to only one cluster. We thus argue that by pursuing this property, generator
can learn more discriminative shared features, and classification performance may improve. Cycle
consistency is enforced by minimizing the l1 loss Lcycle between ŷs and ys:

Lcycle = ‖ŷs − ys‖1 . (3)
Comparison with AssocDA The proposed method has some resemblance with AssocDA in that
they both consider the similarities and transitions between data. However, we argue that AssocDA
is a special case of our method. First, our method exploits manifold over each domain by taking
relations within the same domain into account through label propagation, whereas AssocDA only
considers relations across the domains. Specifically, in Eq. 1, our method utilizes both Tts and Ttt,
but AssocDA ignores Ttt which often has useful information about the target data manifold. Second,
AssocDA forces the two-step transition to be uniform within the same class. This strict condition
may drive the source features of each class to collapse to one mode and can cause overfitting. On
the contrary, our method only constrains source data to preserve its original labels after the label
propagation. Thus, it does not require all source data be close to each other within the same class; it
allows moderate intra-class variance. The experiment in Sec. 4.1 and Fig. 4 support these arguments
and visualize the effect of the differences.

3.3 LOCAL MANIFOLD CONSISTENCY

As shown in Thm. 1, the introduced cycle consistency utilizes graph based global manifold informa-
tion and enforces the source and target features to be aligned in class-level. However, in practice, the
limited size of mini-batch may restrict the available information of graph. The knowledge from the
local manifold of each sample, in this case, can complement the global manifold information. In this
regard, we additionally pursue local manifold consistency that the output should not be sensitive to
small perturbations in the local manifold, as suggested elsewhere (Simard et al., 1992; Kumar et al.,
2017; Qi et al., 2018). Concretely, localized GAN (LGAN) (Qi et al., 2018) is employed to ap-
proximate the local manifold of each data and sample a marginally perturbed image along the local
manifold from the given data. LGAN allows it as LGAN focuses on learning and linking patches
of local manifolds in its training procedure. The difference between the predicted label of the per-
turbed image and that of the original image is minimized to impose local manifold consistency of
the classifier as follows:

Llocal = µ
1

Ns

Ns∑
i=1

Ez∼PzH
(
C(G(xsi )), C(G(GL(x

s
i , z)))

)
+ η

1

Nt

Nt∑
j=1

Ez∼Pz
H
(
C(G(xtj)), C(G(GL(x

t
j , z)))

)
,

(4)
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where, C, G and GL are the embedding classifier, the feature generator and the LGAN generator,
respectively. LGAN generator, GL(x, z), takes an image x and noise z to generate locally perturbed
image along the approximated local manifold. H(·, ·) denotes cross entropy. µ and η are coefficients
for the source and the target local manifold consistency loss, respectively.

3.4 TRAINING PROCESS

Our method learns a clustered feature representation that is indistinguishable across the source and
target domains through the training process as follows:

max
D

Ldann (5)

min
G,C

Lclass + λαLdann + λβLcycle + Llocal, (6)

where, D is the discriminator. α and β are coefficients for the last two terms and λ is a scheduling
parameter described in Appx B.1. Lclass is a widely used cross-entropy loss for labeled source data
and Ldann is a GAN loss (Ganin et al., 2016; Goodfellow et al., 2014):

Lclass =
1

Ns

Ns∑
i=1

− log pi(y = ysi ) (7)

Ldann =
1

Ns

Ns∑
i=1

logD(G(xsi )) +
1

Nt

Nt∑
j=1

log (1−D(G(xtj))), (8)

where discriminator’s outputD(·) is the probability that the input originated from the source domain.
From the metric learning perspective, Lclass serves to separate the source features according to their
ground-truth labels, which supports the assumption in Thm. 1, the ideally clustered source features.
Subsequently, Ldann takes a role in moving the target features toward the source features, but it is
insufficient to produce perfectly aligned clusters. Our cycle loss Lcycle and local loss Llocal facilitate
clustering by enforcing cycle consistency and local manifold consistency.

4 EXPERIMENTS

4.1 TOY EXAMPLE

We present a toy example to empirically demonstrate the effect of our proposed cycle loss using man-
ifold information compared to the most similar method, AssocDA. We designed synthetic dataset
in 2-dimensional feature space with two classes as illustrated in the leftmost of Fig. 4. The source
data lie vertically and the target data are slightly tilted and translated. The second column shows the
negative gradients of AssocDA loss and our cycle loss with respect to each data. Negative gradients
can be interpreted as the movement of features at each iteration. The third and fourth are the updated
features using gradient descent in the middle and at the end of feature updates1.

