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ABSTRACT

Answering questions about data can require understanding what parts of an in-
put x influence the response y. Finding such an understanding can be built by
testing relationships between variables through a machine learning model. For
example, conditional randomization tests help determine whether a variable re-
lates to the response given the rest of the variables. However, randomization tests
require users to specify test statistics. We formalize a class of proper test statistics
that are guaranteed to select a feature when it provides information about the re-
sponse even when the rest of the features are known. We show that f-divergences
provide a broad class of proper test statistics. In the class of f-divergences, the
KL-divergence yields an easy-to-compute proper test statistic that relates to the
additional mutual information (AMI). Questions of feature importance can be
asked at the level of an individual sample. We show that estimators from the
same AMI test can also be used to find important features in a particular instance.
We provide an example to show that perfect predictive models are insufficient for
instance-wise feature selection. We evaluate our method on several simulation ex-
periments, on a genomic dataset, a clinical dataset for hospital readmission, and
on a subset of classes in ImageNet. Our method outperforms several baselines in
various simulated datasets, is able to identify biologically significant genes, can
select the most important predictors of a hospital readmission event, and is able to
identify distinguishing features in an image-classification task.

1 INTRODUCTION

Model interpretation techniques aim to select features important for a response by reducing models
(sometimes locally) to be human interpretable. However the phrase model interpretation can be a
bit of a misnomer. Any interpretation of a model must be imbued to the model by the population
distribution that provides the data to train the model. In this sense, interpreting a model should be
viewed as understanding the population distribution of data through the lens of a model. Existing
methods for understanding the population distributions impose restrictions on the models fit to the
population, choice of test statistic, or auxiliary models for interpretation ( ;

, ). Such modeling restrictions limit the applicability of these methods toa smaller
class of population distributions. To be able to work in a model-agnostic manner, feature selection
methods can use models but must not require a particular structure in models used to fit the data or
used in interpretation.

Understanding the population distribution can be phrased as a hypothesis to be tested using samples
from the population distribution in concert with a model. One hypothesis test for feature importance
assesses whether a response is independent of a feature given the rest of the features; this test is called
a conditional randomization test ( , ). Testing the importance of each feature with
a conditional randomization test necessitates multiple tests. When many tests are asked of the same
data, it becomes important to control the rate at which those questions might be satisfied by random
chance, that is, control something like the false discovery rate (FDR) ( , )

Hypothesis tests require test statistics. Ideally, we would like to use test statistics that make no im-
plicit modeling assumptions. For example, using a test statistic like correlation is akin to using a
linear model ( , ). To avoid these assumptions, we develop the notion of a proper
test statistic. Proper test statistics reveal the true conditional independences in the population dis-
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tribution. We show that expected f-divergences ( , ) between the joint and the marginal
form a broad family of proper test statistics. In the family of f-divergences, we show that KL-
divergence yields the simplest computation reducing down to regression. Using the KL-divergence
in this context has a the natural interpretation; it is a measure of the additional information each fea-
ture provides about the outcome over the rest. This measure of information is known as additional
mutual information (AMI) ( s ). Our proposed procedure is called the ad-
ditional mutual information conditional randomization test (AMI-CRT); AMI-CRT controls the FDR,
works with any regression method. These regressions can be performed by using a flexible class
of estimators that approximate a broad class of functions, like neural networks or random forests.
Though simple, AMI-CRT outperforms popular procedures for feature importance on wide variety of
simulated data, hospital records, and biological data.

Working with data sometimes requires interpreting a population distribution on the level of an in-
dividual datapoint. For example, a doctor may benefit in knowing what features for a particular
patient relate to their risk of a disease. The process of 1dent1fy1ng features at a datapomt level is
called instance-wise feature selection ( s ;

). We identify an issue in instance-wise feature selectlon where features selected with the
true population distribution do not yield the features that were used to generate the response of an
instance. The crux of this disparity is that response generation process conditional on the features
may use randomness to select features. We provide an example to demonstrate where instance-wise
feature selection can go awry. We develop sufficient conditions for instance-wise feature selec-
tion to avoid this issue, the same regression estimates from AMI-CRT can also be used to estimate
feature-importances with minimal computational overhead, resulting in a method we term additional
mutual information instance-wise feature selection (AMI-TW). We demonstrate AMI-IW on multiple
simulations and image data. Across all of these tasks AMI-IW outperforms popular baselines.

1.1 RELATED WORK

Permutation tests ( , ) provide a test for marginal independence between each feature and
the outcome. However, they fail in the case of conditional independence which is required when
covariates are dependent on each other. To address this, solutions like Sure Independence Screenlng
( , R ) and Conditional Randomization Tests (

, ) have been proposed, which give frameworks for conditional mdependence testmg
However, these often make linearity or additive noise assumptions about the data generating distri-
bution. Furthermore, they require the choice of a test statistic to capture some notion of conditional
independence. The user of such frameworks is often burdened with the task of choosing this test
statistic, which may require strong assumptions about the data generating distribution. Extending
this approach to neural networks, ( , ) propose a fully connected network whose weights
are used as a test statistic. While novel, their method is specific to fully connected networks. (

, ) propose the holdout randomization test (HRT) framework which uses the empirical 0-1
risk as a test statistic, and provides computational speed-ups over CRTs.

Our contributions. To address the issue of choosing the test statistic, we develop the notion of a
proper test statistic that is necessary for model-agnostic feature selection. We show that expected
f-divergences are proper test statistics and one particular choice, the KL-divergence, yields a com-
putationally efficient yet effective test for conditional independence, called the AMI-CRT.

