Under review as a conference paper at ICLR 2020

GENERATIVE TEACHING NETWORKS: ACCELERATING
NEURAL ARCHITECTURE SEARCH BY LEARNING TO
GENERATE SYNTHETIC TRAINING DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper investigates the intriguing question of whether we can create learning
algorithms that automatically generate training data, learning environments, and
curricula in order to help Al agents rapidly learn. We show that such algorithms
are possible via Generative Teaching Networks (GTNs), a general approach that
is applicable to supervised, unsupervised, and reinforcement learning. GTNs are
deep neural networks that generate data and/or training environments that a learner
(e.g. a freshly initialized neural network) trains on before being tested on a target
task. We then differentiate through the entire learning process via meta-gradients
to update the GTN parameters to improve performance on the target task. GTNs
have the beneficial property that they can theoretically generate any type of data
or training environment, making their potential impact large. This paper intro-
duces GTNs, discusses their potential, and showcases that they can substantially
accelerate learning. We also demonstrate a practical and exciting application of
GTNs: accelerating the evaluation of candidate architectures for neural architec-
ture search (NAS), which is rate-limited by such evaluations, enabling massive
speed-ups in NAS. GTN-NAS improves the NAS state of the art, finding higher
performing architectures when controlling for the search proposal mechanism.
GTN-NAS also is competitive with the overall state of the art approaches, which
achieve top performance while using orders of magnitude less computation than
typical NAS methods. Overall, GTNs represent a first step toward the ambitious
goal of algorithms that generate their own training data and, in doing so, open a
variety of interesting new research questions and directions.

1 INTRODUCTION AND RELATED WORK

Access to a large amount of training data is now common in many machine learning (ML) problems.
However, to effectively train neural networks (NNs) does not require using all available data. For
example, recent work in curriculum learning (Graves et al., 2017), active learning (Konyushkova
et al., 2017; Settles, 2010) and core-set selection (Sener & Savarese, 2018; Tsang et al., 2005)
demonstrates that a surrogate dataset can be created by intelligently sampling a subset of training
data, and that such surrogates enable competitive test performance with less training effort. Being
able to more rapidly determine the performance of an architecture in this way could particularly
benefit architecture search, where training thousands or millions of candidate NN architectures on
full datasets can become prohibitively expensive. From this lens, related work in learning-to-teach
has shown promise. For example, the learning to teach (L2T) (Fan et al., 2018) method accelerates
learning for a NN learner (hereafter, just learner) through reinforcement learning, by learning how
to subsample mini-batches of data.

A key insight in this paper is that the surrogate data need not be drawn from the original data
distribution (i.e. they may not need to resemble the original data). For example, humans can learn
new skills from reading a book or can prepare for a team game like soccer by practicing skills, such
as passing, dribbling, juggling, and shooting. This paper investigates the question of whether we
can train a data-generating network that can produce synthetic data that effectively and efficiently
teaches a target task to a learner. Related to the idea of generating data, Generative Adversarial
Networks (GANSs) can produce impressive high-resolution images (Goodfellow et al., 2014; Brock

Under review as a conference paper at ICLR 2020

et al., 2018), but they are incentivized to mimic real data (Goodfellow et al., 2014), instead of being
optimized to teach learners more efficiently than real data.

Another approach for creating surrogate training data is to treat the training data itself as a hyper-
parameter of the training process and learn it directly. Such learning can be done through meta-
gradients (also called hyper-gradients), i.e. differentiating through the training process to optimize a
meta-objective. This approach was described in Maclaurin et al. (2015), where 10 synthetic training
images were learned using meta-gradients such that when a network is trained on these images, the
network’s performance on the MNIST validation dataset is maximized. In recent work concurrent
with our own, Wang et al. (2019b) scaled this idea to learn 100 synthetic training examples. While
the 100 synthetic examples were more effective for training than 100 original (real) MNIST training
examples, we show that it is difficult to scale this approach much further without the regularity
across samples provided by a generative architecture (Figure 3b, green line).

Being able to very quickly train learners is particularly valuable for neural architecture search (NAS),
which is exciting for its potential to automatically discover high-performing architectures, which
otherwise must be undertaken through time-consuming manual experimentation for new domains.
Many advances in NAS involve accelerating the evaluation of candidate architectures by training
a predictor of how well a trained learner would perform, by extrapolating from previously trained
architectures (Luo et al., 2018; Liu et al., 2018a; Baker et al., 2017). This approach is still expensive
because it requires many architectures to be trained and evaluated to train the predictor. Other
approaches accelerate training by sharing training across architectures, either through shared weights
(e.g. as in ENAS; Pham et al. (2018)), or Graph HyperNetworks (Zhang et al., 2018).

We propose a scalable, novel, meta-learning approach for creating synthetic data called Generative
Teaching Networks (GTNs). GTN training has two nested training loops: an inner loop to train a
learner network, and an outer-loop to train a generator network that produces synthetic training data
for the learner network. Experiments presented in Section 3 demonstrate that the GTN approach
produces synthetic data that enables much faster learning, speeding up the training of a NN by a
factor of 9. Importantly, the synthetic data in GTNSs is not only agnostic to the weight initialization
of the learner network (as in Wang et al. (2019b)), but is also agnostic to the learner’s architecture.
As a result, GTNs are a viable method for accelerating evaluation of candidate architectures in
NAS. Indeed, controlling for search algorithm, GTN-NAS improves the NAS state of the art by
finding higher-performing architectures than comparable methods like weight sharing (Pham et al.,
2018) and Graph HyperNetworks (Zhang et al., 2018); it also is competitive with methods using
more sophisticated search algorithms and orders of magnitude more computation. It could also be
combined with those methods to provide further gains.

One promising aspect of GTNs is that they make very few assumptions about the learner. In contrast,
NAS techniques based on shared training are viable only if the parameterizations of the learners
are similar. For example, it is unclear how weight-sharing or HyperNetworks could be applied to
architectural search spaces wherein layers could be either convolutional or fully-connected, as there
is no obvious way for weights learned for one layer type to inform those of the other. In contrast,
GTNs are able to create training data that can generalize between such diverse types of architectures.

GTNs also open up interesting new research questions and applications to be explored by future
work. Because they can rapidly train new architectures, GTNs could be used to create NNs on-
demand that meet specific design constraints (e.g. a given balance of performance, speed, and en-
ergy usage) and/or have a specific subset of skills (e.g. perhaps one needs to rapidly create a compact
network capable of three particular skills). Because GTNs can generate virtually any learning en-
vironment, they also one day could be a key to creating Al-generating algorithms, which seek to
bootstrap themselves from simple initial conditions to powerful forms of Al by creating an open-
ended stream of challenges (learning opportunities) while learning to solve them (Clune, 2019).