As argued in Sec. 3.2, AssocDA does not consider the transition within the same domain and thus
target data which are close to source data with different label (points inside red circles in the second
column) are strongly attracted to them. On the other hand, the gradients of the cycle loss are much
smaller than AssocDA. We speculate that it is because the attractions from source data in the same
class are propagated through target data manifold. As a result, AssocDA leads some data to move
in wrong direction, being misclassified, while cycle loss brought correctly aligned manifolds. In
addition, AssocDA attracts all features too close at the end of updates, which may cause overfitting.
Last but not least, our cycle loss aligned source and target clusters correctly without the aid of dann
loss. We thus argue that our method is complementary to DANN rather than an extension.

4.2 REAL DATASET EXPERIMENT

We show the performance of the proposed method on two real visual dataset. First dataset, which we
call by Digit & Object dataset, includes digit dataset such as SVHN and Synthetic Digits (DIGITS),

1The animation of update progress is available at https://youtu.be/09PE5iXwvzY
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AssocDA

Ours

Gradients of loss Progress at 150 steps Progress at 600 steps

Figure 4: Visualization of toy experiment. (Best viewed in color.) Blue and orange colors represent
labels. Circles with light color are source data and x markers with dark color are target data. The
left-most one depicts the initial data distribution. For the right six sub-figures, the top row refers to
AssocDA and the bottom row refers to ours. The second column illustrates the negative gradients
of loss for target data that are close to the source with different labels. The third and fourth columns
are the updated data after gradient descent in the middle and at the end of the training. The black
lines indicate the decision boundaries of logistic regression models trained with source labels. Ours
aligns manifolds better than AssocDA and results in an accurate classifier for the target.

(a) SVHN→MNIST (b) USPS→MNIST (c) MNIST→MNIST-M (d) MNIST→ USPS

Figure 5: Visualization of learned features using t-SNE. Circles and x markers respectively indicate
the source and target features. Colors correspond to labels. In all cases, the features from two
domains form similar and tight clusters, which is the key objective of our method.

and object dataset such as STL and CIFAR. We used ImageCLEF-DA as second dataset for more
challenging benchmark. We employed three networks as previous work (Shu et al., 2018; Xie et al.,
2018; Long et al., 2018). A network with two convolutional layers and two fully connected layers
for digit dataset and a network with nine convolutional layers and one fully connected layer for
object dataset were implemented. Pretrained ResNet (He et al., 2016) was used for ImageCLEF-DA
dataset. More details on training settings, adaptation scenarios and an experiment on non-visual
dataset are provided in Appx. B.1, B.2 and D.

Tab. 1 compares the accuracy of our method on Digit & Object dataset with that of other approaches.
For our method, we reported the results of three models, one with local loss (L), another with cycle
loss (C) and the other with both losses (L+C). Our algorithm outperformed the others on most of
the tasks. PixelDA (Bousmalis et al., 2017) showed superior performance on MNIST→MNIST-M,
but it is attributable to the fact that PixelDA learns transferring the style of images at a pixel level
which is similar (Pinheiro, 2018) to the way MNIST-M is generated from MNIST. In the all other
experiments, the performance of the proposed method was better than the state-of-the-art. This
suggests that enforcing alignment in addition to domain-invariant embedding reduces the error-rate.
T-SNE embeddings in Fig. 5 indicates that the learned features are well aligned and clustered.
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Table 1: Accuracy (%) on Digit & Object dataset. Most results are excerpted from (Bousmalis et al.,
2017; Tzeng et al., 2017). All experiments were run 5 times.

Source MNIST MNIST USPS SVHN DIGITS CIFAR STL
Target MNIST-M USPS MNIST MNIST SVHN STL CIFAR

Source Only 63.6 75.2 57.1 60.1 86.9 76.3 63.6
DANN (Ganin et al., 2016) 76.7 77.1 73.0 73.9 90.3 - -
JAN (Long et al., 2017) 76.9 81.1 - 71.1 88.0 - -
DRCN (Ghifary et al., 2016) - 91.8 73.7 82.0 - 66.4 58.7
CoGAN (Liu & Tuzel, 2016) 62.0 91.2 89.1 - - - -
ADDA (Tzeng et al., 2017) - 89.4 90.1 76.0 - - -
DSN (Bousmalis et al., 2016) 83.2 - - 82.7 91.2 - -
AssocDA (Haeusser et al., 2017) 89.5 - - 97.6 91.9 - -
PixelDA (Bousmalis et al., 2017) 98.2 95.9 - - - - -
CyCADA (Hoffman et al., 2018) - 95.6 96.5 90.4 - - -
ATT (Saito et al., 2017) 94.2 - - 86.2 92.9 - -
LEL (Luo et al., 2017) - - - 81.0 - - -
SimNet (Pinheiro, 2018) 90.5 96.4 95.6 - - - -
MSTN (Xie et al., 2018) - 92.9 - 91.7 - - -
PFAN (Chen et al., 2019) - 95.0 - 93.9 - - -
MCD (Saito et al., 2018) - 94.2 94.1 96.2 - - -
CDAN+E (Long et al., 2018) - 95.6 98.0 89.2 - - -
VADA† (Shu et al., 2018) 91.1 91.3 91.4 93.1 89.8 80.0 75.3
DIRT-T† (Shu et al., 2018) 93.7 90.5 93.3 n.c† 90.0 - -