Beyond understanding the population distribution, some tasks require interpreting a population dis-
tribution on the level of an individual datapoint. Methods that test for conditional independence
work under distributional notions of feature selection, but are not designed for identifying the rele-
vant features for a particular sample. To address this issue of “instance-wise feature selection,” sev-
eral methods have been proposed including local perturbations ( , ;

, ) and fitting simpler aux1l1ary models to explaln the predictions of

a large rnodel ( s s ; . ). Our
instance-wise work is most 51m11ar to that of ( , ) who repurpose the HRT framework
to perform instance-wise feature selection or ( , ) who define a conditional ran-

domization test (CRT) procedure for subsets of the feature space. In general however, the conditions
under which instance-wise feature selection with predictive models may be possible are not well
developed.
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Our contributions. We address this issue by first identifying a set of sufficient conditions under
which instance-wise feature selection is always possible. We then show how estimators in AMI-CRT
can be repurposed for use in an instance-wise setting, yielding a procedure called the AMI-TW.

2 PROPER TESTS FOR FEATURE SELECTION

Practitioners of machine learning use feature selection to identify important features for their pre-
dictive task. One way to filter out important features is to find those that improve predictions given
even the rest of the features. This can be formalized through conditional independence. Let x; be
the j™ feature of x and let x_; be all features but the 4™ one. The goal is to discover a set S such
that Vx; ¢ S,x; L y | x_;, where independence is with respect to the true population distribution
q. The only knowledge about ¢ comes from a finite set of samples Dy := {(x®,y®»)}Y, sam-
pled from the population. This means that it is impossible to assess exact conditional independence.
Therefore, in the finite sample setting, we must formulate a statistical hypothesis test.

Conditional randomization tests. A conditional randomization test (CRT) ( , )
provides us with tools to help us define such a hypothesis test. For the jth feature, CRTs first compute
some test statistic £ on the IV samples of data Dy and place this statistic in a null distribution

y) have been replaced by samples of igi) that is conditionally

independent of the outcome. Letting 5]47 ~ be a dataset where {mgl)}fil has been replaced by

where samples of the jth feature x

{iy) N |, we can write the p-value for this test as

pPv= B [L(H0N) <HD))]. M
Ty VXX =T _;

To see that t(D; ) is a valid null distribution, consider the case where x; L y | x_;. Then
X; | y,x_; is equal in distribution to x; | x_; = x; | y,x_;. Therefore, in this case, a test statistic
t computed using Dy will have the same empirical distribution as a test statistic computed using
Dj.n ( , ). While CRTs provide a general method for conditional independence
testing, they leave several components including the choice of test statistic unspecified.

2.1 CHOOSING THE RIGHT TEST STATISTIC

Imagine a test statistic ¢(-) = t({:cg’)7 yW1N ) that uses only a feature x; and the outcome y.
Any p-values computed using this test statistic would be meaningless when testing for conditional
independence, as ¢ never considers the remaining features «_;. Therefore, particular choices for
test statistics limit what can be tested. To address this, we introduce the concept of a proper test
statistic.

Definition 1. Proper Test Statistic: A test statistic t(-) is proper if p-values produced by the statistic
converge to 0 when the null must be rejected, and are uniformly distributed otherwise.

Using t in Equation (1), we should expect to see:

D d Uniform(0,1) ifx; Ly|[x;
P ( N)—>{(1(Pj(DN):0):1 ifx; Ly [x

N—o00

; 2)

d . .. e . L
where — indicates a convergence in distribution. Under the alternate hypothesis, which in the case
of feature selection is x; Ly | x_j, the power to reject the null hypothesis must be 1, implying
p; — 0. A proper test statistic requires that Equation (2) must hold for all distributions of y, x.

Definition 1 mirrors the concept of a scoring rule ( s ), which measures the
calibration of a probabilistic prediction by a model. Generally speaking, a proper scoring rule is one
such that the highest expected score is obtained by a model that uses the true probability distribution
to make predictions. We now show that expected f-divergences may be used as a test statistic for
conditional independence.
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2.2 f-DIVERGENCES ARE PROPER TEST STATISTICS

f-divergences measure the closeness between two distributions and are 0 only when the two distri-
butions are equal. Conditional independence implies that the conditional distribution factorizes:

q(x5,y | x—j5) = q(x5 | x—;)a(y | x—5) 3)

This equality means that the f-divergence between the left-hand and the right-hand distributions
above is 0. Using this fact, we can use f-divergences to build a proper test statistic.

Let fj (Dy) be a finite sample estimator of the true expected f-divergence
Eqx_;)Ds (¢(x5,y | x—;) || (x5 | x—;)q(y | x—;)). When f;(Dy) converges in probability
as N increases to the true expected f-divergence, i.e. it is consistent, f; is a proper test statistic.

Lemma 1. A consistent estimator of the expected f-divergence, f;(Dy), is a proper test statistic.

Lemma 1 implies that given sufficient data, a consistent estimator of expected f-divergence used
as a test statistic in a CRT recovers the set of important features S: those that are not conditionally
independent of the response given the rest of the features. See Appendix C.2 for a proof of Lemma 1.

While a consistent estimator of an expected f-divergence is a proper test statistic, estimating f-
divergences from data is a challenging task. For each feature, f-divergence in a CRT requires es-
timates of the following conditional distributions: ¢(y | x),¢(y | x—;), and ¢(y | X;,x_;). To
avoid direct estimation of these conditionals, ( s ) use adversarial techniques to
estimate f-divergences. However, adversarial techniques suffer from stability issues during training

( , ; , ).

In the next section, we discuss how a specific choice of the f-divergence, the KL-divergence, can
help simplify this estimation task.

