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ABSTRACT

To analyze deep ReLU network, we adopt a student-teacher setting in which an
over-parameterized student network learns from the output of a fixed teacher net-
work of the same depth, with Stochastic Gradient Descent (SGD). Our contribu-
tions are two-fold. First, we prove that when the gradient is zero (or bounded
above by a small constant) at every data point in training, a situation called inter-
polation setting, there exists many-to-one alignment between student and teacher
nodes in the lowest layer under mild conditions. This suggests that generalization
in unseen dataset is achievable, even the same condition often leads to zero train-
ing error. Second, analysis of noisy recovery and training dynamics in 2-layer
network shows that strong teacher nodes (with large fan-out weights) are learned
first and subtle teacher nodes are left unlearned until late stage of training. As a re-
sult, it could take a long time to converge into these small-gradient critical points.
Our analysis shows that over-parameterization plays two roles: (1) it is a neces-
sary condition for alignment to happen at the critical points, and (2) in training
dynamics, it helps student nodes cover more teacher nodes with fewer iterations.
Both improve generalization. Experiments justify our finding.

1 INTRODUCTION

Deep Learning has achieved great success in the recent years (Silver et al., 2016, He et al., 2016
Devlin et al., 2018). Although networks with even one-hidden layer can fit any function (Hornik
et al} |1989), it remains an open question how such networks can generalize to new data. Different
from what traditional machine learning theory predicts, empirical evidence (Zhang et al.l [2017)
shows more parameters in neural network lead to better generalization. How over-parameterization
yields strong generalization is an important question for understanding how deep learning works.

In this paper, we analyze multi-layer ReLU networks by adopting teacher-student setting. The
fixed teacher network provides the output for the student to learn via SGD. The student is over-
parameterized (or over-realized): it has more nodes than the teacher. Therefore, there exists student
weights whose gradient at every data point is zero. Here, we want to study the inverse problem:

With small gradient at every training sample, can the student weights recover the teachers’?

If so, then the generalization performance can be guaranteed if the training converges to such critical
points. In this paper, we show that this so-called interpolation setting (Ma et al., 2017;|Liu & Belkin,
2018 [Bassily et al.,[2018) leads to alignment: under mild conditions, each teacher node is provably
aligned with at least one student node in the lowest layer. Interestingly, the proof condition naturally
involves over-parameterization: more over-parameterization increases the probability of alignment.

Although the interpolation condition gives nice properties, it might not be achievable via train-
ing (Ge et al., 2017; Livni et al.,2014)). For this, we further analyze the training dynamics and show
that most student nodes converge first towards strong teacher nodes with large fan-out weights in
magnitude. While this makes training robust to dataset noise and naturally explains implicit reg-
ularization, the same mechanism also leaves weak teacher nodes unexplained until very late stage
of training, yielding high generalization error with finite iterations. In this situation, we show that
over-parameterization plays another important role: once the strong teacher nodes have been cov-
ered, there are always spare student nodes ready to switch to weak teacher nodes quickly. As a
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result, it enables more teacher nodes to be covered with the same number of iterations, and hence
improves generalization after a finite number of training iterations.

One interesting discovery from the analysis is that, the alignment in the lowest layer happens even
when the top layer weights are random values with high probability. Since initialization gives ran-
dom values of the top layer, it suggests that backpropagation proceeds in a bottom-up manner: first
the lowest layer moves towards alignment, then second lowest receives good input signals and aligns,
etc. In this paper, we only provide with intuitions and leave the formal analysis in the future work.

We justify our findings with numerical experiments on random dataset and CIFAR10.

2 RELATED WORKS

SGD versus GD. Stochastic Gradient Descent (SGD) shows strong empirical performance than
Gradient Descent (GD) (Shallue et al., |2018) in training deep models. SGD is often treated as an
approximate, or a noisy version of GD (Bertsekas & Tsitsiklis, |2000; Hazan & Kale|2014;[Marceau-
Caron & Ollivier, 2017} |Goldt et al.l 2019; [Bottou, 2010). In contrast, many empirical evidences
show that SGD achieves better generalization than GD when training neural networks, which is
explained via implicit regularization (Zhang et al.l 2017} [Neyshabur et al., 2015)), by converging to
flat minima (Hochreiter & Schmidhuber, |1997; (Chaudhari et al.l [2017; [Wu et al., 2018) , robust to
saddle point (Jin et al. 2017; Daneshmand et al., 2018} |Ge et al.l|2015;|Du et al., | 2017) and perform
Bayesian inference (Welling & Teh, 2011} Mandt et al.l 2017; (Chaudhari & Soattol 2018).