2 METHODS

The main idea in GTNs is to train a data-generating network such that a learner network trained on
data it produces achieves high performance in a target task. Unlike a GAN, here the two players
(networks) cooperate (rather than compete) because their interests are aligned towards having the
learner perform well on the target task when trained on data produced by the GTN. The generator
and the learner networks are trained with meta-learning via nested optimization that consists of inner

Under review as a conference paper at ICLR 2020

and outer training loops (Figure 1). In the inner-loop, the generator G(z,y) takes Gaussian noise
(2) and a label (y) as input and outputs synthetic data (x). Optionally, the generator could take
only noise as input and produce both data and labels as output (Appendix F). The learner is then
trained on this synthetic data for a fixed number of inner-loop training steps with any optimizer, such
as SGD or Adam (Kingma & Ba, 2014): we use SGD with momentum in this paper. Equation 1
defines the inner-loop SGD with momentum update for the learner parameters 6.

b1 =0 —a D B Vliner(Glzer,yy), Yy, Or), (1)

0<t/<t

where « and [are the learning rate and momentum hyperparameters, respectively. We sample z;
from a unit-variance Gaussian and y, uniformly from all available class labels. Note that both z;
and y, are batches of samples. We can also learn a curriculum directly by additionally optimizing z;
directly (instead of sampling it randomly) and keeping y, fixed throughout all of training.

The inner-loop loss function #j,,; can be cross-entropy for classification problems or mean squared
error for regression problems. Note that the inner-loop objective does not depend on the outer-
loop objective and could even be parameterized and learned through meta-gradients with the rest
of the system (Houthooft et al., 2018). In the outer-loop, the learner 67 (i.e. the learner parameters
trained on synthetic data after the T inner-loop steps) is evaluated on the real training data, which is
used to compute the outer-loop loss (aka meta-training loss). The gradient of the meta-training loss
with respect to the generator is computed by backpropagating through the entire inner-loop learning
process. While computing the gradients for the generator we also compute the gradients of hyper-
parameters of the inner-loop SGD update rule (its learning rate and momentum), which are updated
after each outer-loop at no additional cost. To reduce memory requirements, we leverage gradient-
checkpointing (Griewank & Walther, 2000) when computing meta-gradients. The computation and
memory complexity of our approach can be found in Appendix D.

Inner Loop Outer Loop

(1) Noise (2) Data (4) Meta-Loss
Generator Learner Real Data

(3) SGD step

(5) Gradientof Meta-Loss w.r.t. Generator

Figure 1: Generative Teaching Network (GTN) Method. The numbers in the figure reflect the order
in which a GTN is executed. Noise is fed as an input to the Generator (1), which uses it to generate
new data (2). The learner is trained (e.g. using SGD or Adam) to perform well on the generated
data (3). The trained learner is then evaluated on the real training data in the outer-loop to compute
the outer-loop meta-loss (4). The gradients of the generator parameters are computed w.r.t. to the
meta-loss to update the generator (5).

A key motivation for this work is to generate synthetic data that is learner agnostic, i.e. that gener-
alizes across different potential learner architectures and initializations. To achieve this objective, at
the beginning of each new outer-loop training, we choose a new learner architecture according to a
predefined set (Section 3) and randomly initialize it (details in Appendix A).

Meta-learning with Weight Normalization. Optimization through meta-gradients is often unsta-
ble (Maclaurin et al., 2015). We observed that this instability greatly complicates training because
of its hyperparameter sensitivity, and training quickly diverges if they are not well-set. Combining
the gradients from Evolution Strategies (Salimans et al., 2017) and backpropagation using inverse
variance weighting (Fleiss, 1993; Metz et al., 2019) improved stability in our experiments, but op-
timization still consistently diverged whenever we increased the number of inner-loop optimization
steps. To mitigate this issue, we introduce applying weight normalization (Salimans & Kingma,
2016) to stabilize meta-gradient training by normalizing the generator and learner weights. Instead
of updating the weights (W) directly, we parameterize them as W = g - V/||V|| and instead update
the scalar g and vector V. Weight normalization eliminates the need for (and cost of) calculating ES
gradients and combining them with backprop gradients, simplifying and speeding up the algorithm.

Under review as a conference paper at ICLR 2020

We hypothesize that weight normalization will help stabilize meta-gradient training more broadly.
The idea is that applying weight normalization to meta-learning techniques is analogous to batch
normalization for deep networks (Ioffe & Szegedy, 2015). Batch normalization normalizes the
forward propagation of activations in a long sequence of parameterized operations (a deep NN). In
meta-gradient training both the activations and weights result from a long sequence of parameterized
operations and thus both should be normalized. Results in section 3.1 support this hypothesis.

Learning a Curriculum with Generative Teaching Networks. Previous work has shown that a
learned curriculum can be more effective than training from uniformly sampled data (Graves et al.,
2017). A curriculum is usually encoded with indexes to samples from a given dataset, rendering it
non-differentiable and thereby complicating the curriculum’s optimization. With GTNs however, a
curriculum can be encoded as a series of input vectors to the generator (i.e. instead of sampling the
z; inputs to the generator from a Gaussian distribution, a sequence of z; inputs can be learned). A
curriculum can thus be learned by differentiating through the generator to optimize this sequence
(in addition to the generator’s parameters). Experiments confirm that GTNs more effectively teach
learners when optimizing such a curriculum (Section 3.2).

Accelerating NAS with Generative Teaching Networks. Since GTNs can accelerate learner train-
ing, we propose harnessing GTNs to accelerate NAS. Rather than evaluating each architecture in
a target task with a standard training procedure, we propose evaluating architectures with a meta-
optimized training process (that generates synthetic data in addition to optimizing inner-loop hyper-
parameters). We show that doing so significantly reduces the cost of running NAS (Section 3.4).

The goal of these experiments is to find a high-performing CNN architecture for the CIFAR10
image-classification task (Krizhevsky et al., 2009) with limited compute costs. We use the same
architecture search-space, training procedure, hyperparameters, and code from Neural Architecture
Optimization (Luo et al., 2018), a state-of-the-art NAS method. The search space consists of the
topology of two cells: a reduction cell and a convolutional cell. Multiple copies of such cells are
stacked according to a predefined blueprint to form a full CNN architecture (see Luo et al. (2018)
for more details). The blueprint has two hyperparameters N and F’ that control how many times the
convolutional cell is repeated (depth) and the width of each layer, respectively. Each cell contains
B = 5 nodes. For each node within a cell, the search algorithm has to choose two inputs as well as
two operations to apply to those inputs. The inputs to a node can be previous nodes or the outputs
of the last two layers. There are 11 operations to choose from (Appendix C).