2.3 ADDITIONAL MUTUAL INFORMATION CONDITIONAL RANDOMIZATION TEST (AMI-CRT)

Recall that DN = {(2®,y™)}Y | is a finite sample from some population distribution ¢. Let
DJ N = {( (f; ,y) I, be a dataset where the jth feature of Dy is replaced with a feature
that is condmonally independent of the outcome. To compute the p-value in a CRT we use an
empirical estimate fj(DN) of the expected f-divergence. For some convex function f, let f* =
tf (%) and compute the f*-divergence ( , ) which can be evaluated using samples
from the joint data distribution. Then we need to evaluate the following difference:

: : o~ 1 q(yu‘)wm)) 1 ¥ <q(y<n|i(i>7w<i>_)
fi(Dn) = fi(Djn) = < f( —=>f e B ),
(PN I\FiN) = 3y ; qa(y® |m(_;) N ; q(y® |m(_;)

For each feature x;, we would therefore need estimates for three distributions: ¢(y | x;,x_;),
q(y | X;,%—;), and ¢(y | x—;). For a particular choice of f, we can actually reduce the number of
distributions to be estimated. If we let f(z) = zlog z, i.e. the KL-divergence, we can avoid having
to estimate ¢(y | x_;), simplifying Equation (4) into:

N

1 ; i

& 2 loga(y |2l —*Zlogq @& 2. %)
=1

The KL-divergence between ¢(y,x; | x—;) and ¢(y | x—;)q(x; | x_;), called the additional mutual
information (AMI) ( , ), helps cancel out the ¢(y | x_;) term when used in
a CRT. We show the full derivation of this in Appendix D.

Avoiding the estimation of q(y | x_;) provides a significant computational advantage. This helps
control the sources of error in our p-value computation. By Lemma I, if we have a consistent
estimator for the quantities in Equation (5), we can be sure that this simpliﬁed test statistic is proper.

Estimating p-values with flexible regression models. As discussed earlier, importance is an at-
tribute of the population distribution. If we had access to the true conditional distribution ¢(y | x),
we might be able to determine feature importance by directly using Equation (5). However, this is
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Algorithm 1: AMI-CRT for feature selection

Input: € RV*P feature matrix; y € R, labels; j, the jth feature to be tested
Output: p;, the p-value for the null hypothesis of x; L y | x_;
Fit regression gg(x; | T_;)
Fit regression ¢g(y | x)
Lett; = L SN loggs(y = y@ | x = ()
fork € [1,2,..., K] do
Let {5551) N bea dataset such that 55»” ~qo(xj | x_j =x_j)
Letz® = {3\, 2 }N |
Fit regress1on q( ! (x ( N=y
k), (@) | ~(0) (i
Let 7% = L3N og ¢y | 2, 21)
end

Letp; = gy [1+ 200, 1 (15 < 89)]

usually not the case and we must estimate them from data. This is where models of the world can
be useful. Using an appropriate model, we can efficiently estimate the true population distributions
g. While using a restrictive model class can potentially prevent a test statistic from being proper,
modeling assumptions may be the easiest way to consistently estimate the conditional distributions
we care about from data. For example, in cases where the number of features is far greater than
the number of samples, a sparse model can potentially provide a better estimate for ¢(y | x) than
a non-parametric model. Since we use AMI, we can use models to compute two regressions: one
from x to y, and one from {X,,x_;} to y. These models serve as estimators for both ¢(y | x) and

qa(y | X5, %)

We also use models to help generate samples from X ;, a random variable designed to be independent
of y given x_;. As X; ~ ¢(x; | x_;), we can again estimate this distribution using regression from

X_; to x;. We discretize the x; being estimated, and learn parameters § = {61, ..., 67} for:
wy) ~ Categorical (go (x 7j,91) cgr(x ﬂ,HT)) (6)
where 7' is the number of bins. We refer the reader to Proposition 2 of ( )

for proof that this approximation converges in distribution to the true g(x;|x_;) as the bm width
w — 0and Nw — oo.

We give an AMI-CRT procedure in Algorithm 1. We first fit a model for ¢(x; | x_;), and a model for
q(y | x). We then compute the expected log-probability of y | x. K datasets are sampled from our
estimate of ¢(x; | x_;), and used to estimate the null distribution for the expected log-probability.
This is used to then compute a p-value for the conditional independence test of x; L y | x_;. We
also present a k-fold version of our method for higher power in Appendix B. This algorithm splits
dataset («,y) into several folds, then uses all but one of the folds to estimate the relevant condi-
tional distributions. The remaining fold is used to estimate the expected log-probability difference.
Finally, to combine the folds, we average the estimated log-probability from each fold before com-
puting p-values. To estimate each of gy and ¢g, standard regression models like logistic regression,
neural networks, and random forests can be used at no more computational cost than training. The
estimation procedure is straightforward, but effective as we demonstrate in Section 4.

An additional benefit of AMI-CRT is the ability to reuse this empirical framework to provide feature
importances on an instance-wise level.

3 TESTS FOR INSTANCE-WISE FEATURE SELECTION

So far, we recover features that are important across the whole population, i.e. the problem of
distributional feature selection. We develop a test for distributional feature selection, but do not
yet address the issue that different samples could have different important features. We call this
problem of recovering important features for each sample, instance-wise feature selection (IWFS).
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To identify important features instance-wise, we can use the probability of observing a particular

label (%) given a set of features (). This suggests a candidate definition for important features in
IWES:

Definition 2. (Candidate) Feature importance in I\WFS: Let D be a data-generating distribution.
Let { (az(i), y(i)) }j\il be a dataset where each (arz(i)7 y(i)) ~ D. The jth feature for the ith sample,

(i)

z;

, Is an important feature if

gy =y? [x=2) > gy =¢y@ | x_; =21

where q is the true probability distribution specified by D.

Definition 3 says that a feature 2 is important if observing it increases the probability of y(*). This
formulation is exploited in ( , ) to obtain instance-wise important features. However,
Definition 3 can sometimes fail to identify relevant features, even with access to the true conditional
distribution ¢(y | x) as specified by the data generating process. While important features may
satisfy this condition, so will a few unimportant features. As a demonstrative example, consider the
data generating process where y = zx; + (1 — z)x3 + €, z ~ Bernoulli(0.5), x1, x5 ~ N(0,02),
and € ~ N (0,02). Assume we have the true ¢(y | x1,X2), and let z be unobserved. Pick a sample
(:cgl), a:g), y () where the corresponding z(*) = 1, meaning that scgl) is important for this example.

We can expand the difference p(y(?) \mgi), wgz)) — p(y® \wgl)) as

i 3 i i 4 1 i i 1 i
pylel 2f)) —plyVle”) = SN (y 52l 0?) = SN (350,02 + 0?)