Similar to this work, interpolation setting (Ma et al.,|2017; Liu & Belkin, |2018} Bassily et al., 2018)
assumes that gradient at each data point vanish at the critical point. While they mainly focus on
convergence property of convex objective, we directly relate this condition to specific structure of
deep ReLU networks.

Teacher-student/realizable setting. This setting is extensively used in recent works. Due to permu-
tation symmetry, some works start from Tensor decomposition followed by gradient descent (Zhong
et al.,[2017), others focus on local analysis (e.g., initialization close to the teacher weights or con-
strained in symmetric cases (Zhong et al.| 2017 Tian,2017; Du et al.,|2018))). A line of works (Saad
& Solla, [1996;[1995; |Goldt et al., [2019; [Freeman & Saad., |1997; [Mace & Coolen, |1998) studied the
dynamics from a statistical mechanics point of view, focusing on local analysis near to some critical
points. Usually GD of population/empirical loss of a 2-layer (or one-hidden layer) network is consid-
ered, and the input is often assumed to be from Gaussian distribution. Few papers work on teacher-
student setting for more than two layers. (Allen-Zhu et al.,|2019a) shows the recovery results for 2
and 3 layer networks, with modified SGD and batchsize 1 and heavy over-parameterization.

Local minima is Global. While in deep linear network, all local minima are global (Laurent &
Brecht, [2018; [Kawaguchil, 2016), situations are quite complicated with nonlinear activations. While
local minima is global when the network has invertible activation function and distinct training sam-
ples (Nguyen & Hein, [2017; Yun et al.l 2018)) or Leaky ReLU with linear separate input data (Lau-
rent & von Brecht, |2017), multiple works (Du et al.l 2018} (Ge et al.||2017; Safran & Shamir, [2017;
Yun et al.l 2019) show that in GD case with population or empirical loss, spurious local minima
can happen even in two-layered network. Many are specific to two-layer and hard to generalize to
multi-layer setting. In contrast, our work brings about a generic formulation for deep ReLU network
and gives recovery properties in the student-teacher setting.

Over-parameterization. Recent works (Jacot et al.,|2018} |Du et al., [2019; |Allen-Zhu et al., 2019b))
show the global convergence of GD for multi-layer networks, when over-parameterization leads to
kernel learning. (Li & Liang| [2018]) shows the convergence of in one-hidden layer ReLU network
using GD/SGD to solution with good generalization. The input data are assumed to be clustered
into classes. The intuition is that over-parameterization leads to “sparse sign changes” of ReLU
activations. Both lines of work assume network is heavily over-parameterized: the number of nodes
grows polynomially with the number of samples.

Combined with student-teacher setting, (Goldt et al., 2019) assumes Gaussian input and symmetric
parameterization to analyze local structure around critical points, (Tian et al.,[2019) gives conver-
gence results for 2-layer network when a subset of the student network is close to the teacher. These
cases assume mild over-parameterization but only achieve local results. Other works show global
convergence of over-parameterized network but with optimal transport (Chizat & Bach,2018)) which
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Figure 1: Problem Setup. (a) Student-teacher setting. The student network learns from the output of a fixed
teacher network via stochastic gradient descent (SGD). (b) Notations. All low cases are scalar, bolds are column
vectors and upper cases are matrices.

is only practical with low-dimensional input. Our work extends (Tian et al.,|2019) with much fewer
and weaker assumptions, provides critical point analysis and detailed analysis on training dynamics.

3 MATHEMATICAL FRAMEWORK

Using Teacher Network. The reason why we formulate the problem using teacher network rather
than a dataset is the following. (1) It leads to a nice and symmetric formulation for multi-layered
ReLU networks (Lemma E]) (2) A teacher network corresponds to a dataset of infinite size. This
separates the finite sample issues from induction bias in the dataset. This also separates issues due
to inductive bias from issues due to optimization. (3) A generalization bound for arbitrary function
class can be hard. With teacher network, we implicitly enforce an inductive bias corresponds to the
structure of teacher network, which could lead to better generalization bound. (4) If student weights
can be shown to converge to teacher ones, generalization naturally follows for the student.