Following Luo et al. (2018), we report the performance of our best cell instantiated with N =
6, F' = 36 after the resulting architecture is trained for a significant amount of time (600 epochs).
Since evaluating each architecture in those settings (named final evaluation from now on) is time
consuming, Luo et al. (2018) uses a surrogate evaluation (named search evaluation) to estimate
the performance of a given cell wherein a smaller version of the architecture (N = 3, F' = 32)
is trained for less epochs (100) on real data. We further reduce the evaluation time of each cell
by replacing the training data in the search evaluation with GTN synthetic data, thus reducing the
training time per evaluation by 300x (which we call GTN evaluation). While we were able to train
GTNs directly on the complex architectures from the NAS search space, training was prohibitively
slow. Instead, for these experiments, we optimize our GTN ahead of time using proxy learners
described in Appendix B, which are smaller fully-convolutional networks (this meta-training took
8h on one p6000 GPU). Interestingly, although we never train our GTN on any NAS architectures,
because of generalization, synthetic data from GTNs were still effective for training them.

3 RESULTS

We first demonstrate that weight normalization significantly improves the stability of meta-learning,
an independent contribution of this paper (Section 3.1). We then show that training with synthetic
data is more effective when learning such data jointly with a curriculum that orders its presentation
to the learner (Section 3.2). We next show that GTNs can generate a synthetic training set that is
more effective than real training data in two supervised learning domains (MNIST and CIFAR10)
and in a reinforcement learning domain (cart-pole, Appendix H). We then apply GTN-synthetic
training data for neural architecture search to find high performing architectures for CIFAR10 with
limited compute, outperforming comperable methods like weight sharing (Pham et al., 2018) and
Graph HyperNetworks (Zhang et al., 2018) (Section 3.4).

Under review as a conference paper at ICLR 2020

We uniformly split the usual MNIST training set into training (50k) and validation sets (10k). The
training set was used for inner-loop training (for the baseline) and to compute meta-gradients for
all the treatments. We used the validation set for hyperparameter tuning and report performance on
the usual MNIST test set (10k images). We followed the same procedure for CIFAR10, resulting
in training, validation, and test sets with 45k, 5k, and 10k examples, respectively. Unless otherwise
specified, we ran each experiment 5 times and plot the mean and its 95% confidence intervals from
(n=1,000) bootstrapping. Appendix A describes the hyperparameters and architectures used.

3.1 IMPROVING STABILITY WITH WEIGHT NORMALIZATION

To demonstrate the effectiveness of weight normalization for stabilizing and robustifying meta-
optimization, we compare the results of running hyperparameter optimization for GTNs with and
without weight normalization on MNIST. Figure 2a shows the distribution of the final performance
obtained for 20 runs during hyperparameter tuning, which reflects how sensitive the algorithms
are to hyperparameter settings. Overall, weight normalization substantially improved robustness to
hyperparameters and final learner performance, supporting the initial hypothesis.

3.2 IMPROVING GTNS WITH A CURRICULUM

In this section, we experimentally evaluate four different variants of GTNs, each with increasing
control over the ordering of the input samples. The first variant (called GTN - No Curriculum),
trains a generator to output synthetic training data by sampling the noise vector z; from a Gaussian
distribution at each iteration. In the next three GTN variants, the generator is provided with a fixed
set of input samples (instead of a noise vector). These input samples are learned along with the
generator parameters during GTN training. For instance, the second GTN variant (called GTN -
All Shuffled) learns a fixed set of 4,096 input samples that are presented in a random order without
replacement. The third variant (called GTN - Shuffled Batch) learns 32 batches of 128 samples each,
but the order in which the batches are presented is randomized (without replacement). Finally, the
fourth variant (called GTN - Full Curriculum) learns the exact order in which 32 batches of 128
samples each are presented to the generator. We plot the test accuracy of a learner (with random ini-
tial weights and architecture) as a function of outer-loop iterations for all four variants in Figure 2b.
Although GTNs - No curriculum can seemingly generate endless data (see Appendix G), it performs
worse than the other three variants with a fixed set of generator inputs. Overall, training the GTN
with exact ordering of input samples (GTN - Full Curriculum) outperforms all other variants.

é 0.6 g 0925 —— No Curriculum
3 % 0900 —— Al Shuffled
T 04 = —— Shuffled Batch
> 0.875 R
—— Full Curriculum
02
0.850
0.0 — 0 500 1000 1500 2000
Without WN With WN Outer-loop Iterations
(a) GTN stability with WN (b) GTN curricula comparison

Figure 2: Both a learned curriculum and weight normalization substantially improve GTN perfor-
mance. (a) Weight normalization improves meta-gradient training of GTNs, and makes the method
much more robust to different hyperparameter settings. Each boxplot reports the final loss of 20
runs obtained during hyperparameter optimization with Bayesian Optimization (lower is better). (b)
shows a comparison between GTNs with different types of curricula. The GTN method with the
most control over how samples are presented performs the best.

While curriculum learning usually refers to training on easy tasks first and increasing their difficulty
over time, our curriculum goes beyond presenting tasks in a certain order. Specifically, GTN - Full
Curriculum learns both the order in which to present samples and the specific group of samples to
present at the same time. The ability to learn a full curriculum improves GTN performance. For that
reason, we adopt that approach for all GTN experiments.

Under review as a conference paper at ICLR 2020

3.3 GTNS FOR SUPERVISED LEARNING

To explore whether GTNs can generate useful training data, we compare the performance of 3
meta-learning treatments for MNIST classification. 1) Real Data - Training learners with random
mini-batches of real data, as is ubiquitous in SGD. 2) Dataset Distillation - Training learners with
synthetic data, where training examples are directly encoded as tensors optimized by the meta-
objective, as in Wang et al. (2019b). 3) GTN - Our method where the training data presented to the
learner is generated by a neural network. Note that all three methods meta-optimize the inner-loop
hyperparameters (i.e. the learning rate and momentum of SGD) as part of the meta-optimization.

Figure 3a shows that the GTN treatment significantly outperforms the other ones (p < 0.01) and
trains a learner to be much more accurate when controlling for computation. Specifically, for each
treatment the figure shows the test performance of a learner following 32 inner-loop training steps
with a batch size of 128. Figure 3b shows the performance of a learner from each treatment af-
ter 2000 total outer-loop iterations (~1 hour using a p6000 GPU). For reference, Dataset Distilla-
tion (Wang et al., 2019b) reported 79.5% accuracy for a randomly initialized network (using 100
synthetic images, while we use 4,096) and L2T (Fan et al., 2018) reported needing 300x more train-
ing iterations to achieve > 98% accuracy on MNIST. We show examples of the synthetic images
generated by GTN in Figure 3c. Surprisingly, although recognizable as digits and effective for
training, GTN-generated images were not visually realistic.

