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ABSTRACT

Deep reinforcement learning (RL) agents often fail to generalize to unseen en-
vironments (yet semantically similar to trained ones), particularly when they are
trained on high-dimensional state spaces such as images. In this paper, we pro-
pose a simple technique to improve a generalization ability of deep RL agents by
introducing a randomized (convolutional) neural network that randomly perturbs
input observations. It enables trained agents to adapt to new domains by learning
robust features which are invariant across varied and randomized input observa-
tions. Furthermore, we propose an inference method based on Monte Carlo ap-
proximation to reduce the variance induced by this randomization. The proposed
method significantly outperforms conventional techniques including various reg-
ularization and data augmentation techniques across 2D CoinRun, 3D DeepMind
Lab exploration, and 3D robotics control tasks.

1 INTRODUCTION

Deep reinforcement learning (RL) has been applied to various applications including board games
(e.g., Go (Silver et al., 2017) and Chess (Silver et al., 2018)), video games (e.g., Atari games (Mnih
et al., 2015) and StarCraft (Vinyals et al., 2017)), and complex robotics control tasks (Tobin et al.,
2017; Ren et al., 2019). However, it has been evidenced in recent years that deep RL agents often
struggle to generalize to new environments, even when they are semantically similar to the trained
ones (Farebrother et al., 2018; Zhang et al., 2018b; Gamrian & Goldberg, 2019; Cobbe et al., 2019).
For example, RL agents that learned a near-optimal policy for training levels in a video game fail to
perform well in unseen levels (Cobbe et al., 2019), while a human can seamlessly generalize across
such similar tasks. Namely, the RL agents often overfit to training environments, thus the lack of
generalization ability can raise concerns when deploying them in many applications such as health
care (Chakraborty & Murphy, 2014) and finance (Deng et al., 2016).

The generalization of RL agents can be characterized by visual changes (Cobbe et al., 2019; Gamrian
& Goldberg, 2019), different dynamics (Packer et al., 2018) and different structures (Beattie et al.,
2016; Wang et al., 2016). In this paper, we focus on the generalization across tasks where the trained
agents take various unseen visual patterns at test time, e.g., different styles of backgrounds, floors,
and other objects (see Figure 1). We also found that RL agents completely fail to perform when
facing small visual changes1 because it is challenging to learn generalizable representations from
high-dimensional input observations such as images.

To improve the generalization, several strategies such as regularization (Farebrother et al., 2018;
Zhang et al., 2018b; Cobbe et al., 2019) and data augmentation (Tobin et al., 2017; Ren et al., 2019)
have been proposed in the literature (see Section 2 for more details). In particular, Tobin et al. (2017)
showed that training RL agents in various environments generated by randomizing rendering in a
simulator can improve the generalization performance, leading to achieving a good performance
in real environments. This implies that RL agents can learn invariant and robust representations if
diverse input observations are given during training. However, their method has a limitation that
such a physics simulator may not always be available. This motivates our approach of developing a
more simple and plausible method applicable to training any deep RL agents.

1Examples of the demonstrations on CoinRun and DeepMind Lab exploration task are available at
[link-to-video].
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Figure 1: (a) Examples of randomized inputs (color values in each channel are normalized for
visualization) generated by re-initializing the parameters of a random layer. Examples of seen and
unseen environments on (b) CoinRun, (c) DeepMind Lab and (d) Surreal robotics control.

The main contribution of this paper is to develop a simple randomization technique for improving
the generalization ability across tasks with various unseen visual patterns. Our main idea is to uti-
lize random (convolutional) networks to generate randomized inputs (see Figure 1(a)), and train RL
agents (or their policy) by feeding them. Specifically, by re-initializing the parameters of random
networks at every iteration, we encourage the agents to be trained under a broad range of perturbed
low-level features, e.g., various textures, colors, or shapes. We discover that the proposed simple
idea surprisingly helps RL agents to learn more generalizable features which are invariant in un-
seen environments (see Figure 3) than conventional regularization (Srivastava et al., 2014; Ioffe &
Szegedy, 2015) and data augmentation (Cobbe et al., 2019; Cubuk et al., 2019) techniques. Here,
we also provide an inference technique based on Monte Carlo approximation, which stabilizes the
performance by reducing the variance incurred from our randomization method at test time.

We demonstrate the effectiveness of the proposed method on 2D CoinRun (Cobbe et al., 2019) game,
3D DeepMind Lab exploration task (Beattie et al., 2016), and 3D robotics control task (Fan et al.,
2018). For evaluation, we measure the performance of trained agents in unseen environments which
have different visual and geometrical patterns (e.g., different styles of backgrounds, objects, and
floors). In other words, the trained agents always encounter unseen inputs at test time. We note that
learning invariant and robust representations against such changes is essential to generalize to unseen
environments. In our experiments, the proposed method significantly reduces the generalization gap
in unseen environments unlike conventional regularization and data augmentation techniques. For
example, compared to the agents learned with cutout (DeVries & Taylor, 2017) data augmentation
methods proposed by Cobbe et al. (2019), ours improves the success rates from 38.0% to 55.7%
under 2D CoinRun, the total score from 55.4 to 358.2 for 3D DeepMind Lab, and the total score
from 31.3 to 356.8 for Surreal robotics control task.

We think that our finding can also be influential to study other generalization domains such as tasks
with different dynamics (Packer et al., 2018), as well as to solve real-world problems such as sim-
to-real transfer (Tobin et al., 2017).