Notation. Consider a student network and its associated teacher network (Fig. [[(a)). Denote the
input as x. We focus on multi-layered networks with o (+) as ReLU nonlinearity. We use the follow-
ing equality extensively: o(x) = I[x > 0]x, where I[-] is the indicator function. For node j, f;(x),
zj(x) and g;(x) are its activation, gating function and backpropagated gradient after the gating.

Both teacher and student networks have L layers. The input layer is layer O and the topmost layer
(layer that is closest to the output) is layer L. For layer [, let m; be the number of teacher node
while n; be the number of student node. The weights W; € R™~-1*™ refers to the weight matrix
that connects layer [ — 1 to layer [ on the student side. W; = [wy 1,wW;2,..., W, ,,] where each
w € R™-1 is the weight vector. Similarly we have teacher weight W;* € R"™-1*"_ Denote
W = {Wy,Ws, ..., W} as the collection of all trainable parameters.

Let fi(x) = [fi1(x),..., fin,(x)]T € R™ be the activation vector of layer [, D;(x) =
diag[z;,1(x), ..., 210, (x)] € R™*™ be the diagonal matrix of gating function (for ReLU it is
either 0 or 1), and g;(x) = [g1,1(X), ..., g1.n, (X)]T € R™ be the backpropated gradient vector. By
definition, the input layer has fo(x) = x € R™ and my = ng. Note that f;(x), g;(x) and D;(x) are
all dependent on W. For brevity, we often use f;(x) rather than f;(x; W).

All notations with superscript * are from the teacher, only dependent on the teacher and remains the
same throughout the training. D7} (x) = Dp(x) = Icxc since there is no ReLU gating. Note that
C is the dimension of output for both teacher and student. With the notation, gradient descent is:

Wi = Ex [fi1(x)g] ()] (1)
In SGD, the expectation Ey [-] is taken over a batch. In GD, it is over the entire dataset.

Bias term. With the same notation we can also include the bias term. In this case, W; €
ROu—1tD)xm gy = [W;b] € Ru-1+1 f; € R™T! (last column is all one), g; € R™*! and
D; € Rut1)x(m+1) (Jast diagonal element is always 1).

Objective. We assume that both the teacher and the student output a vector. We use the output of
teacher as the input of the student and the objective is:

min JOW) = 2 B [ () — £ (0] @)
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By the backpropagation rule, we know that for each sample z, the (negative) gradient g, (x) =
0J/0fr, = £} (x) — f(x). The gradient gets backpropagated until the first layer is reached.

Note that here, the gradient g, (x) sent to layer L is correlated with the activation of the correspond-
ing teacher layer f} (x) and other student nodes at the same layer. Intuitively, this means that the
gradient “pushes” the student node j to align with class j of the teacher. A natural question arises:

Are student nodes correlated with teacher nodes at the same layers after training? *)

One might wonder this is hard since the student’s intermediate layer receives no direct supervision
from the corresponding teacher layer, but relies only on backpropagated gradient. Surprisingly, the
following theorem shows that it is possible for every intermediate layer:

Lemma 1 (Recursive Gradient Rule). At layer [, the backpropagated g;(x) satisfies
g(x) = Di(x) [Ai(x)f} (x) — Bi(x)fi(x)], 3)
where the mixture coefficient Aj(x) = V,T(x)V,*(x) € R™*™ and B)(x) = VT(x)Vi(x) €
R™ X" The matrices Vi(x) € RE*™ and V;*(x) € REX"™ are defined in a top-down manner:
Vie1(x) = Vix) Di(x)WT, - Vi (%) = Vi (x) Dy (x) W) S
In particular, Vi,(x) = V(%) = Ioxc.

For convenience, we can write Vj(x) = [v;1(x),v;2(X),..., Vi, (x)], then we have each ele-
ment of A;, ay j;(x) = v[ ;(x)v] ;,(x) and element of By, B;,;;/(x) = v] ;(x)vy,j(x). Note that
Lemma [T] applies to arbitrarily deep ReLU networks and allows different number of nodes for the
teacher and student. In particular, student can be over-parameterized (or over-realized).