1.00 1.00
0.98 3 0.98
9 e
g 3 096
5 0.96 .
g <
o
0.94 0.94 A
7 — GTN Z — GTN
F 002 —— Real Data Z 09 —— Real Data
—— Dataset Distillation { —— Dataset Distillation
0.90 0.90
0 500 1000 1500 2000 0 5 10 15 20 25 30
Outer-loop Iterations Inner-loop Iterations
(a) Meta-training curves (b) Training curves

Figure 3: Teaching MNIST with GTN-generated images. (a) shows MNIST test set performance
across outer-loop iterations for different sources of inner-loop training data. The inner-loop consists
of 32 SGD steps and the outer-loop optimizes MNIST validation performance. Our method (GTN)
outperforms the two controls (dataset distillation and samples from real data). (b) shows, given final
meta-training iteration, how iterations of inner-loop training compare between training data sources
(measured by MNIST training set accuracy). (c) shows 100 random samples from the trained GTN.
Samples are usually recognizable as digits, but are not realistic. Each column contains samples from
a different digit class, and each row is taken from different inner-loop iterations (evenly spaced from
the 32 total iterations, with early iterations at the top).

3.4 ARCHITECTURE SEARCH WITH GTNS

We next test the benefits of GTN for NAS (GTN-NAS) in CIFAR10, a domain where NAS has
previously shown significant improvements over the best architectures produced by armies of human
scientists. Figure 4a shows the training performance of a learner trained with either GTN-synthetic
data or real data (CIFAR10) over many inner-loop training iterations. After 8h of meta-training,
training with GTN-generated data was significantly faster than with real data, as in MNIST.

To explore the potential for GTN-NAS to accelerate CIFAR10 architecture search, we investigated
the rank correlation (across architectures sampled from the NAS search space) between accelerated
GTN-trained network performance (GTN evaluation) and the usual more expensive performance
metric used during NAS (search evaluation). A correlation plot is shown in Figure 4c; note that a
strong correlation implies we can train architectures using GTN evaluation as an inexpensive surro-
gate. We find that GTN evaluation enables predicting the performance of an architecture efficiently.
The rank-correlation between 128 steps of training with GTN-synthetic data vs. 100 epochs of real
data is 0.3606. The correlation improves to 0.5582 when considering the top 50% of architectures
recommended by GTN evaluation scores, which is important because those are the ones that search
would select. This improved correlation is slightly stronger than that from 3 epochs of training with
real data (0.5235), a ~ 9x cost-reduction per trained model.

Under review as a conference paper at ICLR 2020

0.7 .
£ x 3
> g 09 &X’* % xxx X X g:
o6 ° x X X
S -ty
Sos Soes | X XX TXTx X
< o x x x % Xx
= o x %
£ © 0.92 x
co04 ® x x X ox
€ — GTN rEﬂ 0.91 x x
0.3 —— Real Data o
o 0.90 x
20 40 60 80 100 120 01 02 03 04 05
Inner-loop Iterations GTN Predicted Performance
(a) CIFAR10 inner-loop training (b) CIFAR10 GTN samples (c) CIFAR10 correlation

Figure 4: Teaching CIFAR10 with GTN-generated images. (a) CIFAR10 training set performance
of the final learner (after 1,700 meta-optimization steps) across inner-loop learning iterations. (b)
Samples generated by GTN to teach CIFAR10 are unrecognizable, despite being effective for train-
ing. Each column contains a different class, and each row is taken from the same inner-loop iteration
(evenly spaced from all 128 iterations, early iterations at the top). (c) Correlation between perfor-
mance prediction using GTN-data vs. Real Data. When considering the top half of architectures
(as ranked by GTN evaluation), correlation between GTN evaluation and search evaluation is strong
(0.5582 rank-correlation), suggesting that GTN-NAS has potential to uncover high performing ar-
chitectures at a significantly lower cost. Architectures shown are uniformly sampled from the NAS
search space. The top 10% of architectures according to the GTN evaluation (blue squares)— those
likely to be selected by GTN-NAS-have high true performance.

Architecture search methods are composed of several semi-independent components, such as the
choice of search space, search algorithm, and proxy evaluation of candidate architectures. GTNs
are proposed as an improvement to this last component, i.e. as a new way to quickly evaluate a new
architecture. Thus we test our method under the standard search space for CIFAR10, using a simple
form of search (random search) for which there are previous benchmark results. In particular, we ran
an architecture search experiment where we evaluated 800 randomly generated architectures trained
with GTN-synthetic data. We present the performance after final evaluation of the best architecture
found in Table 1. This experimental setting is similar to that of Zhang et al. (2018). Highlighting
the potential of GTNs as an improved proxy evaluation for architectures, we achieve state-of-the-art
results when controlling for search algorithm (the choice of which is orthogonal to our contribution).
While it is an apples-to-oranges comparison, GTN-NAS is competitive even with methods that use
more advanced search techniques than random search to propose architectures (Appendix E). GTN
is compatible with such techniques, and would likely improve their performance, an interesting area
of future work. Furthermore, because of the NAS search space, the modules GTN found can be
used to create even larger networks. A further test of whether GTNs predictions generalize is if
such larger networks would continue performing better than architectures generated by the real-
data control, similarly scaled. We tried F=128 and show it indeed does perform better (Table 1),
suggesting additional gains can be had by searching post-hoc for the correct F and N settings.

4 DISCUSSION AND FUTURE WORK

The results presented here suggest potential future applications and extensions of GTNs. Given
the ability of GTNs to rapidly train new models, they are particularly useful when training many
independent models is required (as we showed for NAS). Another such application would be to
teach networks on demand to realize particular trade-offs between e.g. accuracy, inference time, and
memory requirements. While to address a range of such trade-offs would ordinarily require training
many models ahead of time and selecting amongst them (Elsken et al., 2019), GTNs could instead
rapidly train a new network only when a particular trade-off is needed. Similarly, agents with unique
combinations of skills could be created on demand when needed.