Ours (L) 91.2±0.8 95.9±0.3 97.6±0.3 76.2±8.1 91.9±0.2 80.1±0.8 75.8±0.4
Ours (C) 96.5±0.1 97.3±0.2 98.6±0.1 98.2±0.2 92.1±0.2 80.5±0.3 69.9±0.3
Ours (L+C) 96.4±0.1 97.2±0.2 99.2±0.1 98.2±0.1 93.4±0.1 81.4±0.5 75.6±0.4

† Results on VADA and DIRT-T for all but CIFAR↔STL experiment are obtained by running publicly available code with a
modification of network to be same with ours for a fair comparison. In SVHN→MNIST experiment, DIRT-T did not converge
and collapsed.

Table 2: Accuracy (%) on ImageCLEF-DA for domain adaptation tasks

Source→ Target I→ P P→ I I→ C C→ I C→ P P→ C Avg

Source Only 74.8±0.3 83.9±0.1 91.5±0.3 78.0±0.2 65.5±0.3 91.2±0.3 80.7
DAN (Long et al., 2015) 74.5±0.4 82.2±0.2 92.8±0.2 86.3±0.4 69.2±0.4 89.8±0.4 82.5
DANN (Ganin et al., 2016) 75.0±0.6 86.0±0.3 96.2±0.4 87.0±0.5 74.3±0.5 91.5±0.6 85.0
JAN (Long et al., 2017) 76.8±0.4 88.0±0.2 94.7±0.2 89.5±0.3 74.2±0.3 91.7±0.3 85.8
CDAN (Long et al., 2018) 76.7±0.3 90.6±0.3 97.0±0.4 90.5±0.4 74.5±0.3 93.5±0.4 87.1
CDAN+E (Long et al., 2018) 77.7±0.3 90.7±0.2 97.7±0.3 91.3±0.3 74.2±0.2 94.3±0.3 87.7

Ours (C) 78.1±0.5 91.8±0.5 96.4±0.5 90.6±1.1 76.3±0.9 95.7±0.6 88.2
Ours (L+C) 77.7±0.6 91.3±0.7 95.8±0.3 89.9±0.5 76.0±0.4 95.4±0.8 87.7

Tab. 2 reports the results on ImageCLEF-DA dataset experiments. The performance of our method
was better or comparable than those of other baselines. Throughout ImageCLEF-DA experiments,
the proposed method without the local loss achieved better accuracy compared to that with the local
loss. Approximation of the local manifold on ImageCLEF-DA generated by LGAN was slightly
worse than that on Digit & Object dataset; perturbed image was blurred and semantically invariant
with the original image. Hence, we speculate that the performance of the proposed method may be
improved with better local manifold approximation.

5 CONCLUSION

In this paper, we proposed a novel domain adaptation which stems from the objective to correctly
align manifolds which might result in better performance. Our method achieved it, which was sup-
ported by intuition, theory and experiments. In addition, its superior performance was demonstrated
on various benchmark dataset. Based on graph, our method depends on how to construct the graph.
Pruning the graph or defining a similarity matrix considering underlying geometry may improve the
performance. Our method also can be applied to semi supervised learning only with slight modifi-
cation. We leave them as future work.
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A PROOF OF THEOREM 1

Theorem 1. Let {ei|1 ≤ i ≤ C} be the standard bases of C-dimensional Euclidean space. For
the sake of simplicity, source data x1, x2, · · · , xNs

are assumed to be arranged so that the first n1
data belong to class 1, the n2 data to class 2, and so forth. Assume that 1) the source data is ideally
clustered, in the sense that Tss has positive values if the row and the column are the same class
and zero otherwise, i.e., Tss = diag(T1, T2, · · · , TC), the block diagonal where Ti is a ni × ni
positive matrix for i = 1, 2, · · · ,C and 2) ŷs = ys. Then for all 1 ≤ j ≤ C, there exists a
nonnegative vector vj ∈ RNs such that 1) the part where source data belongs to jth class (from
[n1 + n2 + · · ·+ nj−1 + 1]th element to [n1 + n2 + · · ·+ nj ]

th element) are positive and the other
elements are all zero and 2) v>j Tstŷ

tei = 0 for all 1 ≤ i ≤ C, i 6= j.
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Figure 6: Illustration for Theorem 1. From the assumption, Tss is a block diagonal matrix of which
block elements are T1,T2,· · · ,TC . vj is all zero except nj elements in the middle of vj . The nj
elements are all positive and their indices correspond to those of Tj in Tss. In the proof, the left
eigenvector uj of Tj will be substituted to this part.