Let Ry = {x : p(x) > 0} be the infinite training set, where p(x) is the input data distribution. Let
R; = {fi(x) : x € Ry}, which is the image of the training set at the output of layer [, and also a
convex polytope. Then the mixture coefficient A;(x) and B;(x) have the following property:

Corollary 1 (Piecewise constant). Ro can be decomposed into a finite (but potentially exponential)
set of regions Ry_1 = {R}_,,R? |,...,R{ |} so that each R]_, is a convex polytope and A;(x)
and By (x) are constant within R} _, with respect to x.

4 CRITICAL POINT ANALYSIS

It seems hard to achieve the goal (*) since the student intermediate node doesn’t have direct super-
vision from the teacher intermediate node, and there exists many different ways to explain teacher’s
supervision. However, thanks to the property of ReLU node and subset sampling in SGD, at SGD
critical point, under mild condition, the teacher node aligns with at least one student node.

4.1 SGD CRITICAL POINTS LEADS TO INTERPOLATION SETTING

Definition 1 (SGD critical point). W is a SGD critical point if for any batch, W; = 0 for1 <1< L.
Theorem 1 (Interpolation). Denote D = {x;} as a dataset of N samples. If W is a critical point

for SGD, then either g;(x;; W) = 0 or f_1(x;; W) = 0.

Note that such critical points exist since student is over-parameterized. In this case, critical points
in SGD is much stronger than those in GD, where the gradient is always averaged at a fixed data
distribution. Note that if f;_; contains an all 1 activation (for bias), then f;_; # 0 always and

gi(x; W) = 0. For topmost layer, immediately we have g, (x;; W) = £ (x;) — f1.(x;) = 0, which
is global optimum with zero training loss. In the following, we want to check whether this condition
leads to generalization, i.e., whether the teacher’s weights are recovered/aligned by the student, i.e.,
whether for teacher j, there exists a student k at the same layer so that w;, = yw; for some v > 0.

4.2 ASSUMPTION OF TEACHER NETWORK

Obviously, an arbitrary teacher network won’t be reconstructed. A trivial example is that a teacher
network always output O since all the training samples lie in the inactive halfspace of its ReLU
nodes. Therefore, we need to impose condition on the teacher network.
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Figure 2: Convergence (2 dimension) for 2 teachers (solid line) and 6 students (dashed line). Legend shows
|vi|| for student node k. ||vi|| — O for nodes that are not aligned with teacher.

Let E; = {x: f;(x) > 0} be the activation region of node j. Note that the halfspace E; is an open
set. Let OF; = {x : f;(x) = 0} be the decision boundary of node j.

Definition 2 (Observer). Node k is an observer of node j if E;, N OE; # 0.

We impose the following condition for the teacher network.

Assumption 1 (Teacher Network). For each layer I, we require that (1) the teacher weights W] j
are not co-linear. and (2) the boundary ofwf’j is visible in the training set: 8El’ij NR_1 #0.

Note that the first requirement is trivial (we could just merge). The second requirement is reasonable
since two teacher nodes who behaves linearly in the training set are indistinguishable.

4.3 ALIGNMENT OF TEACHER WITH STUDENT, 2-LAYER CASE

We first start with 2-layer case, in which A;(x) and B;(x) are constant with respect to x, since
there is no ReLU gating at the top layer [ = 2. In this case, from the SGD critical point at | = 1,
g1(x) = Dy (x) [A:f] (x) — B1f1(x)] = 0, alignment between teacher and student can be achieved:

Theorem 2 (Student-teacher Alignment, 2-layers). With Assumption (I} at SGD critical point, if a
teacher node j is observed by a student node k and o; # 0, then there exists at least one student
node k' aligned with j.

The intuition is that if the input x takes sufficiently diverse values, ReLU activations o(w]x) can
be proven to be mutually linear independent. On the other hand, the gradient of each student node
k when active, is o[ f1(x) — b[fi(x) = 0, a linear combination of teacher and student nodes (note
0‘; and ,6'; are k-th rows of A; and Bj). Therefore, zero gradient means that the summation of
coefficients of co-linear ReLU nodes is zero. Since teachers are not co-linear, any teacher node is
co-linear with at least one student node. Alignment with multiple student nodes is also possible. If
there is no nonlinearity (e.g., deep linear models), alignment won’t happen since a linear subspace
has many representations.