Interesting questions are raised by the lack of similarity between the synthetic GTN data and real
MNIST and CIFAR10 data. That unrealistic and/or unrecognizable images can meaningfully affect
NNs is reminiscent of the finding that deep neural networks are easily fooled by unrecognizable
images (Nguyen et al., 2015). It is possible that if neural network architectures were functionally
more similar to human brains, GTNs’ synthetic data might more resemble real data. However, an

Under review as a conference paper at ICLR 2020

Table 1: Performance of different architecture search methods. Our results report mean £ SD of 5
evaluations of the same architecture with different initializations. It is common to report scores with
and without Cutout (DeVries & Taylor, 2017), a data augmentation technique used during training.
We found better architectures compared to other methods that reduce architecture evaluation speed
and were tested with random search (Random Search+WS and Random Search+GHN). Increasing
the width of the architecture found (F=128) further improves performance. Because each NAS
method finds a different architecture, the number of parameters differs. Each method ran once.

Model Error(%) #params GPU Days
Random Search + GHN (Zhang et al., 2018) 4.3+0.1 5.1M 0.42
Random Search + Weight Sharing (Luo et al., 2018) 3.92 39M 0.25
Random Search + Real Data (baseline) 3.88+0.08 12.4M 10
Random Search + GTN (ours) 3.84 + 0.06 8.2M 0.67
Random Search + Real Data + Cutout (baseline) 3.02+0.03 12.4M 10
Random Search + GTN + Cutout (ours) 2.92 +0.06 8.2M 0.67
Random Search + Real Data + Cutout (F=128) (baseline) 2.51 +0.13 151.7M 10
Random Search + GTN + Cutout (F=128) (ours) 242 +0.03 97.9M 0.67

alternate (speculative) hypothesis is that the human brain might also be able to rapidly learn an
arbitrary skill by being shown unnatural, unrecognizable data (recalling the novel Snow Crash).

The improved stability of training GTNs from weight normalization naturally suggests the hypoth-
esis that weight normalization might similarly stabilize, and thus meaningfully improve, any tech-
niques based on meta-gradients (e.g. MAML (Finn et al., 2017), learned optimizers (Metz et al.,
2019), and learned update rules (Metz et al., 2018)). In future work, we will more deeply investigate
how consistently, and to what degree, this hypothesis holds.

Both weight sharing and GHN's can be combined with GTNs by using the shared weights or Hyper-
Network for initialization of proposed learners and then fine-tuning on GTN-produced data. GTNs
could also be combined with more intelligent ways to propose which architecture to sample next
such as NAO (Luo et al., 2018). Many other extensions would also be interesting to consider. GTNs
could be trained for unsupervised learning, for example by training a useful embedding function.
Additionally, they could be used to stabilize GAN training and prevent mode collapse (Appendix I
shows encouraging initial results). One particularly promising extension is to introduce a closed-
loop curriculum (i.e. one that responds dynamically to the performance of the learner throughout
training), which we believe could significantly improve performance. For example, a recurrent GTN
that is conditioned on previous learner outputs could adapt its samples to be appropriately easier or
more difficult depending on an agent’s learning progress, similar in spirit to the approach of a human
tutor. Such closed-loop teaching can improve learning (Fan et al., 2018).

An additional interesting direction is having GTNs generate training environments for RL agents.
Appendix H shows this works for the simple RL task of CartPole. That could be either for a pre-
defined target task, or could be combined with more open-ended algorithms that attempt to con-
tinuously generate new, different, interesting tasks that foster learning (Clune, 2019; Wang et al.,
2019a). Because GTNs can encode any possible environment, they (or something similar) may be
necessary to have truly unconstrained, open-ended algorithms (Stanley et al., 2017). If techniques
could be invented to coax GTNs to produce recognizable, human-meaningful training environments,
the technique could also produce interesting virtual worlds for us to learn in, play in, or explore.

5 CONCLUSION

This paper introduces a new method called Generative Teaching Networks, wherein data generators
are trained to produce effective training data through meta-learning. We have shown that such an
approach can produce supervised datasets that yield better training performance than an equivalent
amount of real training data, and generalize across architectures and random initializations. We
leverage such efficient training data to create a fast NAS method that generates state-of-the-art ar-
chitectures (controlling for the search algorithm). While GTNs may be of particular interest to the
field of architecture search (where the computational cost to evaluate candidate architectures often
limits the scope of its application), we believe that GTNs open up an intriguing and challenging line
of research into a variety of algorithms that learn to generate their own training data.

Under review as a conference paper at ICLR 2020

REFERENCES

Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural architecture
search using performance prediction. arXiv preprint arXiv:1705.10823, 2017.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Jeff Clune. Ai-gas: Ai-generating algorithms, an alternate paradigm for producing general artificial
intelligence. arXiv preprint arXiv:1905.10985, 2019.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Efficient multi-objective neural architecture
search via lamarckian evolution. In International Conference on Learning Representations, 2019.

Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu. Learning to teach. arXiv preprint
arXiv:1805.03643, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 1126-1135. JMLR. org, 2017.

JL Fleiss. Review papers: The statistical basis of meta-analysis. Statistical methods in medical
research, 2(2):121-145, 1993.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672-2680, 2014.

Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 1311-1320, 2017.

Andreas Griewank and Andrea Walther. Algorithm 799: revolve: an implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM Transactions on
Mathematical Software (TOMS), 26(1):19-45, 2000.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026-1034, 2015.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, OpenAl Jonathan Ho, and
Pieter Abbeel. Evolved policy gradients. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31,
pp- 5405-5414. Curran Associates, Inc., 2018.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning from data. In
NIPS, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Under review as a conference paper at ICLR 2020

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 19-34, 2018a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Rengian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
In Advances in neural information processing systems, pp. 7816-7827, 2018.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural net-
work acoustic models. In Proc. icml, volume 30, pp. 3, 2013.

Dougal Maclaurin, David Duvenaud, and Ryan P. Adams. Gradient-based hyperparameter opti-
mization through reversible learning. In Proceedings of the 32Nd International Conference on In-
ternational Conference on Machine Learning - Volume 37, ICML’15, pp. 2113-2122. JMLR.org,
2015.

Luke Metz, Niru Maheswaranathan, Brian Cheung, and Jascha Sohl-Dickstein. Meta-learning up-
date rules for unsupervised representation learning. arXiv preprint arXiv:1804.00222, 2018.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-dickstein.
Learned optimizers that outperform on wall-clock and validation loss, 2019.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928-1937, 2016.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High con-
fidence predictions for unrecognizable images. In In Computer Vision and Pattern Recognition
(CVPR ’15), 2015.

Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture
search via parameters sharing. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 4095-4104, Stockholmsmssan, Stockholm Sweden, 10-15 Jul 2018. PMLR.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pp. 4780-4789, 2019.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in Neural Information Processing Systems, pp.
901-909, 2016.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In NIPS, 2016.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies as a
scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018.

Burr Settles. Active learning literature survey. Technical report, 2010.

Hava T Siegelmann and Eduardo D Sontag. On the computational power of neural nets. Journal of
computer and system sciences, 50(1):132-150, 1995.