2 RELATED WORK

Generalization in deep RL. Recently, the generalization performance of RL agents has been in-
vestigated by splitting training and test environments using random seeds (Zhang et al., 2018a) and
distinct sets of levels in video games (Machado et al., 2018; Cobbe et al., 2019). A major direction
for improving the generalization ability of deep RL algorithms focuses on regularization techniques.
Farebrother et al. (2018) and Cobbe et al. (2019) showed that regularization methods can improve the
generalization performance of RL agents using different game modes of Atari (Machado et al., 2018)
and procedurally generated arcade environments called CoinRun, respectively. On the other hand,
data augmentation techniques have also been explored for improving generalization. Tobin et al.
(2017) proposed a domain randomization method which generates simulated inputs by randomizing
rendering in the simulator. Motivated by this, Cobbe et al. (2019) proposed a data augmentation
method by modifying the cutout method (DeVries & Taylor, 2017). We remark that our method
enjoys an orthogonal usage with the prior methods, i.e., our method can be combined with the prior
methods to further improve the generalization performance.
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Random networks for deep RL. Random networks have been utilized in several ways for different
purposes in deep RL. Burda et al. (2019) utilized a randomly initialized neural network to define an
intrinsic reward for visiting unexplored states in hard exploration problems. By learning to predict
the reward from the random network, the agent can recognize unexplored states. Osband et al. (2018)
studied a way to improve ensemble-based approaches by adding a randomized network to each
ensemble member. They showed that it improves uncertainty estimation and efficient exploration in
deep RL. Our method is different from those prior works in that our random network is for improving
the generalization ability of RL agents.

Transfer learning. Generalization is also closely related to transfer learning (Parisotto et al., 2016;
Rusu et al., 2016a;b), which is used to improve the performance on a target task by transferring the
knowledge from a source task. However, unlike supervised learning, it has been observed that simply
fine-tuning a model pre-trained on the source task for adapting to the target task is not useful in deep
RL (Farebrother et al., 2018; Gamrian & Goldberg, 2019). To handle this issue, Gamrian & Goldberg
(2019) proposed a domain transfer method using generative adversarial networks (Goodfellow et al.,
2014), and Farebrother et al. (2018) utilized regularization techniques to improve the performance of
fine-tuning methods. Higgins et al. (2017) proposed a multi-stage RL, which first learns to extract
disentangled representations from the input observation, and then trains the agents on top of the
representations. Unlike those prior works, we focus on the zero-shot performance of each agent at
test time, without further fine-tuning the agent’s parameters.

3 NETWORK RANDOMIZATION TECHNIQUE FOR GENERALIZATION

We consider a standard reinforcement learning (RL) framework where an agent interacts with an
environment in discrete time. Formally, at each timestep t, the agent receives a state st from the
environment2 and chooses an action at based on its policy π. The environment returns a reward
rt and the agent transitions to the next state st+1. The return Rt =

∑∞
k=0 γ

krt+k is the total
accumulated rewards from timestep t with a discount factor γ ∈ [0, 1). The goal of RL is then to
maximize the expected return from each state, i.e., E(s,a)

[
Rt
]
.

3.1 TRAINING AGENTS USING RANDOMIZED INPUT OBSERVATIONS

Our main idea is to introduce a random network f where its parameters φ are initialized with a prior
distribution, e.g., Xavier normal distribution (Glorot & Bengio, 2010). Instead of the original input
s, we train an agent using randomized input ŝ = f(s;φ). For example, in the case of policy-based
methods3 that directly parameterize the policy π, we optimize the parameters of the policy network
θ by minimizing the following loss function:

Lrandompolicy = − log π (a|f (s;φ) ; θ)R, (1)

whereR is the total accumulated rewards. By re-initializing the parameters φ of the random network
per iteration, we train our agents using varied and randomized input observations (see Figure 1(a)).
Namely, we generate environments with different visual patterns but with the same semantics by
randomizing the networks. One can expect that our RL agents can adapt to new environments by
learning invariant representation from them (see Figure 3 for supporting experiments).

To learn more invariant features, we also consider the following feature matching (FM) loss between
hidden features from clean and randomized observations:

LrandomFM = ||h (f(s;φ); θ)− h (s; θ) ||2, (2)

where h(·) denotes the output of the penultimate layer of policy π. Our intuition on the above loss is
that the hidden features from clean and randomized inputs should be pulled together to learn more
invariant features against the changes in input observations. Namely, the total loss is

Lrandom = E(s,a)

[
Lrandompolicy + βLrandomFM

]
, (3)

where β > 0 is a hyper-parameter. The full procedure is summarized in Algorithm 1 in Appendix B.
2Throughout this paper, we focus on high-dimensional state spaces, e.g., images.
3We focus on the policy-based methods for exposition; however, our method is applicable to the value-based

methods as well.
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Method Classification accuracy (%)
Train (seen) Test (unseen)

ResNet-18 95.0 ± 2.4 40.3 ± 1.2
ResNet-18 + GR 96.4 ± 1.8 70.9 ± 1.7
ResNet-18 + CO 95.9 ± 2.3 41.2 ± 1.7
ResNet-18 + IV 91.0 ± 2.0 47.1 ± 15.1
ResNet-18 + CJ 95.2 ± 0.6 43.5 ± 0.3

ResNet-18 + ours 95.9 ± 1.6 84.4 ± 4.5

Table 1: The classification accuracy (%) on
dogs and cats datasets. The results show the
mean and standard deviation averaged over 3
runs and the best result is indicated in bold.

Training data Test data
Figure 2: Samples of dogs and cats datasets. The
training set consists of bright dogs and dark cats
whereas the test set consists of dark dogs and
bright cats.

Details of the random networks. We propose to utilize a single-layer convolutional neural net-
work (CNN) as a random network, where its output has the same dimension with the input (see
Appendix F for more experimental results about the different types of random networks). To re-
initialize the parameters of the random network, we utilize the following mixture of distributions:
P (φ) = αI(φ = I) + (1 − α)N

(
0;
√

2
nin+nout

)
, where I is an identity kernel, α ∈ [0, 1] is a

positive constant, N denotes the normal distribution, and nin, nout are the number of input and
output channels, respectively. Here, we use clean inputs with probability α because training only
randomized inputs would make training too difficult. We use the Xavier normal distribution (Glorot
& Bengio, 2010) for randomization because it keeps the variance of the input s and the randomized
input ŝ the same. We empirically observe that this distribution makes training more stable.