Note that a necessary condition of a reconstructed teacher node is that its boundary is in the ac-
tive region of student, or is observed (Definition |Z[) This is intuitive since a teacher node which
behaves like a linear node is partly indistinguishable from a bias term. This also suggests that over-
parameterization (more student nodes) are important. More student nodes mean more observers,
and the existence argument in Theorem [] is more likely to happen and more teacher nodes can be
covered by student, yielding better generalization.

For student nodes that are not aligned with the teacher, if they are observed by other student nodes,
then following a similar logic, we have the following:

Theorem 3 (Unaligned Student Nodes are Prunable). With Assumption[I| at SGD critical point, if
an unaligned student k has C' independent observers (concatenating v yields a full rank matrix),
then Zk,eCo_linem(k) vir ||wir || = 0. If node k is not co-linear with any other student, then vy, = 0.

Corollary 2. With sufficient observers, the contribution of all unaligned student nodes is zero.

Theorem |§| and Corollary |2| open the way of network pruning (LeCun et al.l [1990; Hassibi et al.,
1993; [Hu et al., |2016). This is consistent with Theorem 5 in (Tian et al., [2019) which also shows
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the fan-out weights are zero up on convergence in 2-layer networks, if the initialization is close. In
contrast, Theorem [3|analyzes the critical point rather than the dynamics.

Note that a relate theorem (Theorem 6) in (Laurent & von Brecht, |2017) studies 2-layer network
with scalar output and linear separable input, and discusses characteristics of individual data point
contributing loss in a local minima of GD. Here no linear separable condition is imposed.

4.4 MULTI-LAYER CASE

Thanks to Lemmal[T|which holds for deep ReLU networks, we can use similar intuition to analyze the
behavior of the lowest layer (I = 1) in the multiple layer case. The difference here is that A; (x) and
B (x) are no longer constant over x. Fortunately, using Corollary[1} we know that A; (x) and B (x)
are piece-wise constant that separate the input region Ry into a finite (but potentially exponential)
set of constant regions Rg = {R}, R2,..., R{} plus a zero-measure set. This suggests that we
could check each region separately. If the boundary of a teacher j and a student £ lies in the region,
similar logic applies:

Theorem 4 (Student-teacher Alignment, Multiple Layers). With Assumption [} at SGD critical
points, for any teacher node j at |l = 1, if there exists a region R € R and a student observer k so
that OEF N Ey N R # 0 and ayj(R) # 0, then node j aligns with at least one student node k'.

The theorem suggests a few interesting consequences:

Bottom-up training. Note that even with random V;(x) (e.g., at initialization), Theorem E] still
holds with high probability (when cy; # 0) and teacher fi'(x) can still align with student f; (x).
This suggests a picture of bottom-up training in backpropagation: After the alignment of activations
at layer 1, we just treat layer 1 as the low-level features and the procedure repeats until the student
matches with the teacher at all layers. This is consistent with many previous works that empirically
show the network is learned in a bottom-up manner (L1 et al., 2018).

Note that the alignment may happen concurrently across layers: if the activations of layer 1 start
to align, then activations of layer 2, which depends on activations of layer 1, will also start to align
since there now exists a W5 that yields strong alignments, and so on. This creates a critical path
from important student nodes at the lowest layer all the way to the output, and this critical path
accelerates the convergence of that student node. We leave a formal analysis to the future work.

Deeper Student than Teacher. When student network is deeper than teacher, by adding identity
layers beyond the topmost layer on the teacher side, Theorem []still holds. This also suggests that
the lowest layer of the student would match the lowest layer of teachers.

4.5 SMALL GRADIENT CASE

We just analyze the ideal case in which we have infinite number of training samples (R is a region),
and infinite training time so that we could reach critical points in which g;(x) = 0 for every x € Ry.
A natural question arises. Are these conditions achievable in practice?