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U. Gutmann, and Charles Sutton. Veegan:
Reducing mode collapse in gans using implicit variational learning. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 30, pp. 3308-3318. Curran Associates, Inc., 2017.

10

Under review as a conference paper at ICLR 2020

Kenneth O. Stanley, Joel Lehman, and Lisa Soros. Open-endedness: The last grand challenge
youve never heard of. O’Reilly Online, 2017. URL https://www.oreilly.com/ideas/
open-endedness—-the-last-grand-challenge-youve—-never—-heard-of.

Ivor Tsang, James Kwok, and Pak-Ming Cheung. Core vector machines: Fast svm training on very
large data sets. Journal of Machine Learning Research, 6:363-392, 04 2005.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019a.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation, 2019b.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture
search. arXiv preprint arXiv:1810.05749, 2018.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. 2017. URL
https://arxiv.org/abs/1611.01578.

11

Under review as a conference paper at ICLR 2020

APPENDIX A MNIST EXPERIMENT DETAILS

For the GTN training for MNIST we used a small conv-fc based architectures. This architecture
had 2 conv layers with number of filters sampled from U ([32, 128]) and U ([64, 256]), respectively.
After each conv layer we used a max pooling layer for dimensionality reduction. After the last
conv layer we used a fully-connected layer with number of filters sampled from U ([64, 256]). We
used Kaiming Normal initialization (He et al., 2015) and LeakyReLUs (Maas et al., 2013) (with
a = 0.1). We use BatchNorm (loffe & Szegedy, 2015) for both the generator and the learners.
The BatchNorm momentum for the learner was set to 0 (meta-training consistently converged to
small values and we saw no significant gain from learning the value). The generator used consisted
of 2 FC layers (1024 and 128 x H/4 = H /4 filters, respectively, where H is the final width of the
synthetic image). After the last FC layer we use 2 conv layers. The first conv had 64 filters. The
second conv had 1 filter for MNIST and 3 for CIFAR10 and was followed by a Tanh to create the
synthetic image. We found particularly important to normalize (mean of zero and variance of one)
all datasets. Hyperparameters used can be found in Table 2.

| Hyperparameter | Value |
Learning Rate 0.01
Initial LR 0.02
Initial Momentum 0.5
Adam Beta_l 0.9
Adam Beta_2 0.999

Size of latent variable 128
Inner-Loop Batch Size | 128
Outer-Loop Batch Size | 128

Table 2: Hyperparameters for MNIST experiments

APPENDIX B CIFAR10 TRAINING DETAILS

For GTN training for CIFAR-10, we used a small learner with 5 convolutional layers followed
by a global average pooling and an FC layer. The second and fourth convolution had stride=2 for
dimensionality reduction. The number of filter of the first conv layer was sampled from U ([32, 128])
while all others were sampled from U ([64, 256]). Other details including the generator architecture
used were the same as the MNIST experiments. Hyperparameters used can be found in Table 3. For
CIFAR10 we augmented the real training set when training GTNs with random crop and horizontal
flip. We do not add weight normalization to the final reported architectures, but we do so when we
train architectures with GTN-generated data.

| Hyperparameter | Value |
Learning Rate 0.002
Initial LR 0.02
Initial Momentum 0.5
Adam Beta_1 0.9
Adam Beta_ 2 09
Adam ¢ le-5
Size of latent variable 128
Inner Loop Batch Size 128
Outer-Loop Batch Size | 256

Table 3: Hyperparameters for CIFAR10 experiments

APPENDIX C CELL SEARCH SPACE

When searching for the operations in a CNN cell, the 11 possible operations are listed below.

12

Under review as a conference paper at ICLR 2020

identity

e 1 x 1 convolution

e 3 x 3 convolution

1 x 3+ 3 x 1 convolution

1 x 74+ 7 x 1 convolution

e 2 X 2 max pooling

3 X 3 max pooling

5 x b max pooling

2 x 2 average pooling

3 x 3 average pooling

5 x b average pooling

APPENDIX D COMPUTATION AND MEMORY COMPLEXITY

With the traditional training of DNNs with back-propagation, the memory requirements are pro-
portional to the size of the network because activations during the forward propagation have to be
stored for the backward propagation step. With meta-gradients, the memory requirement also grows
with the number of inner-loop steps because all activations and weights have to be stored for the
2nd order gradient to be computed. This becomes impractical for large networks and/or many inner-
loop steps. To reduce the memory requirements, we utilize gradient-checkpointing (Griewank &
Walther, 2000) by only storing the computed weights of learner after each inner-loop step and re-
computing the activations during the backward pass. This trick allows us to compute meta-gradients
for networks with 10s of millions of parameters over hundreds of inner-loop steps in a single GPU.
While in theory the computational cost of computing meta-gradients with gradient-checkpointing is
4x larger than computing gradients (and 12x larger than forward propagation), in our experiments it
is about 2.5x slower than gradients through backpropagation due to parallelism. We could further
reduce the memory requirements by utilizing reversable hypergradients (Maclaurin et al., 2015), but,
in our case, we were not constrained by the number of inner-loop steps we can store in memory.

APPENDIX E EXTENDED NAS RESULTS

In the limited computation regime (less than 1 day of computation), the best methods were, in
order, GHN, ENAS, GTN, and NAONet with a mean error of 2.84%, 2.89%, 2.92%, and 2.93%,
respectively. A 0.08% difference on CIFARI10 represents 8 out of the 10k test samples. For that
reason, we consider all of these methods as state of the art. Note that out of the four, GTN is the
only one relying on Random Search for architecture proposal.

APPENDIX F CONDITIONED GENERATOR VS. XY-GENERATOR

Our experiments in the main paper conditioned the generator to create data with given labels, by
concatenating a one-hot encoded label to the input vector. We also explored an alternative approach
where the generator itself produced a target probability distribution to label the data it generates.
Because more information is encoded into a soft label than a one-hot encoded one, we expected
an improved training set to be generated by this variant. Indeed, such a “dark knowledge” dis-
tillation setup has been shown to perform better than learning from labels (Hinton et al., 2015).
However, the results in Figure 5 indicate that jointly generating both images and their soft labels
under-performs generating only images, although the result could change with different hyperpa-
rameter values and/or innovations that improve the stability of training.