Removing visual bias. To confirm the desired effects of our method, we conduct an image clas-
sification experiment on the dogs and cats database from Kaggle.4 Following the same setup by
Kim et al. (2019), we construct datasets with undesirable bias as follows: the training set consists of
bright dogs and dark cats while the test set consists of dark dogs and bright cats (see Appendix J for
more details). One can expect that a classifier can make a decision based on the undesirable bias,
e.g., brightness and color, as it has been observed that CNNs are biased towards texture or color
rather than shape (Geirhos et al., 2019). Indeed, Table 1 shows that ResNet-18 (He et al., 2016)
struggles to generalize because of overfitting to undesirable bias in training data. To address this
issue, several image processing methods (Cubuk et al., 2019) such as grayout (GR), cutout (CO;
DeVries & Taylor 2017), inversion (IV) and color jitter (CJ) can be applied (see Appendix E for
more details). However, we find that they are not very effective to improve the generalization abil-
ity, compared to our method. This confirms that ours changes the visual appearance of attributes and
entities in images while effectively keeping the desired and meaningful information. We remark that
the prior sophisticated methods (Ganin et al., 2016; Kim et al., 2019) require additional information
to eliminate such an undesired bias, while our method does not.5 Although we mainly focus on RL
applications, our idea can also be explorable in this direction.

3.2 INFERENCE METHODS FOR SMALL VARIANCE

Since the parameter of random networks is drawn from a prior distribution P (φ), our policy can
be interpreted as being modeled by a stochastic neural network: π(a|s; θ) = Eφ

[
π (a|f (s;φ) ; θ)

]
.

Based on this interpretation, one can understand our training procedures (i.e., randomizing the pa-
rameters) as training stochastic models using Monte Carlo (MC) approximation (with a single sam-
ple per iteration). Inspired by this, at inference or test time, we take an action a by approximating
the expectations as follows: π (a|s; θ) ' 1

M

∑M
m=1 π

(
a
∣∣f (s;φ(m)

)
; θ
)
, where φ(m) ∼ P (φ) and

M is the number of MC samples. In other words, we generate M random inputs for each observa-
tion and then aggregate their decisions. We found that this estimator improves the performance of
trained agents by approximating the posterior distribution better (see Figure 3(d)).

4https://www.kaggle.com/c/dogs-vs-cats
5Using the known bias information (i.e., {dark, bright}) and ImageNet pre-trained model, Kim et al. (2019)

achieve 90.3%, while our method achieves 84.4% without using both.
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4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed method on 2D CoinRun (Cobbe
et al., 2019), 3D DeepMind Lab exploration (Beattie et al., 2016), and 3D robotics control task (Fan
et al., 2018). To evaluate the generalization ability, we measure the performance of trained agents
in unseen environments which consist of different styles of backgrounds, objects, and floors. Due to
the space limitation, we provide more detailed experimental setups and results in the appendix.

4.1 BASELINES AND IMPLEMENTATION DETAILS

For CoinRun and DeepMind Lab experiments, similar to Cobbe et al. (2019), we take the CNN
architecture used in IMPALA (Espeholt et al., 2018) as the policy network, and use Proximal Policy
Optimization (PPO) (Schulman et al., 2017) method to train the agents.6 At each timestep, agents
get an observation frame of size 64 × 64 as an input (resized from the raw observation of size
320 × 240 in the case of DeepMind Lab), and we collect the trajectories with the 256-step rollout
for training. For Surreal robotics experiments, similar to Fan et al. (2018), we take the hybrid of
CNN and long short-term memory (LSTM) architecture as the policy network and use a distributed
version of PPO (i.e., actors collect a massive amount of trajectories and centralized learner updates
the model parameters using PPO) to train the agents.7 We measure the performance in the unseen
environment for every 10M timesteps and report the mean and standard deviation across 3 runs.

Our proposed method, which augments PPO with random networks and feature matching (FM) loss
(denoted PPO + ours), is compared with several regularization and data augmentation methods. As
regularization methods, we compare dropout (DO; Srivastava et al. 2014), L2 regularization (L2),
and batch normalization (BN; Ioffe & Szegedy 2015). For those methods, we use the hyperpa-
rameters suggested in Cobbe et al. (2019), which are empirically shown to be effective: a dropout
probability of 0.1 and a coefficient of 10−4 for L2 regularization. We also consider various data
augmentation methods: a variant of cutout (CO; DeVries & Taylor 2017) proposed in Cobbe et al.
(2019), grayout (GR), inversion (IV), and color jitter (CJ) by adjusting brightness, contrast, and
saturation (see Appendix E for more details). For our method, we use β = 0.002 for the weight
of the FM loss, α = 0.1 for the probability of skipping the random network, M = 10 for MC
approximation, and a single-layer CNN with the kernel size of 3 as a random network.

4.2 EXPERIMENTS ON COINRUN

Task description. In this task, an agent is located at the leftmost side of the map and the goal
is to collect the coin located at the rightmost side of the map within 1000 timesteps. The agent
observes its surrounding environment in the third-person view, where the agent is always located
at the center of the observation. CoinRun contains an arbitrarily large number of levels which
generated deterministically from a given seed. In each level, the style of background, floor, and
obstacles is randomly selected from available themes (34 backgrounds, 6 grounds, 5 agents, and 9
moving obstacles). Some obstacles and pitfalls are distributed between the agent and coin, and a
collision with them results in the agent’s immediate death. For evaluation, we measure the success
rates, which correspond to the number of collected coins divided by the number of played levels.