For all i such that y(®) lies in a non-0 interval around z{”, we have that p(y@|=!", z{") —
p(y@|z{") > 0. For example let o, = o, = 1, then ) = 5, we have that y € [3,7] satisfies
this. In all of those cases, the wrong feature will be selected as important as per the candidate Defini-
tion 3. We show the full derivation of this example in Appendix E.1. The fundamental issue with the
formulation in Definition 3 is that noise can act as a “selection” mechanism, but cannot be estimated
because it is unobserved. Therefore, while it suffices to build predictive models gy of ¢(y | x) for

distributional feature selection, IWFS might not be possible even with access to ¢(y | x).

3.1 PROPERTIES OF INSTANCE-WISE FEATURE SELECTION TESTS

We develop the following sufficient condition under which to construct a test for instance-wise
feature importance:

Definition 3. Sufficient conditions for instance-wise feature selection: Let S () be a set of features
for each sample (), y ) such that:

5O ={af gy =y | x =) > gy =y | x_; =2} @

If y is discrete, and p(y = y | x = D) = 1 for each sample (), y), i.e. we have perfect
predictions on our dataset, then it is possible to determine which features contribute to the prediction
of y, instance-wise.

The set in Equation (7) consists of only features :cgi) that help increase the likelihood of observing

y® given the remaining features m(_zg If the perfect predictions property of ¢(y | x) is true, then
qly = y_(i) | x_; = a:(_zz) can only be less than or equal to ¢(y = y? | x = x()), with equality
when acy) is not important to y(). Assuming the sufficient conditions in Definition 3, we can now
construct an instance-wise feature selection procedure using the same estimators from AMI-CRT.

3.2 ADDITIONAL MUTUAL INFORMATION INSTANCE-WISE FEATURE SELECTION (AMI-IW)

Instance-wise feature selection can be performed using complete conditional knockoffs (CCKs).
Starting from Definition 2, we begin by manipulating ¢(y = y® | x = w(i)) and marginalizing out
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Feature ami-crt loss-hrt corr-crt 1lime shap «rf

p-values v v v
Well calibrated p-values v
FDR control v v v
Instance-wise feature selection v v v v
No distributional assumptions v v v v v

Table 1: AMI-CRT produces well-calibrated p-values, provides FDR control, allows instance-wise
feature selection, and makes no distributional assumptions about the data-generating process. This
table compares popular feature selection methods to AMI-CRT.

:cy). We then use Jensen’s inequality to upper-bound the log of this expectation as follows:
E [— loga(y =y | x; =&;,x_; =2))| > ~logq(y =y [x_; =2) ®)

D mq(x;12)

This suggests the following instance-wise test. If the inequality in Equation (8) is strict, the feature
is considered important. If equality holds in Equation (8), the feature is considered unimportant.
Notice that Jensen’s inequality could introduce slack in this bound that could make a feature seem
relevant when it is not. We use Definition 3 to show that this is not an issue.

Recall that given a model gy for ¢(y | x) which satisfies the instance-wise sufficient conditions
in Definition 3, go(y = y@ | x = ) > go(y = @ | x_; = @), In the case where

j
;Z) does not help predict y@, ¢(y = ¢y | x; = %;’),x_j = :L'g) cannot be greater than
(%)

dy =y | x_; = 2" ;), as the former does not depend on 5;’). Then the left-hand side of
Equation (8) becomes — log ¢(y = y® | X_j = :c(_zg), a constant with respect to (), implying a
strict equality. Therefore, checking for equality in Equation (8) is a valid test to see if a feature is
either important or unimportant. In Appendix E.2, we detail an example which shows how scores
computed using Equation (8) can help rank features from most to least helpful for prediction. We
term this scoring procedure for each feature the additional mutual information instance-wise feature
selection (AMI-IW).

€T

If we computed an expectation over (¥, y(?) of Equation (8), this procedure resembles AMI-CRT.
This means we can reuse the estimators from our distributional feature selection procedure to com-
pute these instance-wise log-probability differences for AMI-IW.

4 EXPERIMENTS

We compare our method, the AMI-CRT [ami—-crt] to widely-used approaches on the basis of FDR
(where applicable), the area under a receiver operating characteristic (ROC) curve, and on precision
and recall in the case of instance-wise feature selection:

e Correlation [corr—crt]: Difference between Correlation(x;, y) and Correlation(X;, y) as a test
statistic for a CRT.

e Zero-one binary classification loss [Loss-hrt]: Binary classification loss difference between
wa(y|x) and 75(y | &;, x_;) where 74 and 7 are models for y | x as a test statistic used in a
HRT ( ,

e Local interpretable model-agnostic explanations (LIME) [1ime] ( , )
e Shapley additive explanations (SHAP) [shap] ( , )
e Random forest [rf] feature importances scores

We present a summary comparison of these methods in Table 1.
4.1 SIMULATED DATA EXPERIMENTS

We simulate data for testing the performance of various test statistics in both a distributional feature
selection setting, and in an instance-wise feature selection setting.



Under review as a conference paper at ICLR 2020

Dataset ami-crt loss—hrt corr-crt lime shap «rf

orange 0.97 0.94 0.22 0.94 095 094
xor 1.00 0.95 0.45 1.00 099 095

Table 2: Simulated data results: Here we use the scores provided by each method to select features.
We observe that the area under the receiver operating characteristic (ROC) curve for AMI-CRT is
greater than that of state-of-the-art methods.

XOR [xor]: To test the case where features on their own are not informative, but together provide
information, we use the xor dataset. We first sample x ~ A(0,Xp) N times, where Xp is a
D-dimensional covariance matrix. We randomly translate the first two dimensions of each sample
x(¥) away from the origin in 4 different directions : {(s, s), (—s, s), (s, —5), (—s, —s)} with labels
{1,0,0, 1} respectively, where s € R is some fixed constant. The remaining features are condition-
ally independent of y.

Orange skin ( s ) [orange]: To test the case where y is some nonlinear function of
x, we use the orange dataset. In this dataset, x ~ N (0,Xp),y | x ~ exp (Zle x? — ﬁ) , where
¢ < D is the number of important features.