Proof. From the Perron-Frobenius Theorem (Frobenius et al., 1912; Perron, 1907) that positive
matrix has a real and positive eigenvalue with positive left and right eigenvectors, Tj , the block
diagonal element of Tss, has a positive left eigenvector uj with eigenvalue λj for all j = 1, 2, · · ·C.
Then, as shown below, vj = ( 0 0 ··· 0 u>j 0 ··· 0 )

> where n1 + n2 + · · · + nj−1 zeros, uj and
nj+1 + nj+2 + · · ·+ nC zeros are concatenated, is a left eigenvector of Tss with eigenvalue λj by
the definition of eigenvector.

v>j Tss =

(
0 0 · · · 0︸ ︷︷ ︸
n1+n2+···+nj−1

u>j 0 0 · · · 0︸ ︷︷ ︸
nj+1+nj+2+···+nC

)
T1

. . .
Tj

. . .
TC

 (9)

=
(
0 0 · · · λju

>
j 0 0 · · · 0

)
(10)

= λj
(
0 0 · · · 0 u>j 0 0 · · · 0

)
(11)

= λjv
>
j (12)

From the label propagation, we have,

ŷs = (I − Tss)−1Tstŷt. (13)

12



Under review as a conference paper at ICLR 2020

By multiplying v>j (I − Tss) on the left and ei on the right to the both sides in Equation 13 and
combining with the assumption ŷs = ys, we have, ∀1 ≤ i ≤ C, i 6= j,

v>j Tstŷ
tei = v>j (I − Tss)ŷsei (14)

= v>j (I − Tss)ysei (15)

= (1− λj)v>j ysei (16)

= 0 (17)

The last zero comes from the definition of vj .

B EXPERIMENTAL DETAIL

B.1 TRAINING DETAIL

Scheduling the effect of losses To reduce the effect of noisy signal from Ldann and Lcycle during
the early stages of training, a weight balance factor λ = 2

1+exp(−γ·p) − 1 is applied in Eq. 6. A
constant γ determines the rate of increase of λ; p is the progress of training, which proceeds from
0 to 1. The parameter was introduced (Ganin et al., 2016) to make a classifier less sensitive to the
erroneous signals from the discriminator in the beginning. Throughout the experiments, γ was set
to 10.

Hyperparameter Although it would be ideal to avoid utilizing labels from the target domain in
the hyperparameter optimization, it seems that no globally acceptable method exists for this. One
possibility (Ganin et al., 2016) is reverse validation scheme but this may not be accurate enough to
estimate test accuracy (Bousmalis et al., 2016). In addition (Bousmalis et al., 2016), applications
exist where the labeled target domain data is available at the test phase but not at the training phase.
Hence, a small set of labeled target domain data was exploited as a validation set; 256 samples for
the Amazon review experiment and 1,000 samples for the other experiments (Bousmalis et al., 2016;
2017; Saito et al., 2017).

Batch Sizes It is an inherent characteristic of our method that each data sample affects the graph
structure. So it is important for each class sample in each batch to represent its classes accurately.
In other words, the transition matrix can be corrupted by biases in the samples. Therefore, the
number of data samples in each class in a batch should be sufficient to avoid any likely bias. To
address this problem, we performed experiments with batch size of up to 384 and observed very
little improvement beyond a batch size of 128. So we fixed the batch size to 128 for Digit & Object
dataset. For the ImageCLEF-DA dataset, we set the batch size to 36 because of limited computing
resource.

B.2 ADAPTATION SETTINGS

MNIST→MNIST-M The MNIST database of hand-written digits (LeCun et al., 1998) consists of
digit images with 10 classes and MNIST-M (Ganin et al., 2016) consists of MNIST digits blended
with natural color patches from the BSDS500 dataset (Arbelaez et al., 2011). In addition, following
other work (Pinheiro, 2018) the colors of the MNIST images were inverted randomly, because their
colors are always white on black, whereas the MNIST-M images exhibit various colors.