Ablation study on small-scale environments. First, we train agents on one level for 100M
timesteps and measure the performance in unseen environments by only changing the style of back-
grounds as shown in Figure 3(a). One can note that these visual changes are not significant to
the game’s dynamics, and the agent should achieve a high success rate if it can generalize well.
However, Table 2 shows that all baseline agents fail to generalize to unseen environments, while
they achieve a near-optimal performance in the seen environment. This shows that regularization
techniques have no significant impact on improving the generalization ability on the contrary to the
conventional belief. Even though data augmentation techniques such as cutout (CO) and color jit-
ter (CJ) slightly improve the performance, our proposed method is the most effective one because
ours can produce a diverse novelty in attributes and entities. Here, a caveat is that training with
randomized inputs might degrade the training performance. However, we found that it is not the

6We used a reference implementation in https://github.com/openai/coinrun.
7We used a reference implementation with two actors in https://github.com/SurrealAI/

surreal.
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PPO PPO
+ DO

PPO
+ L2

PPO
+ BN

PPO
+ CO

PPO
+ IV

PPO
+ GR

PPO
+ CJ

PPO + ours
Rand Rand + FM

Success
rate

Seen 100
± 0.0

100
± 0.0

98.3
± 2.9

93.3
± 11.5

100
± 0.0

95.0
± 8.6

100
± 0.0

100
± 0.0

95.0
± 7.1

100
± 0.0

Unseen 34.6
± 4.5

25.3
± 12.0

34.1
± 5.4

31.5
± 13.1

41.9
± 5.5

37.5
± 0.8

26.9
± 13.1

43.1
± 1.4

76.7
± 1.3

78.1
± 3.5

Cycle-
consistency

2-way 18.9
± 10.9

13.3
± 2.2

24.4
± 1.1

25.5
± 6.6

27.8
± 10.6

17.8
± 15.6

17.7
± 1.1

32.2
± 3.1

64.7
± 4.4

67.8
± 6.2

3-way 4.4
± 2.2

4.4
± 2.2

8.9
± 3.8

7.4
± 1.2

9.6
± 5.6

5.6
± 4.7

2.2
± 3.8

15.6
± 3.1

39.3
± 8.5

43.3
± 4.7

Table 2: Success rate (%) and cycle-consistency (%) after 100M timesteps in small-scale CoinRun.
The results show the mean and standard deviation averaged over 3 runs and the best results are
indicated in bold.
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Figure 3: (a) We collect multiple episodes from different environments by human demonstrators
and visualize the hidden representation of trained agents optimized by (b) PPO and (c) PPO + ours
constructed by t-SNE, where the colors of points indicate the environments of the corresponding
observations. (d) Average success rates for varying number of MC samples.

case due to the high expressive power of DNNs. We also remark that the performance in unseen
environments can be further improved by optimizing the FM loss. To verify the effectiveness of
MC approximation at test time, we measure the performance in unseen environments by varying the
number of MC samples. Figure 3(d) shows the mean and standard deviation across 50 evaluations.
The performance and its variance can be improved by increasing the number of MC samples, but
the improvement is saturated around 10. Thus, we use 10 samples for the following experiments.

Embedding analysis. We analyze whether the hidden representation of trained RL agents exhibits
meaningful abstraction in the unseen environments. To this end, we visualize the features on the
penultimate layer of trained agents, which are reduced to 2 dimensions using t-SNE (Maaten &
Hinton, 2008). Figure 3 shows the projection of trajectories taken by human demonstrators in seen
and unseen environments (see Figure 8 in Appendix C for more results). Here, trajectories from
both seen and unseen environments are aligned on the hidden space of our agents, while baselines
still yield particularly scattered and disjoint trajectories. This implies that our method makes RL
agents be able to learn the invariant and robust representation.

To evaluate the quality of hidden representation quantitatively, we also measure the cycle-
consistency proposed in Aytar et al. (2018). Given two trajectories V and U , we first choose vi ∈ V
and find its nearest neighbor in the other trajectory uj = argminu∈U ‖h(vi)− h(u)‖2, where h(·)
denotes the output of the penultimate layer of trained agents. Then, we find the nearest neighbor
of uj in V , i.e., vk = argminv∈V ‖h(v)− h(uj)‖2, and we define that vi is cycle-consistent if
|i − k| ≤ 1, i.e., it can back to the original point. One can note that this cycle-consistency implies
that two trajectories are well-aligned in the hidden space. Similar to Aytar et al. (2018), we also
evaluate the 3-way cycle-consistency by measuring whether vi remains cycle-consistent along both
paths V → U → J → V and V → J → U → V , where J is the third trajectory. Using the
trajectories shown in Figure 3(a), Table 2 reports the percentage of input observations in the seen
environment (blue curve) that are cycle-consistent with unseen trajectories (red and green curves).
Similar to the results shown in Figure 3(c), our method significantly improves the cycle-consistency
compared to the vanilla PPO agent.
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Figure 4: Visualization of activation maps via Grad-CAM in seen and unseen environments in small-
scale CoinRun. We aligned images with similar states from different episodes for comparison.
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(b) DeepMind Lab

PPO + CO
PPO + GR

PPO + IV
PPO + CJ

PPO + ours

Av
er

ag
e 

re
tu

rn
s 

on
 u

ns
ee

n 
en

vi
ro

nm
en

ts
0

50

100

150

200

250

300

350

400

450

Timesteps
0 5,000 10,000 15,000 20,000 25,000 30,000

PPO
PPO + BN

PPO + L2
PPO + DO

PPO + ours

Av
er

ag
e 

re
tu

rn
s 

on
 u

ns
ee

n 
en

vi
ro

nm
en

ts

0

50

100

150

200

250

300

350

400

450

Timesteps
0 5,000 10,000 15,000 20,000 25,000 30,000

(c) Surreal robotics

Figure 5: The performances of trained agents in unseen environments under (a) large-scale CoinRun,
(b) DeepMind Lab and (c) Surreal robotics control. The solid/dashed lines and shaded regions
represent the mean and standard deviation, respectively.