Selector [selector]: This experiment tests instance-wise feature selection methods. We first
sample x ~ AN (0,2p) N times, where X is a D-dimensional covariance matrix, and D > 11.
The first feature x1, called the “selector” feature, determines the feature selection mechanism. With
o denoting the sigmoid function, we generate y € {0,1} as:

o({f1,%x26)) ifx1 >0
J(<627X7:11>) ifx; <0

oty =11~ {

p-value Q-Q plot Resu!ts. For distributional feature selection

100 o amic algorithms based on CRTs or HRTs, we select
— Uniform(0, 1) features using p-values. For the baselines that

0.8 loss-hrt do not produce p-values, we select features us-

g corr-crt ing importance scores as determined by each
. method. By thresholding either p-values or im-
2 portance scores, we compute an ROC curve for
204 each method. We present the mean area un-
E der each curve over 100 simulations for the
021 xor and orange datasets in Table 2. We no-
& tice that the while the baselines perform quite

0.0 AP well, ami-crt achieves a higher area under

00 02 04 os o8 10 the ROC.
Theoretical Quantiles . - - :
We also investigate the calibration of p-

. . . . values between ami-crt, corr—crt, and

Figure 1: Quantile-Quantile plot shovylng unifor- ] 5ss—hrt. We don’t include other baselines
mity of p-values for each FDR-controlling method. 5 this comparison as they do not produce p-
values. As stated in Definition 1, a proper test

statistic must yield p-values that are uniformly distributed in the null case, and tend to O other-
wise. We notice that in the case where a feature is important, both ami-crt and loss-hrt
yield p-values close to 0, while corr—crt does not, as reflected by Table 2. Figure 1 shows a
quantile-quantile plot of null p-values. We notice that ami—crt produces null p-values that are
very well calibrated, as the empirical quantiles are almost the same as the expected quantiles for a
uniform distribution. 1oss—hrt performs well in terms of area under the ROC curve, but produces
p-values that are generally deflated, making it more likely for features to be incorrectly identified as
important. We include additional comparison to using AMI as a test statistic in the HRT framework
( , ). HRTs provide further computational speedup by using the same model for
q(y | xj,x_;) and ¢(y | X;,%x_;) and thus can be evaluated faster than CRTs. However, refitting
the estimators which use X; can yield more conservative p-values and less variance in a randomiza-
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tion test. We explore this tradeoff further and discuss results of AMI as a test statistic in an HRT in
Appendix F.

In the case of instance-wise feature selection, we evaluated methods in the following manner. For
each sample in a held-out portion of the selector data, we looked at the percent of important
features identified by each method. Table 4 (Appendix G) shows the average of these percentages
across each sample of the held-out set. We notice that ami-crt achieves the highest recall in
identifying important features compared to the baselines. Further, we observe that while 1ime and
shap rarely identify the selector variable, ami—crt identifies the selector variable in nearly all of
the samples as shown in Table 5 (Appendix G).

4.2 GENOMICS EXPERIMENTS

Wellcome Trust Celiac disease: To evaluate our framework on a real-world example, we use data
from a genomic analysis on Celiac disease ( s ). For each individual in this dataset,
we have a set of single nucleotide polymorphisms (SNPs). SNPs represents genetic variance in
the individual with respect to some reference population. This dataset consists of two classes of
individuals: cases (n = 3796) and controls (n = 8154), where the cases are those with Celiac
disease. After standard preprocessing steps as prescribed by ( ), we end up with
1759 sNps. To model g(x;|x_;), we use the same procedures as ( , ) where we
estimate the distribution ¢(x;|x,) where ~; is only the set of SNPs (not including x;) known to be
correlated with x;. To model ¢(y|x), we use a logistic regression model with an L; penalty.

Results. In Table 6 (Appendix H), we show

ROC curve for selected features

the results of each FDR-controlling feature 1ol
selection method to identify the SNPs that 74
most likely contribute to distinguishing be- g os; 2
. . . . © gl
tween those with Celiac disease and those with- < D
out it. Since these method produce p-values, 2 o6 jy—f i
we control the FDR at 20% using the 8 oal 7T ami-crt
o =2 corr-crt

( ) procedure. We re- g A - losshrt
port the percentage of selected SNPs that have o021 ',;ﬂ""_ lime
been previously shown to be associated with F'/ —— shap
Celiac disease in a biological context as re- e
ported by one of ( > > s False Positive Rate

; ; ; . ) _

We notice that ami-crt outperforms all other Figure 2: Using results from ( , )

methods tested. We also list the SNPs returned as a clinically validated ground truth, we observe
by ami-crt in Appendix H. Since this is a that AMI-CRT is able to achieve the highest area
real-world genomic dataset, there is no ground under the ROC curve when compared to state-of-
truth information, and as such we cannot com- the-art benchmarks.

pute ROC curves for methods that do not pro-

duce p-values.

4.3 HOSPITAL READMISSION EXPERIMENTS

Hospital readmission: We use a dataset consisting of ten years of medical logs from over 130
hospitals. Features in the dataset include time spent in the hospital, medical specialty of attending
doctor, age, and various other diagnostic information. Labels for each sample represent one of three
events: readmitted within the next 30 days (n = 35, 545), readmitted after 30 days (n = 11, 357), or
not readmitted (n = 54, 864). Due to class imbalance, we grouped all readmitted patients into one
category (n = 46, 902). To model p(y|x), we use a random forest classifier with 100 estimators. To
model p(x;|x_;), we used the regression approach highlighted in Equation (6).

Results 'We first identified ground truth features as mentioned in ( , ). We then use
the scores for each method and our ground truth features to compute an ROC curve. Figure 2 shows
these curves for each method. We observe that ami—-crt achieves a higher area under the ROC
curve than state-of-the-art approaches. We discuss preprocessing steps and further results in more
detail in Appendix L.