In practice, the gradient of SGD never reaches 0 but might fluctuate around (]|g1(x)||cc < €). In this
case, Theorem [5]shows that a rough recovery still follows. We now can see the ratio of recovery for
weights/biases separately, as a function of €. Note 6, is the angle of two weights w; and w ;.

Theorem 5 (Noisy Recovery). If Assumption|I|holds and any two teachers w73, W7, satisfy 0; >
b > 0 or |b}, —bi| > by > 0. Suppose ||g1(x, W)|lco < €foranyx € Ry with e < €, then for any

teacher j atl = 1, if there exists a region R € R and a student observer k so that 6E;-‘ NE,NR # (),
and ay;(R) # 0, then j is roughly aligned with a student k': sin 6, = O (ﬁ) and |b5 — by | =

o]

O (EIZ:T ) forany 6 > 0. The hidden constants depends on 4, €y and the size of region OENERNR.
J

Although the proof of Theorem|[5]assumes infinite number of data points, in the proof only a discrete

set of data points are important. Identifying these data points would lead to a formal generalization

bound. That is, if training with finite number of samples of a specific distribution, we would obtain

a certain generalization performance. We leave it to future work.
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5 ANALYSIS ON TRAINING DYNAMICS

From the previous analysis, we see at SGD critical points, under mild conditions, each teacher node
will be aligned with at least one student node. This would naturally yields low generalization error.

A natural question arise: is running SGD long enough sufficient to achieve these critical points?
Previous works (Ge et al., 2017; [Livni et al., [2014)) show that empirically SGD does not recover
the parameters of a teacher network up to permutation. There are several reasons. First, from
Theorem 3] there exist student nodes that are not aligned with the teacher, so a simple permutation
test on student weights might fail. Second, as suggested by Theorem [3] it can take a long time to
recover a teacher node k with small ||v} || (since ay; = v;.Tv;). In fact, if vj = O then it has no
contribution to the output and recovery never happens. This is particularly problematic if the output
dimension is 1 (scalar output), since a single small teacher weight v}, would block the recovery of
the entire teacher node k. Given a finite number of iterations, how much the student is aligned with
the teacher implicitly suggests the generalization performance.

In the following, we analyze the training dynamics of 2-layer network where V; and V}* are all
constant. Here oy, = V" Ty, B, = V[Tvi and 1y = V* ) — Vif; € R is the residue.

Wi = By [fi12[f To — £78,]] = Ex [fi—12: [V £ — Vifi]Tvi] = Ex [fi_1zkxTvi]  (5)
Definition 3. A teacher node j is strong (or weak), if ||v;|| is large (or small).

5.1 WEIGHT MAGNITUDE

From Eqn. [5| we know that for both ReLU and linear network (since fj(x) = 2z (x)w]f;_1(x)):

1d||we|? .
5% = wiwy = Ex [frr] vi] ©

When there is only a single output, r; is a scalar and Eqn. [6]is simply an inner product between the
residue and the activation of node k, over the batch. So if the node & has activation which aligns
well with the residual, the inner product is larger and ||wy|| grows faster.

5.2 ANGLES BETWEEN TEACHER AND STUDENT WEIGHTS

Note that Eqn. [|only tell that the weight norm would increase, but didn’t tell whether wy, converges
to any teacher node w. It could be the case that ||w|| goes up but doesn’t move towards the teacher.
To see that, let’s check the quantity:

Ex [fi121f]] = Ex [fi122f L] W) = Giw} )

where G,; = Ex [fl_lzkz;‘fltl] . Putting it in another way, we want to check the spectrum property
of the PSD matrix GJ;. Intuitively, the direction of Eyx [f;_12; f;] should lie between wy, and w7,
and the magnitude is large when wy, and w7 are close to each other. This means thatif r is dominated

by a teacher j (i.e., [|v}|| is large), then W would push w, towards w. This also shows that SGD
will first try fitting strong teacher nodes, then weak teacher nodes.

Theorem@conﬁrms this intuition if f;_; follows spherical symmetric distribution (e.g., N (0, I)).
Theorem 6. If f;_; follows spherical symmetric distribution, then Ey [fl_lzk f;] x

w [(m— O)w’ + sin 0wy |, where 6 is the angle between w and wy.