Visual interpretation. To verify whether the trained agents can focus on meaningful and high-
level information, we visualize the activation maps using Grad-CAM (Selvaraju et al., 2017) by
averaging activations channel-wise in the last convolutional layer, weighted by their gradients. As
shown in Figure 4, both vanilla PPO and our agents make a decision by focusing on important
objects such as obstacles and coin in the seen environment. However, in the unseen environment,
the vanilla PPO agent shows widely distributed activation map in some cases, while our agent does
not. This implies that our agent is more robust to the environment change. As a quantitative met-
ric, we measure the entropy of normalized activation maps. Specifically, we first normalize acti-
vations σt,h,w ∈ [0, 1] such that it represents a 2D discrete probability distribution at timestep t,
i.e.,

∑H
h=1

∑W
w=1 σt,h,w = 1. Then, we measure the entropy averaged over timesteps as follows:

− 1
T

∑T
t=1

∑H
h=1

∑W
w=1 σt,h,w log σt,h,w. Remark that the entropy of the activation map quantita-

tively measures how much an agent focuses on salient components in its observation. We observe
that our agent produces a low entropy on both seen and unseen environments (i.e., 2.28 and 2.44 for
seen and unseen, respectively), whereas vanilla PPO agent does only in the seen environment (2.77
and 3.54 for seen and unseen, respectively).

Results on large-scale experiments. Similar to Cobbe et al. (2019), we also evaluate the generaliza-
tion ability by training agents on a fixed set of 500 levels of CoinRun. To explicitly separate seen and
unseen environments, we only utilize half of the available themes (i.e., style of backgrounds, floors,
agents, and moving obstacles) for training, and measure the performances on 1000 different levels
which consist of unseen themes. As shown in Figure 5(a), our method still outperforms all baseline
methods by a large margin. In particular, our method improves the success rates from 38.0% to
55.7% compared to the PPO with cutout (CO) augmentation proposed in Cobbe et al. (2019). This
shows that our agent can learn generalizable representations given only a limited number of seen
environments unlike the baseline agents.
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PPO PPO + ours
# of seen

environments
Total

rewards
# of seen

environments
Total

rewards
# of seen

environments
Total

rewards
DeepMind Lab 1 55.4 ± 33.2 16 218.3 ± 99.2 1 358.2 ± 81.5

Surreal robotics 1 59.2 ± 31.9 25 168.8 ± 155.8 1 356.8 ± 15.4

Table 3: Comparison with domain randomization. The results show the mean and standard deviation
averaged over 3 runs and the best results are indicated in bold.

4.3 EXPERIMENTS ON DEEPMIND LAB AND SURREAL ROBOTICS CONTROL

Results on DeepMind Lab. We also demonstrate the effectiveness of our proposed method on
DeepMind Lab (Beattie et al., 2016), which is a 3D game environment in a first-person view with
rich visual inputs. We design our task based on the standard exploration task, where a goal object
is placed in one of the rooms in a 3D maze. In this task, agents aim to collect the goal object as
many as possible within 90 seconds to maximize their rewards. Once the agent collects the goal
object, it receives 10 points and is relocated to a random place. Similar to the small-scale CoinRun
experiment, we train agents to get the goal object in a fixed map layout and test them on unseen
environments by only changing the style of walls and floors. We report the mean and standard
deviation of the average scores across 10 different map layouts, which are randomly selected. We
provide more details in Appendix I.

We remark that a simple strategy, exploring the map actively and recognizing the goal object, can
achieve high scores because the size of the maze is small in this experiment. Even though the
baseline agents achieve high scores by learning this simple strategy in the seen environment (see
Figure 6(c) in Appendix A for learning curves), Figure 5(b) shows that they fail to adapt to the
unseen environments. However, the agent trained by our proposed method achieves high scores in
both seen and unseen environments. These results show that our method can learn generalizable
representations even from high-dimensional and complex input observations (i.e., 3D environment).

Results on Surreal robotics control. We evaluate our method in the Block Lifting task using
Surreal distributed RL framework (Fan et al., 2018): the Sawyer robot gets a reward if it succeeds
to lift a block randomly placed on a table. We train agents on a single environment and test on
5 unseen environments with different styles of table and block (see Appendix K for more details).
Figure 5(c) shows that our method achieves a significant performance gain compared to all baselines
in unseen environments while maintaining its performance in seen environment (see Figure 15 in
Appendix K). This implies that our method can maintain important properties such as structural
spatial features of the input observation.

Comparison with domain randomization. To verify the effectiveness of our method further, we
train the vanilla PPO agents by increasing the number of seen environments generated by randomiz-
ing rendering in a simulator, while our agent is still trained in a single environment (see Appendix I
and K for more details). Table 3 shows that the performance of baseline agents can be improved
similar due to effects of domain randomization (Tobin et al., 2017). However, our method still out-
performs the baseline methods, even they are trained with more diverse environments than ours.
This implies that our method is more effective in learning generalizable representation than simply
increasing the (finite) number of seen environments.