MNIST ↔ USPS USPS (Denker et al., 1989) is another dataset of hand-written images of digits,
with 10 classes. USPS contains 16×16 images and the size of the USPS image is upscaled to 28×28,
which is the size of the MNIST image in our experiment.

SVHN→MNIST The Street View House Numbers (SVHN) (Netzer et al., 2011) dataset consists
of images of house numbers acquired by Google Street View. The natural images that it contains,
are substantially different from the line drawings in the MNIST dataset. The size of each MNIST
image is upscaled to 32×32, which is the size of SVHN images.

SYN DIGITS→ SVHN SYN DIGITS dataset is synthetic number dataset which is similar to the
SVHN dataset (Ganin et al., 2016). The most significant difference between the SYN DIGITS
dataset and the SVHN dataset is the untidiness (Ganin et al., 2016) in the background of real images.
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CIFAR↔ STL Both CIFAR dataset (Krizhevsky & Hinton, 2009) and STL dataset (Coates et al.,
2011) are 10-class datasets that contain images of animals and vehicles. Not overlapped classes are
removed to make a 9-class domain adaptation task (Shu et al., 2018). We used the larger network
only for this experiment.

ImageCLEF-DA2 The twelve common classes of three publicly available dataset (Caltech-256,
ImageNet ILSVRC2012, and PASCAL VOC2012) are selected to form visual domain adaptation
tasks. We perform all six possible adaptation scenarios among these three dataset.

C HYPERPARAMETERS

We searched hyperparameters within α = {0, 0.01, 0.1, 1}, β = {0.01, 0.1, 1}, µ = {0, 0.01} and η
= {0, 0.1}. Perturbation to the LGAN generator, i.e. z, is fixed to 0.5 for all experiments. The best
hyperparameters for each task is shown in Table. 3.

Table 3: Hyperparameters for each task

Task α β µ η

MNIST→MNIST-M 0.1 1 0.01 0
MNIST→ USPS 0.1 1 0.01 0
USPS→MNIST 0.01 1 0.01 0.1
SVHN→MNIST 0 1 0.01 0
DIGITS→ SVHN 0.1 1 0.01 0.1
CIFAR→ STL 0.1 1 0 0.1
STL→ CIFAR 0.1 0.1 0.01 0.1
I→ P 0.01 0.1 0 0.1
P→ I 0.01 1 0 0.1
I→ C 0.1 0.01 0 0.1
C→ I 0.1 0.1 0.01 0.1
C→ P 0.01 0.1 0 0.1
P→ C 0 1 0.01 0

D NON VISUAL DATASET EXPERIMENT

The Amazon Reviews (Blitzer et al., 2007) dataset provides a non-visual domain for domain adapta-
tion experiments. It contains reviews of books, DVDs, electronics, and kitchen appliances encoded
as 5,000-dimensional feature vectors containing unigrams and bigrams of the texts with binary la-
bels. Four- and five-star reviews are labeled ‘positive’; reviews with fewer stars are labeled ‘nega-
tive’. We used 2,000 labeled source data and 2,000 unlabeled target data for training, and between
3,000 to 6,000 target data for testing.

Tab. 4 shows that our method performs better than DANN (Ganin et al., 2016), VFAE (Louizos et al.,
2016) and ATT (Saito et al., 2017) on the Amazon Reviews data in six out of twelve experiments.
Our method was more accurate than DANN in nine out of twelve settings, showing approximately
2.0% higher classification accuracy on average.

Table 4: Accuracy (%) for nonvisual domain adaptation with Amazon Reviews dataset

Source book book book dvd dvd dvd elec elec elec kit kit kit
Target dvd elec kit book elec kit book dvd kit book dvd elec

VFAE (Louizos et al., 2016) 79.9 79.2 81.6 75.5 78.6 82.2 72.7 76.5 85.0 72.0 73.3 83.8
DANN (Ganin et al., 2016) 78.4 73.3 77.9 72.3 75.4 78.3 71.1 73.8 85.4 70.9 74.0 84.3
ATT (Saito et al., 2017) 80.7 79.8 82.5 73.2 77.0 82.5 73.2 72.9 86.9 72.5 74.9 84.6

Ours 81.3 78.3 79.7 77.2 79.0 82.5 70.8 73.3 87.1 71.8 73.5 85.4
(std) ±0.0 ±0.2 ±0.5 ±1.6 ±0.7 ±0.4 ±0.3 ±1.2 ±0.2 ±0.7 ±0.8 ±0.1

book: books, dvd: DVDs, elec: electronics, kit: kitchen appliances

2https://www.imageclef.org/2014/adaptation
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