Under review as a conference paper at ICLR 2020

Figure 3: Instance-wise feature selection using AMI. The first and third columns show the original
image of ambulances or policevans respectively. The second and fourth columns show only the
patches which were found to have non-zero AMI with the label, given the rest of the patches.

4.4 IMAGENET EXPERIMENTS

To evaluate AMI-IW in the context of instance-wise feature selection, we use a subset of ImageNet.
We consider the task of differentiating between ambulances and policevans. This task is interesting
as both objects are physically very similar and there are only a few indicators that can be used to
differentiate the two. Rather than consider each pixel as an individual feature x;, we consider a
patch of pixels g as a single feature, such that no two patches contain overlapping pixels. To
model the distribution p(xs|x_g), we make use of a generative inpainting model 7, ( ,

). To model p(y|x), we use the VGG-16 network ( , ). To perform
our instance-wise test, we compute log-probability differences using fifty generated samples from
p(zs|z_s).

Results In Figure 3, we show a subset of results of instance-wise AMI-CRT. The first and third
columns show the original images for each class: ambulance and policevan respectively. The sec-
ond and fourth columns mask out the original image in patches where the patch is not found to be
relevant to prediction. The model used to estimate p(y|x) is able to achieve roughly 90% accuracy
on a held-out test set. We see that our predictive model uses relevant details like the words “ambu-
lance” or “police” printed on the vehicle to distinguish between each class. The model also tends
to ignore objects like windscreens and other features shared across classes. These results indicate
that the difference in log probabilities between a model using the true data, and one using CCKs
works well in determining a relevant set of features even on an instance-wise level. We show several
additional images in Figure 5, in Appendix J. We also compare our method to local interpretable
model-agnostic explanations (LIME) and shapley additive explanations (SHAP) (Figures 6 and 7).
Both methods perform reasonably well on this task, but identify objects that are known to be com-
mon to both classes like wheels and headlamps. Neither method identifies writing on the vehicles in
the images.

5 DISCUSSION

In this paper, we make the important distinction between interpreting models and understanding the
population distribution of data through the lens of a model. We propose doing the latter by testing
for conditional independence of each feature x; L y | x_; from a finite sample from the population
distribution. However, doing so requires the careful selection of a test statistic, which is unspecified
in popular feature selection frameworks. We propose a new class of model-agnostic test statistics
called proper test statistics that guarantee control of the false discovery rate (FDR). We show that
expected f-divergences between the joint distribution ¢(x;,y | x_;) and the product of marginals
q(x; | x—;)q(y | x—;) form a broad class of proper test statistics. By choosing the KL-divergence,
and computing the AMI, we can reduce the computation of our method, the AMI-CRT, to a series
of regressions. We also extend this framework to develop the AMI-IW, an instance-wise feature
selection method that can help interpret a population distribution on the level of a single datapoint.
We observe that both the AMI-CRT and AMI-IW outperform several popular methods in various
simulated tasks, in identifying biologically significant genes, selecting the most indicative features
to predict hospital readmissions, and in identifying distinguishing features in an image classification
task.
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A CRT ALGORITHM

We show the general CRT procedure first introduced by ( , ) in Algorithm 2.

Algorithm 2: Conditional Randomization Test

Input: € RV*P feature matrix; y € RV, labels
Output: p, the p-values forx; L y|x_; Vj
for j €[1,2,...,D] do
Lett; =t(x;,z_;,y)
fork € [1,2,...,K] do

Let (*) be a dataset such that T _

p(xj|z_j)

Let t(k) (Eg-k), z_;,Y)

end

Letp; = [1+Zk 1 ( f(k))}

_j, and x; is randomly sampled from

end

B AMI-CRT ALGORITHM

We show the AMI-CRT procedure in Algorithm 3.

C PROOFS AND DERIVATIONS

C.1 AMI-CRT PRODUCES VALID p-VALUES

Lemma 2. If we construct a CCK X; such that p(X;|y,x_;) = p(x;|x_;), then under
the null hypothesis Hy = x; L y|x_j f({xgz),y(i),x(_i; N ) is equal in distribution to
IR,y @, <3N,

Proof. Under Hy, p(x;|x_j,y) = (x]|x_J) By construction, p(x;|x_;) =
p(Xj[x5,y). Therefore, I ({.anc§Z @ 33(7) Y,) must be equivalent in distribution to

I({@ y@, 23N ). O
C.2 PROOF OF LEMMA 1

Proof. We prove that expected f-divergences are a proper test statistic by showing that they yield a
p-value of zero under the alternate hypothesis, or a p-value which is uniformly distributed under the
null. Assume we have a consistent estimator f of E;x_ Dy (- || -). Let Dy := {wy), y®, :c(_li}f\il

and 5j,N = {iy),y(i),w@j

mon =, B (170 < ()]

NP(“’ |z j

N . Recall that the p-value for our test is:

In the case where x; [ y | x_;, we observe that as N — oo, f (5j,N> 2z,
Eqx_ Dy (p(X5,y | x-5) || p(Xj | x-5)p(y [x—;)) = 0, where 2, indicates a convergence in prob-
ability. We can also state that f (Dy) 2 Eqx_ Dy (p(x5,y | x—5) || p(x;j | x—5)p(y |x-5)) > 0
since x; £ y | x_;. Therefore, the term inside the expectation above is always 0, yielding a p-value

of 0 in the limit of V. Since these p-values converge in probability to a single point, this is equivalent
to converging in distribution to a delta mass at 0.

13
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Algorithm 3: k-fold AMI feature selection

Input: € RV*P feature matrix; y € RV, labels
Output: p, the p-values forx; L y|z_; Vj
Split « and y into M folds, G1,Ga,...,G
forj €[1,2,...,D] do
Estimate g := gg(x; |2_;)
h+0
form € [1,2,...,M] do
Estimate qém) = qp(y(G-m) | 2(G-m))

h < h+ £ Ls(yEn) | 2(Gm)), where Lg is an log-likelihood estimate using qém)

end

Let h be a K -dimensional vector of Os
fork € [1,2,...,K]do

Sample ; ~ gq

form € [1,2,...,M] do

( m)
B

Leth®™ « a™ 4 11, 3y G| &) 2(Cm)) where £ is an log-likelihood

(k,m)

Estimate ¢ (Gom) (G- m))

= qz(y' @) | & !

estimate using q

end

end
~(k
Letp; = 25 [1 +Y 1 (h <k )ﬂ

end

In the case where x; Ly | x_;, the distribution of f(Dy ), is the same as that of f(D;, y) as shown
in Lemma 2.