5 CONCLUSION

In this paper, we explore a type of generalization in RL where the agent is required to generalize
to new environments in unseen visual patterns but semantically similar. To improve the general-
ization ability, we propose to randomize the first layer of CNN to perturb low-level features, e.g.,
various textures, colors, or shapes. Our method encourages agents to learn invariant and robust rep-
resentations by producing diverse visual input observations. Such invariant features could be useful
for many other related topics like an adversarial defense in RL (see Appendix D for more discus-
sions), sim-to-real transfer (Tobin et al., 2017; Ren et al., 2019), transfer learning (Parisotto et al.,
2016; Rusu et al., 2016a;b), and online adaptation (Nagabandi et al., 2019). In future work, we will
consider an extension to the generalization on domains with different dynamics and structures.
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Appendix: A Simple Randomization Technique for
Generalization in Deep Reinforcement Learning

A LEARNING CURVES
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(a) Small-scale CoinRun
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(b) Large-scale CoinRun
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(c) DeepMind lab

Figure 6: Learning curves on (a) small-scale, (b) large-scale CoinRun and (c) DeepMind Lab. The
solid line and shaded regions represent the mean and standard deviation, respectively, across 3 runs.
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(b) Comparison with data augmentation techniques

Figure 7: The performance in unseen environments in small-scale CoinRun. The solid/dashed line
and shaded regions represent the mean and standard deviation, respectively, across 3 runs.

B TRAINING ALGORITHM

Algorithm 1 PPO + random networks, Actor-Critic Style

for iteration= 1, 2, · · · do
Sample the parameter φ of random networks from prior distribution P (φ)
for actor= 1, 2, · · · , N do

Run policy π (a|f (s;φ) ; θ) in the given environment for T timesteps
Compute advantage estimates

end for
Optimize Lrandom in equation (3) with respect to θ

end for
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C VISUALIZATION OF HIDDEN FEATURES
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Figure 8: Visualization of the hidden representation of trained agents optimized by (a) PPO, (b) PPO
+ L2, (c) PPO + BN, (d) PPO + DO, (e) PPO + CO, (f) PPO + GR, (g) PPO + IV, (h) PPO + CJ and
(I) PPO + ours using t-SNE. The colors of points indicate the environments of the corresponding
observations.
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D ROBUSTNESS AGAINST ADVERSARIAL ATTACKS

It is well-known that the adversarial (visually imperceptible) perturbation (Szegedy et al., 2014) to
clean input observations can induce the DNN-based policies to make an incorrect decision at test
time (Huang et al., 2017; Lin et al., 2017). This undesirable property of DNNs has raised major
security concerns. In this section, we evaluate if the proposed method can improve the robustness
on adversarial attacks. One can naturally expect that our method improves the robustness against
such adversarial attacks because agents are trained with randomly perturbed inputs. To verify that
the proposed method can improve the robustness to adversarial attacks, we generate the adversarial
samples using FGSM (Goodfellow et al., 2015) by perturbing inputs to the opposite direction to the
most probable action initially predicted by the policy:

sadv = s− εsign (∇s log π(a∗|s; θ)) ,
where ε is the magnitude of noise and a∗ = argmaxa π(a|s; θ) is the action from the policy. Table 4
shows that our proposed method can improve the robustness against FGSM attacks with ε = 0.01,
which implies that hidden representations of trained agents are more robust.

Small-scale CoinRun Large-scale CoinRun DeepMind Lab
Clean FGSM Clean FGSM Clean FGSM

PPO 100 61.5
(-38.5) 96.2 77.4

(-19.5) 352.5 163.5
(-53.6)

PPO + ours 100 88.0
(-12.0) 99.6 84.4

(-15.3) 368.0 184.0
(-50.0)

Table 4: Robustness against FGSM attacks on training environments. The values in parentheses
represent the relative reductions from the clean samples.

E DETAILS FOR TRAINING AGENTS USING PPO

Policy optimization. For all baseline and our methods, we utilize PPO to train their policies. Specif-
ically, we use a discount factor γ = 0.999, a generalized advantage estimator (GAE) Schulman et al.
(2016) parameter λ = 0.95, and an entropy bonus (Williams & Peng, 1991) of 0.01 to ensure suffi-
cient exploration. We extract 256 timesteps per rollout, and then train the agent for 3 epochs with 8
mini-batches. We use Adam optimizer (Kingma & Ba, 2015) with the starting learning rate 0.0005.
We run 32 environments simultaneously during training. As suggested in Cobbe et al. (2019), two
boxes are painted in the upper-left corner, where their color represents the x- and y-axis velocity;
they help the agents quickly learn to act optimally. In this way, the agent does not need to memo-
rize previous states, such that a simple CNN-based policy without LSTM can perform well in our
experimental settings.

Data augmentation methods. In this paper, we compare a variant of cutout (DeVries & Taylor,
2017) proposed in Cobbe et al. (2019), grayout, inversion, and color jitter (Cubuk et al., 2019).
Specifically, the cutout augmentation applies random number of boxes in random size and color to
the input, the grayout method averages all three channels of the input, the inversion method inverts
pixel values by a 50% chance, and the color jitter changes characteristics of images commonly used
for data augmentation in computer vision tasks: brightness, contrast, and saturation. For the cutout
augmentation, for every timestep, we first randomly choose the number of boxes from 0 to 5, assign
random color and size to them, and place them in the observation. For the color jitter, the parameters
for brightness, contrast, and saturation are randomly chosen in [0.5,1.5].8 We randomize and then
fix parameters of these methods for each episode, such that the same image pre-processing is applied
within an episode.

F DIFFERENT TYPES OF RANDOM NETWORKS

In this section, we apply random networks to different locations in the network architecture (see
Figure 10) and measure the performance in large-scale CoinRun without the feature matching loss.

8For more details, see https://pytorch.org/docs/stable/_modules/torchvision/
transforms/transforms.html#ColorJitter.
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For all methods, we use a single-layer CNN with the kernel size of 3, and its output tensor is
padded to be in the same dimension with the input tensor. As shown in Figure 9, the performance
in unseen environments decreases as the random network is placed in higher layers. On the other
hand, the random network in residual connections improves the generalization performance, but it
does not outperform the case when a random network is placed at the beginning of the network. This
means that randomizing only the local features of inputs can be effective for better generalization
performance.
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Figure 9: The Performance with random networks in different locations in the network architecture
on (a) seen and (b) unseen environments in large-scale CoinRun. We show the mean performances
averaged over 3 different runs, and shaded regions represent the standard deviation.
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Figure 10: Network architectures with random networks in different locations. Only convolutional
layers and the last fully connected layer are displayed for conciseness.
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(a) Seen environment (b) Unseen environment (c) Unseen environment

Figure 11: Examples of seen and unseen environments in small-scale CoinRun.