APPENDIX G GTN GENERATES (SEEMINGLY) ENDLESS DATA

While optimizing images directly (i.e. optimizing a fixed tensor of images) would result in a fixed
number of samples, optimizing a generator can potentially result in an unlimited amount of new

13

Under review as a conference paper at ICLR 2020

Table 4: Performance of different architecture search methods. Search with our method required 16h
total, of which 8h were spent training the GTN and 8h were spent evaluating 800 architectures with
GTN-produced synthetic data. Our results report mean £ SD of 5 evaluations of the same architec-
ture with different initializations. It is common to report scores with and without Cutout (DeVries
& Taylor, 2017), a data augmentation technique used during training. We found better architectures
compared to other methods using random search (Random-WS and GHN-Top) and are competitive
with algorithms that benefit from more advanced search methods (e.g. NAONet and ENAS employ
non-random architecture proposals for performance gains; GTNs could be combined with such non-
random proposals, which would likely further improve performance). Increasing the width of the
architecture found (F=128) further improves performance.

Model Error(%) #params Random GPU Days
NASNet-A (Zoph & Le, 2017) 341 3.3M X 2000
AmoebaNet-B + Cutout (Real et al., 2019) 2.13 34.9M X 3150
DARTS + Cutout (Liu et al., 2018b) 2.83 4.6M X 4
NAONet + Cutout (Luo et al., 2018) 2.48 10.6M X 200
NAONet-WS (Luo et al., 2018) 3.53 2.5M X 0.3
NAONet-WS + Cutout (Luo et al., 2018) 2.93 2.5M X 0.3
ENAS (Pham et al., 2018) 3.54 4.6M X 0.45
ENAS + Cutout (Pham et al., 2018) 2.89 4.6M X 0.45
GHN Top-Best + Cutout (Zhang et al., 2018) 2.84 £+ 0.07 5. ™M X 0.84
GHN Top (Zhang et al., 2018) 4.34+0.1 5.1M v 0.42
Random-WS (Luo et al., 2018) 3.92 3.9M v 0.25
Random Search + Real Data (baseline) 3.88 £0.08 12.4M v 10
RS + Real Data + Cutout (baseline) 3.02+0.03 124M v 10
RS + Real Data + Cutout (F=128) (baseline) 2.51 £0.13 151.7M v 10
Random Search + GTN (ours) 3.84 +£0.06 8.2M v 0.67
Random Search + GTN + Cutout (ours) 2.92 + 0.06 8.2M v 0.67
RS + GTN + Cutout (F=128) (ours) 242+0.03 97.9M v 0.67
1.000
—— Real Data
0975 _ 51N
>o0950 — DK
é 0.925 B s PN AV VY
<C(0.900
S
§ 0.875
g 0.850
0.825
0.800
0 500 1000 1500 2000 2500 3000 3500

Outer-loop Steps

Figure 5: Comparison between a conditional generator and a generator that outputs an image/label
pair. We expected the latter “dark knowledge” approach to outperform the conditional generator, but
that does not seem to be the case. Because initialization and training of the dark knowledge variant
were more sensitive, we believe a more rigorous tuning of the process could lead to a different result.

samples. We tested this generative capability by generating more data during evaluation (i.e. with
no change to the meta-optimization procedure) in two ways. In the first experiment, we increase
the amount of data in each inner-loop optimization step by increasing the batch size (which results
in lower variance gradients). In the second experiment, we keep the number of samples per batch
fixed, but increase the number of inner-loop optimization steps for which a new network is trained.
Both cases result in an increased amount of training data. If the GTN generator has overfit to the
number of inner-loop optimization steps during meta-training and/or the batch size, then we would

14

Under review as a conference paper at ICLR 2020

not expect performance to improve when we have the generator produce more data. However, an
alternate hypothesis is that the GTN is producing a healthy distribution of training data, irrespective
of exactly how it is being used. Such a hypothesis would be supported by performance increase in
these experiments.

—— Real Data

0950 097
— GTN
0.945
o 0.96
8
£ 0040
3
M

—— Real Data
0.915 — GTIN

A
o
o
8
&
Validation Accuracy

150 200 250 300 350 400 450 500 20 40 60 80 100 120
Inner loop batch size Inner-loop Steps

(a) Increasing inner-loop batch size (b) Increasing inner-loop optimization steps

Figure 6: (a) The left figure shows that even though GTN was meta-trained to generate synthetic
data of batch size 128, sampling increasingly larger batches results in improved learner performance
(the inner-loop optimization steps are fixed to 16). (b) The right figure shows that increasing the
number of inner-loop optimization steps (beyond the 16 steps used during meta-training) improves
learner performance. The performance gain with real data is larger in this setting. This improvement
shows that GTNs do not overfit to a specific number of inner-loop optimization steps.

Figure 7: GTN samples w/o curriculum.

Figure 6a shows performance as a function of increasing batch size (beyond the batch size used
during meta-optimization, i.e. 128). The increase in performance of GTN means that we can sample
larger training sets from our generator (with diminishing returns) and that we are not limited by
the choice of batch size during training (which is constrained due to both memory and computation
requirements).

Figure 6b shows the results of generating more data by increasing the number of inner-loop opti-
mization steps. Generalization to more inner-loop optimization steps is important when the number
of inner-loop optimization steps used during meta-optimization is not enough to achieve maximum
performance. This experiment also tests the generalization of the optimizer hyperparameters be-
cause they were optimized to maximize learner performance after a fixed number of steps. There
is an increase in performance of the learner trained on GTN-generated data as the number of inner-
loop optimization steps is increased, demonstrating that the GTN is producing generally useful data
instead of overfitting to the number of inner-loop optimization steps during training (Figure 6b).
Extending the conclusion from Figure 3b, in the very low data regime, GTN is significantly better
than training on real data (p < 0.05). However, as more inner-loop optimization steps are taken and
thus more unique data is available to the learner, training on the real data becomes more effective
than learning from synthetic data (p < 0.05) (see Figure 6b).

Another interesting test for our generative model is to test the distribution of learners after they have
trained on the synthetic data. We want to know, for instance, if training on synthetic samples from
one GTN results in a functionally similar set of learner weights regardless of learner initialization

15

Under review as a conference paper at ICLR 2020

Iy
=3
o

o
©
©

=}
©
o

o
©
=

e
©
o

—— Real Data - single
—— Real Data - ensemble
—— GTN - single

—— GTN - ensemble

Validation Accuracy
o
o
N

o
@
3

o
@
=

0 500 1000 1500 2000 2500 3000 3500
Outer-loop Steps

Figure 8: Performance of an ensemble of GTN learners vs. individual GTN learners. Ensembling a
set of neural networks that each had different weight initializations, but were trained on data from
the same GTN substantially improves performance. This result provides more evidence that GTNs
generate a healthy distribution of training data and are not somehow forcing the learners to all learn
a functionally equivalent solution.