LetpY = p; (D) and Fiy (a) be its CDF. Let p = ¢(fn < a) = Fn(a) be the level of significance.
With this, we derive the distribution of the p-value:

a0} <p)=a(Fy'(0)) < Fx'(p) = alfn < a) = p.

Note that this means pév is uniformly distributed under the null. This result holds regardless of N.
Thus pév forms a sequence of random variables, indexed by [V, that are identically distributed as

a uniform random variable over [0, 1]. This means that the sequence converges in distribution to a
uniform distribution over [0, 1].

This shows that expected f-divergences are proper test statistics.

D SIMPLIFICATION OF f-DIVERGENCE COMPARISON TO DIFFERENCE IN AMI

We show below how using the KL-divergence can reduce the number of terms to be estimated for
an f-divergence. We know that using f(z) = zlogz in Dy (-||-) gives us the KL-divergence which

14
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then yields the AMI under expectation with respect to g(x_;) (

Eqx_nDy (a(x5y [ x—5) | a(x5 | x—5)q(y | x-5))
= Eqx_HKL (q(x;,¥ | x—5) || a(x; [ x—;)a(y [ x—;)) ©)
q(xj,y | x—j) ]
x; | x-;)a(y | x—j)
q(xj,y | x—j) ]
x; | x-;)a(y | x—j)
q(x;,y | x—j) ]
x; | x—j)q(y [ x-;)
q(y | Xj,X—j)]
q(y | x—j)
= AMI(X;,y | x_;) (11

=Eyx_ VEoix; yvix_.) |log
q(x—;)=q(x4,y|x-5) |: q(

=Eyx_ VEo(x, vix_.) |log
q(x—;)=q(x4,y|x-5) |: q(

= Eqx_ ) Ealylx; x—j)atx;x—5) {10% ol

= Eq(x_ ) Eq(ylx; x—j)alx;1x—;) {10% (10)

We can now show the reduction of a difference in AMI terms to a difference in expected log-
probabilities:

q Xi,X_; q Xi,X_;
M] = By(ylz; x-j)ax;.x—;) [bg %,(}l,;_])j)
= Eqyix; x_)a0x; x-) 1084y [ %5, %5)] = Bq(ypx; x—atx, x;) 108 a(y [ x-5)]
— Eyylx;x_ )0 %) 1089y | X55%—5)] + Bo(yiz; xs)at; %) log a(y [ x-5)]
= Eq(ylx; x_)atx; ;) 1084y | %5, % 5)] = Eqyix_)a(x_,) loga(y | x5)]
— Eqylz; x—)a;x—y) 108 a(y | Xj,x5)] + Eq(yix_;)qx_;) log aly [ x—;)]
= Eq(yix;x—y)atx; x— ) 1084y [ %5, %5)] = Eqyix, x_)a(x; x_;) log a(y | X5, x-;)]
=Eq(yix; x_)atx; ;) 1084y | %, %5)] = Eq(yix;,x_;)atx; x ;) log a(y | X, x—;)]
= Eq(xjﬁx—j) [EQ(ylxj X—j) [log q(y ‘ vax—j)] - EQ(ylijxX—j) [log q(y ‘ ijvx—j)]] (12)

01 = Eq(yx; x_;)a(x;x_;) [108

Therefore, the monte-carlo estimate for Equation (12) requires estimation of only ¢(y | x;,x—;),
and q(y | ij,X_j).

E INSTANCE-WISE FEATURE SELECTION EXAMPLES

E.1 CONSISTENT PREDICTIONS ALONE ARE INSUFFICIENT FOR INSTANCE-WISE FEATURE
SELECTION

Recall our sufficiency condition for instance-wise feature selection as mentioned in Definition 3. In
this example, we see what happens when this condition is not met. We notice that this definition
does not suffice to reject an unimportant feature. Consider a simple data generating process:

y=zx1+ (1 —z)xy +¢
z ~ Bernoulli(0.5)

X1, %3 ~ N(0,02)
e~ N(0,02)

where z is not observed. We can now write out the probability distributions we care about. Note
that taking an expectation like Eg, q(x, |x,)q(¥|X1X2) yields ¢(y|x2). For simplicity, we leave out
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the use of complete conditions and work directly with the latter probability distributions:
p(ylx1,x2,2) =N (ZX1 +(1- Z)XQ,U?)

pOolxrxe) = [ty xe, 2hp(afxi,xa)d = [yl xe, 2)p(a)iz
= 5N (x1.02) 5 (. 0?)
plybes) = SN (0,02 +02) + LA (x2,07)
plyb) = 5N (x1,07) + 2N (0,02 + 7)

Now consider an instance (z{”, @$”, 4@ 2()) where () = 1 which means that y(*) depends only

on feature !”. Now we check 1f p(yl )|:cgi 2)) > py@|z{?). Using our definitions from

earlier, we can expand this inequality:
i i i i i 1 i i 1 i
p(y?al” . a8)) —plyVlal?) = SN (yVial 02) = SN (y:0,0% +02)

For all i such that y® lies in a non-0 interval around z”, we have that p(y®|z{" (") —
p(y@|z{") > 0. For example let o, = o, = 1, then &) = 5, we have that y € [3,17] satis-
fies this. This means that x5 will be deemed important as per the candidate Definition 3.