G ENVIRONMENTS IN SMALL-SCALE COINRUN

For small-scale CoinRun environments, we consider a fixed map layout with two moving obstacles
and measure the performance of trained agents by changing the style of backgrounds (see Figure 11).
Below is the list of seen and unseen backgrounds in this experiment:

◦ Seen background: kenney/Backgrounds/blue_desert.png

◦ Unseen backgrounds:

◦ kenney/Backgrounds/colored_desert.png

◦ kenney/Backgrounds/colored_grass.png

◦ backgrounds/game-backgrounds/seabed.png

◦ backgrounds/game-backgrounds/G049_OT000_002A__background.png

◦ backgrounds/game-backgrounds/Background.png

◦ backgrounds/game-backgrounds/Background (4).png

◦ backgrounds/game-backgrounds/BG_only.png

◦ backgrounds/game-backgrounds/bg1.png

◦ backgrounds/game-backgrounds/G154_OT000_002A__background.png

◦ backgrounds/game-backgrounds/Background (5).png

◦ backgrounds/game-backgrounds/Background (2).png

◦ backgrounds/game-backgrounds/Background (3).png

◦ backgrounds/background-from-glitch-assets/background.png

◦ backgrounds/spacebackgrounds-0/deep_space_01.png

◦ backgrounds/spacebackgrounds-0/spacegen_01.png

◦ backgrounds/spacebackgrounds-0/milky_way_01.png

◦ backgrounds/spacebackgrounds-0/deep_sky_01.png

◦ backgrounds/spacebackgrounds-0/space_nebula_01.png

◦ backgrounds/space-backgrounds-3/Background-1.png

◦ backgrounds/space-backgrounds-3/Background-2.png

◦ backgrounds/space-backgrounds-3/Background-3.png

◦ backgrounds/space-backgrounds-3/Background-4.png

◦ backgrounds/background-2/airadventurelevel1.png

◦ backgrounds/background-2/airadventurelevel2.png

◦ backgrounds/background-2/airadventurelevel3.png

◦ backgrounds/background-2/airadventurelevel4.png
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(a) Seen environment (b) Seen environment

(c) Unseen environment (d) Unseen environment

Figure 12: Examples of seen and unseen environments in large-scale CoinRun.

H ENVIRONMENTS IN LARGE-SCALE COINRUN

In CoinRun, there are 34 themes for backgrounds, 6 for grounds, 5 for agents, and 9 for obstacles.
For large-scale CoinRun experiment, we train agents on a fixed set of 500 levels of CoinRun using
half of the available themes and measure the performances on 1000 different levels which consist
of unseen themes. Specifically, we use the following is a list of seen and unseen themes in this
experiment:

◦ Seen backgrounds:

◦ kenney/Backgrounds/blue_desert.png

◦ kenney/Backgrounds/blue_grass.png

◦ kenney/Backgrounds/blue_land.png

◦ kenney/Backgrounds/blue_shroom.png

◦ kenney/Backgrounds/colored_desert.png

◦ kenney/Backgrounds/colored_grass.png

◦ kenney/Backgrounds/colored_land.png

◦ backgrounds/game-backgrounds/seabed.png

◦ backgrounds/game-backgrounds/G049_OT000_002A__background.png

◦ backgrounds/game-backgrounds/Background.png

◦ backgrounds/game-backgrounds/Background (4).png

◦ backgrounds/game-backgrounds/BG_only.png

◦ backgrounds/game-backgrounds/bg1.png

◦ backgrounds/game-backgrounds/G154_OT000_002A__background.png

◦ backgrounds/game-backgrounds/Background (5).png

◦ backgrounds/game-backgrounds/Background (2).png
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◦ backgrounds/game-backgrounds/Background (3).png

◦ Unseen backgrounds:
◦ backgrounds/background-from-glitch-assets/background.png
◦ backgrounds/spacebackgrounds-0/deep_space_01.png
◦ backgrounds/spacebackgrounds-0/spacegen_01.png
◦ backgrounds/spacebackgrounds-0/milky_way_01.png
◦ backgrounds/spacebackgrounds-0/ez_space_lite_01.png
◦ backgrounds/spacebackgrounds-0/meyespace_v1_01.png
◦ backgrounds/spacebackgrounds-0/eye_nebula_01.png
◦ backgrounds/spacebackgrounds-0/deep_sky_01.png
◦ backgrounds/spacebackgrounds-0/space_nebula_01.png
◦ backgrounds/space-backgrounds-3/Background-1.png
◦ backgrounds/space-backgrounds-3/Background-2.png
◦ backgrounds/space-backgrounds-3/Background-3.png
◦ backgrounds/space-backgrounds-3/Background-4.png
◦ backgrounds/background-2/airadventurelevel1.png
◦ backgrounds/background-2/airadventurelevel2.png
◦ backgrounds/background-2/airadventurelevel3.png
◦ backgrounds/background-2/airadventurelevel4.png

◦ Seen grounds:
◦ Dirt
◦ Grass
◦ Planet
◦ Unseen grounds:
◦ Sand
◦ Snow
◦ Stone

◦ Seen player themes:
◦ Beige
◦ Blue
◦ Unseen player themes:
◦ Green
◦ Pink
◦ Yellow

I ENVIRONMENTS ON DEEPMIND LAB

Dataset. Among the styles (textures and colors) provided for the 3D maze in DeepMind Lab, we
take 10 different styles of floors and walls, respectively (see the list below). We construct a training
dataset by randomly choosing a map layout and assigning a theme among 10 floors and walls,
respectively. For the domain randomization method compared in Table 3, we provide 4 floors and
wall themes (16 combinations in total). Trained themes are randomly chosen before training and
their combinations are considered as seen environments. To evaluate the generalization ability, we
measure the performance of trained agents on unseen environments by only changing the styles of
walls and floors. Taking into account that domain randomization has more seen themes than the
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Figure 13: The top-down view of the trained map layouts.