(this phenomena can be called learner mode collapse). Learner mode collapse would prevent the
performance gains that can be achieved through ensembling diverse learners. We tested for learner
mode collapse by evaluating the performance (on held-out data and held-out architecture) of an en-
semble of 32 randomly initialized learners that are trained on independent batches from the same
GTN. To construct the ensemble, we average the predicted probability distributions across the learn-
ers to compute a combined prediction and accuracy. The results of this experiment can be seen in
Figure 8, which shows that the combined performance of an ensemble is better (on average) than
an individual learner, providing additional evidence that the distribution of synthetic data is healthy
and allows ensembles to be harnessed to improve performance, as is standard with networks trained
on real data.

APPENDIX H GTN FOR RL

To demonstrate the potential of GTNs for RL, we tested our approach with a small experiment
on the classic CartPole test problem (see Brockman et al. (2016) for details on the domain. We
conducted this experiment before the discovery that weight normalization improves GTN training,
so these experiments do not feature it; it might further improve performance. For this experiment, the
meta-objective the GTN is trained with is the advantage actor-critic formulation: log 7(a|0,)(R —
V(s;6,)) Mnih et al., 2016). The state-value V' is provided by a separate neural network trained to
estimate the average state-value for the learners produced so far during meta-training. The learners
train on synthetic data via a single-step of SGD with a batch size of 512 and a mean squared error
regression loss, meaning the inner loop is supervised learning. The outer-loop is reinforced because
the simulator is non-differentiable. We could have also used an RL algorithm in the inner loop. In
that scenario the GTN would have to learn to produce an entire synthetic world an RL agent would
learn in. Thus, it would create the initial state and then iteratively receive actions and generate the
next state and optionally a reward. For example, a GTN could learn to produce an entire MDP that
an agent trains on, with the meta-objective being that the trained agent then performs well on a target
task. We consider such synthetic (PO)MDPs an exciting direction for future research.

The score on CartPole is the number of frames out of 200 for which the pole is elevated. Both
GTN and an A2C (Mnih et al., 2016) control effectively solve the problem (Figure 9). Interestingly,
training GTNs takes the same number of simulator steps as training a single learner with policy-
gradients (Figure 9). Incredibly, however, once trained, the synthetic data from a GTN can be used
to train a learner to maximum performance in a single SGD step! While that is unlikely to be true
for harder target RL tasks, these results suggest that the speed-up for architecture search from using
GTNs in the RL domain can be even greater than in supervised domain.

The CartPole experiments feature a single-layer neural network with 64 hidden units and a tanh
activation function for both the policy and the value network. The inner-loop batch size was 512

16

Under review as a conference paper at ICLR 2020

—— A2C Agent
175 —— A2C + GTN Agent

0 20000 40000 60000 80000 100000
Environment Steps

Figure 9: An A2C Agent control trains a single policy throughout all of training, while the GTN
method optimizes a new, randomly initialized network at each iteration with a single step of SGD.
With GTNs, we can therefore train many new, high-performing agents quickly. That would be useful
in many ways, such as greatly accelerating architecture search algorithms.

and the number of inner-loop training iterations was 1. The observation space of this environment
consists of a real-valued vector of size 4 (Cart position, Cart velocity, Pole position, Pole velocity).
The action space consists of 2 discrete actions (move left or move right).

APPENDIX I SOLVING MODE COLLAPSE IN GANS WITH GTNSs

We created an implementation of generative adversarial networks (GANs) (Goodfellow et al., 2014)
and found they tend to generate the same class of images (e.g. only 1s, Figure 10), which is a com-
mon training pathology in GANs known as mode collapse (Srivastava et al., 2017). While there are
techniques to prevent mode collapse (e.g. minibatch discrimination and historical averaging (Sal-
imans et al., 2016)), we hypothesized that combining the ideas behind GTNs and GANs might
provide a different, additional technique to help combat mode collapse. The idea is to add a discrim-
inator to the GTN forcing the data it generates to both be realistic and help a learner perform well
on the meta-objective of classifying MNIST. The reason this approach should help prevent mode
collapse is that if the generator only produces one class of images, a learner trained on that data
will not be able to classify all classes of images. This algorithm (GTN-GAN) was able to produce
realistic images with no identifiable mode collapse (Figure 11). GTNs offer a different type of solu-
tion to the issue of mode collapse than the many that have been proposed, adding a new tool to our
toolbox for solving that problem. Note we do not claim this approach is better than other techniques
to prevent mode collapse, only that it is an interesting new type of option, perhaps one that could be
productively combined with other techniques.

cOd s b ®

3
¢
g
s
2
g
3
E

3
4
3
/
e
5
/
Q

Figure 10: Images generated by a basic GAN on MNIST before and after mode collapse. The
left image shows GAN-produced images early in GAN training and the right image shows GAN
samples later in training after mode collapse has occurred due to training instabilities.

APPENDIX J ADDITIONAL MOTIVATION

There is an additional motivation for GTNs that involves long-term, ambitious research goals: GTN
is a step towards algorithms that generate their own training environments, such that agents trained
in them eventually solve tasks we otherwise do not know how to train agents to solve Clune (2019).
It is important to pursue such algorithms because our capacity to conceive of effective training en-
vironments on our own as humans is limited, yet for our learning algorithms to achieve their full

17

Under review as a conference paper at ICLR 2020

2 4
4]
SR
45
39
3¢
39
i

Figure 11: Images generated by a GTN with an auxiliary GAN loss. Combining GTNs with
GANSs produces far more realistic images than GTNs alone (which produced alien, unrecognizable
images, Figure 7). The combination also stabilizes GAN training, preventing mode collapse.

potential they will ultimately need to consume vast and complex curricula of learning challenges
and data. Algorithms for generating curricula, such as the the paired open-ended trailblazer (POET)
algorithm Wang et al. (2019a), have proven effective for achieving behaviors that would otherwise
be out of reach, but no algorithm yet can generate completely unconstrained training conditions. For
example, POET searches for training environments within a highly restricted preconceived space of
problems. GTNs are exciting because they can encode a rich set of possible environments with min-
imal assumptions, ranging from labeled data for supervised learning to (in theory) entire complex
virtual RL domains (with their own learned internal physics). Because RNNs are Turing-complete
Siegelmann & Sontag (1995), GTNs should be able to theoretically encode all possible learning
environments. Of course, while what is theoretically possible is different from what is achievable
in practice, GTNs give us an expressive environmental encoding to begin exploring what potential
is unlocked when we can learn to generate sophisticated learning environments. The initial results
presented here show that GTNs can be trained end-to-end with gradient descent through the entire
learning process; such end-to-end learning has proven highly scalable before, and may similarly in
the future enable learning expressive GTNs that encode complex learning environments.

18