E.2 INSTANCE-WISE SCORE EXAMPLE

In this example, we see how scores computed using Equation (8) can help identify important features
for a given instance, under the assumptions stated in Definition 3. Consider a simple data generating
process:
y=zx1 + (1 —z)xy
Z,X1, Xy ~ Bernoulli(0.5)

where all random variables are observed. Let us now consider the following observed instance:
(y, :cgl), mg), 2() = (1,0,1,0). We can now devise a test for each of wgl), a:éz), and 2. For
scgl), we want to check:

et @), 20) > py@ay’, 20) (13)
We can create similar tests for the other two variables as well:
Pyt wé’% D) > ply Py’ 20) (14)
py Ve 2, 20) > plyal, 2y)) (15)
We can use Table 3 to help evaluate Equations (13) to (15):
p(y(i) = 1|:B§i) = O,wg) =1,z = 0)=1
Py =1la = 1,20 =0) =1
ply@ =1z =0,2 =0)=0.5
piy@ =1z =0,25 =1) =05

(@ -

meaning x; ~ is not important to y@, but sr:( 2

and z(*) are important.

F SIMULATED DATA FEATURE SELECTION - ADDITIONAL RESULTS

In this section, we present additional results that use AMI as a test statistic in a HRT framework. This
offers a significant speedup as the HRT framework avoids having to refit estimators using CCKs.
Figure 4 shows a quantile-quantile plot of the null p-values for each FDR-controlling feature selec-
tion method. We notice that both HRT-based methods tend to deflate p-values. This often results in
features being mistakenly selected as important. Using the same test statistic, AMI, in a CRT helps
mitigate this issue.
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Table 3: Full distribution for example in Appendix E.2
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Figure 4: Quantile-Quantile plot showing uniformity of p-values across various FDR-controlling
methods.

G SELECTOR INSTANCE-WISE FEATURE SELECTION

Table 4 shows the percentage of important features identified by each baseline feature selection

algorithm. Table 5 shows the percentage of samples where the selector variable mgi) was identified
as important. We notice that AMI-CRT outperforms baselines quite significantly in detecting the
selector feature.

ami-crt loss-hrt corr-crt 1lime shap rf

selector  0.67 0.45 0.33 0.57 0.61 0.33

Table 4: Percentage of important features identified by various feature selection algorithms. In each
instance, only 6 features are important. The score for each method is an average of the percentages
of important features identified across each instance. Each method is allowed to pick only 6 features.
We see that ami—crt selects more important features than state-of-the-art baselines.

H CELIAC DISEASE GENOMIC FEATURE SELECTION

Table 7 shows the set of SNPs deemed significant by AMI-CRT. We annotate each SNP with its
position in the human genome, and whether it was previously reported as significant in a biological
study.
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ami-crt loss—-hrt corr-crt 1lime shap rf
selector  0.97 0.85 0.33 0.25 0.37 0.33

Table S: Percentage of instances where the selector variable %gi) was identified by various fea-
ture selection algorithms. This is the only feature that is relevant to all samples. We observe that

ami-crt almost always identifies the selector feature (x;) as important.

Method  Significant features returned  Percentage biologically significant

ami-crt 17 76.47 %
corr—-crt 185 6.40%
loss-hrt 14 57.14%

Table 6: The number of significant features reported at a 20% FDR level for each test, and the
percentage of features previously identified in a biological study.

I HOSPITAL READMISSION FEATURE SELECTION

For the hospital readmission dataset, we applied several standard pre-processing techniques. First,
we binarized the labels so that a label of 1 indicates a readmission event, and a label of 0 indicates
no readmission event. We then encoded each categorical feature as a one-hot encoding. We then
imputed missing values using the median across the dataset, and dropped the “weight” feature as it
was found to be 97% missing.

To sample from the complete conditional distributions ¢(x; | x_;), we used a neural network to fit
the complete conditional regression detailed in Equation (6). For continuous values of x;, we first
discretized the data into bins, then used our neural network to predict the bins. To map the bins back
to values in the domain of x;, we used the mean of the range of values in each bin.

J IMAGENET INSTANCE-WISE FEATURE SELECTION

Figure 5 shows some of the results of instance-wise feature selection on ImageNet data using AMI-
CRT. Figures 6 and 7 show results on the same task, using LIME and SHAP respectively. We notice
that AMI-CRT identifies patches that seem more likely to help differentiate between ambulances
and policevans. AMI-CRT identifies relevant text like the words “ambulance” or “police” that are
very likely to help distinguish between the two classes. LIME identifies some relevant features of
the image like wheels and lights, but fails to identify relevant words. SHAP does a good job at
identifying distinguishing symbols like the caduceus and the FBI logo, but occasionally misses out
on relevant text.
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Position SNP Featured in previous study
chr2:102454108 15917997 yes
chr2:68371823  rs17035378 yes
chr3:159947262  rs17810546 yes
chr3:188394766  rs1464510 yes
chr3:46193709  rs13098911 yes
chr4:122194347  rs13151961 yes
chr6:137651931 rs2327832 yes
chr6:26451325 rs2237236 yes
chr6:28423688 1$2859365 no
chr6:29505139 1s757256 no
chr6:29844253 rs2734994 no
chr6:31642909 rs1052486 no
chr6:32638107 rs2187668 yes
chr6:90216893  rs10806425 yes
chr11:128511079  rs11221332 yes
chr12:111569952  rs653178 yes
chr21:44227538  rs4819388 yes

Table 7: This table details each SNP returned by AMI-CRT, whether it was featured in a previous
biological study relating to Celiac disease, and its position on the human genome.
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Figure 5: Instance-wise feature selection using AMI-CRT. The first and third columns show the
original image of ambulances or policevans respectively. The second and fourth columns show only
the patches which were found to have non-zero AMI with the label, given the rest of the patches.
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Figure 6: Instance-wise feature selection using LIME. The first and third columns show the original
image of ambulances or policevans respectively. The second and fourth columns show only the
patches which were found to be important.
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Figure 7: Instance-wise feature selection using SHAP. The first and third columns show the original
image of ambulances or policevans respectively. The second and fourth columns show patches that
are found to contribute to the label. Green indicates a patch found relevant for the ambulance class,
and red indicates a patch found relevant for the policevan class.
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