Action DeepMind Lab native action

Forward [ 0, 0, 0, 1, 0, 0, 0]
Backward [ 0, 0, 0, -1, 0, 0, 0]
Move Left [ 0, 0, -1, 0, 0, 0, 0]

Move Right [ 0, 0, 1, 0, 0, 0, 0]
Look Left [-20, 0, 0, 0, 0, 0, 0]

Look Right [ 20, 0, 0, 0, 0, 0, 0]
Forward + Look Left [-20, 0, 0, 1, 0, 0, 0]

Forward + Look Right [ 20, 0, 0, 1, 0, 0, 0]

Table 5: Action set used in the DeepMind Lab experiment. The DeepMind Lab native action set
consists of seven discrete actions encoded in integer ([L,U] indicates the lower/upper bound of the
possible values): 1) yaw (left/right) rotation by pixel [-512,512], 2) pitch (up/down) rotation by
pixel [-512,512], 3) horizontal move [-1,1], 4) vertical move [-1,1], 5) fire [0,1], 6) jump [0,1], and
7) crouch [0,1].

other methods, we compare all methods with 6 floors and walls (36 combinations in total), which
are totally unseen for all methods. We report the mean and standard deviation of the average scores
across 10 different map layout as shown in Figure 13.

◦ Floor themes:

◦ lg_style_01_floor_orange

◦ lg_style_01_floor_blue

◦ lg_style_02_floor_blue

◦ lg_style_02_floor_green

◦ lg_style_03_floor_green

◦ lg_style_03_floor_blue

◦ lg_style_04_floor_blue

◦ lg_style_04_floor_orange

◦ lg_style_05_floor_blue

◦ lg_style_05_floor_orange

◦ Wall themes:

◦ lg_style_01_wall_green

◦ lg_style_01_wall_red
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◦ lg_style_02_wall_yellow
◦ lg_style_02_wall_blue
◦ lg_style_03_wall_orange
◦ lg_style_03_wall_gray
◦ lg_style_04_wall_green
◦ lg_style_04_wall_red
◦ lg_style_05_wall_red
◦ lg_style_05_wall_yellow

Action space. Similar to IMPALA (Espeholt et al., 2018), the agent can take eight actions which
are samples from the DeepMind Lab native actions: {Forward, Backward, Move Left, Move Right,
Look Left, Look Right, Forward + Look Left, Forward + Look Right}. Table 5 describes the detailed
mapping.

J EXPERIMENTS ON DOGS AND CATS DATABASE

Dataset. The original database is a set of 25K images of dogs and cats for training and 12,500
images for testing. Similar to Kim et al. (2019), we manually categorized the data according to
the color of the animal: bright and dark. Based on this, we construct biased datasets such that the
training set consists of bright dogs and dark cats while test and validation sets contain dark dogs
and bright cats. Specifically, training, validation, and test sets consist of 10,047, 1,000, and 5,738
images, respectively.9 We train ResNet-18 (He et al., 2016) using the following hyper-parameters:
initial learning rate is chosen from {0.05, 0.1} and we drop it by 0.1 at 50 epochs with total 100
epochs. We use Nesterov momentum 0.9 for SGD, mini-batch size is chosen from {32, 64}, and
weight decay is set to 0.0001. We report the training and test set accuracies with the hyperparam-
eters chosen by validation. Unlike Kim et al. (2019), we do not use ResNet-18 pre-trained with
ImageNet (Russakovsky et al., 2015) to avoid inductive bias from the pre-trained dataset.

K EXPERIMENTAL RESULTS ON SURREAL ROBOT MANIPULATION

We evaluate our method in the Block Lifting task using Surreal distributed RL framework (Fan
et al., 2018). In this task, the Sawyer robot gets a reward if it succeeds to lift a block, which
is randomly placed on a table. Following the experimental setups in (Fan et al., 2018), we take
the hybrid CNN-LSTM architecture (see Figure 15(a)) as the policy network and use a distributed
version of PPO (i.e., actors collect massive amount of trajectories and centralized learner updates
the model parameters using PPO) to train the agents.10 Agents take observation frames of 84 × 84
with proprioceptive features (e.g., robot joint positions and velocities) and output the mean and
log of the standard deviation for each action dimension. The actions are then from the Gaussian
distribution parameterized by the output. We train agents on a single environment and test on 5
unseen environments with different styles of table, floor, and block as shown in Figure 14. For
Surreal robot manipulation experiment, we train the vanilla PPO agent on 25 environments which
are generated by changing the styles of tables and boxes. Specifically, we use {blue, gray, orange,
white, purple} and {red, blue, green, yellow, cyan} for table and box, respectively.

9The code is available at https://github.com/feidfoe/learning-not-to-learn/tree/
master/dataset/dogs_and_cats

10We used a reference implementation with two actors in https://github.com/SurrealAI/
surreal.
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(a) Seen environment (b) Unseen environment (c) Unseen environment

(d) Unseen environment (e) Unseen environment (f) Unseen environment

Figure 14: Examples of seen and unseen environments in Surreal robot manipulation.
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(b) Regularization
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(c) Data augmentation

Figure 15: (a) An illustration of network architectures for the Surreal robotics control experiment,
and learning curves with (b) regularization and (c) data augmentation techniques. The solid line and
shaded regions represent the mean and standard deviation, respectively, across 3 runs.
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