As aresult, forall § € [0, 7], Ex [fl,lzk f;‘] is always between w’ and wy, since ™ — 6 and sin 6 are
always non-negative. Without such symmetry, we assume the following holds:

Assumption 2. Ey [fi_1 2, f;] = ¥ (0;1)w; + ' (0j1) Wy, where (7)) = 0.

Note that critical point analysis is applicable to any batch size, including 1. On the other hand,
Assumption 2] holds when a moderately large batchsize leads to a decent estimation of the terms.

With this assumption, we can write the dynamics as W = ||w||rx, where the time-varying residue
r, of node k is defined as the following (v is a scalar related to ¢):
rp = Y (0w — Y Bkt () wrr — vwy, 8)
J k!
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5.3 SYMMETRIC BREAKING, WINNERS-TAKE-ALL AND FOCUS SHIFTING

We could show that for two nodes k # k', regardless of the form of r;, we have (note that w is the
length-normalized version of w):

llwe |
lIwi |

Theorem 7. For dynamics Wy, = ||wy||ri, we have £ In =Wrp, — Wl rp.
We consider a special (and symmetric) case: 1, =1 = w* — > x ax W with all ai > 0, where w*
is a joint contribution of all teacher nodes. In this case, we could show that when w]r, > w],ry/,

% (v‘v%r;C — v‘vz,rkr) < 0 and vice versa. So the system provides negative feedback until wy = Wy
and according to Eqn. [7} the ratio between ||wy|| and ||wy || remains constant, after initial transition.

We can also show that w, will align with w* and every student node goes to w*.

However, due to Theorem[6] the net effect w* can be different for different students and thus ry, are
different. This opens the door for complicated dynamic behavior of neural network training.

Symmetry breaking. As one example, if we add a very small delta to some node, say k£ = 1 so that
ri = r+ew*. Then to make %(v‘vlr;g —w/,ry) =0, we have W] r;, > W/ r) and thus according
to Theorem [7} ||wy||/||wg|| grows exponentially. This symmetric breaking behavior provides a
potential winners-take-all mechanism, since according to Theorem|[6] the coefficient of w* depends
critically on the initial angle between wj, and w*.

Strong teacher nodes are learned first. If ||v}|| is the largest among teacher nodes, then the joint
w* heavily biases towards teacher j. Following the analysis above, all student nodes move towards
teacher j. As a result, strong teacher learns first and is often covered by multiple co-linear students
(Fig.[] teacher-0).

Focus shifting to weak teacher nodes. The process above continues until residual along the direc-
tion of w quickly shrinks and residual corresponding to other teacher node (e.g., w7, for Vi)
becomes dominant. Since each r; is different, student node k& whose direction is closer to W;/
(j' # j) will shift their focus towards w7, as shown in the green (shift to teacher-2) and magenta
(shift to teacher-5) curves in Fig. 4]

Possible slow convergence to weak teacher nodes. While expected angle between two weights
from initialization is /2, shifting a student node wy, from chasing after a strong teacher node W
to a weaker one w, could yield a large initial angle (e.g., close to 7) between w;, and w ;. For
example, all student nodes have been attracted to the opposite direction of a weak teacher node. In
this case, the convergence can be arbitrarily slow. In fact, if there is only one teacher node and 6
is the angle between teacher and student, then from Eqn. [§| we arrive at 0 —1)(6) sin 6. Since
¥(0) sinf ~ (m — )2 around 6 = T, the time spent from § = 7 — € to some 0 is to ~ L — W_leo —
400 when e — 0. In this case, over-parameterization helps by having more student nodes that
are possibly ready for shifting towards weaker teachers, and thus accelerate convergence (Fig. [7).
Alternatively, we could reinitialize those student nodes (Prakash et al., 2019).

6 EXPERIMENTS

Setup. For two-layered network, we use vanilla SGD with learning rate 0.01 and batchsize 16 to
train the model. Each epoch contains 1k minibatches. For multi-layered network, we use 50-75-
100-125. The teacher network is constructed to meet Assumption|[I} at each layer, teacher filters are
distinct from each other and their bias is set so that ~ 50% of the input data activates the nodes. This
makes their boundary visible in the dataset. Experiments on CIFAR10 use 64-64-64-64 ConvNet.
The teacher network is pre-trained on CIFAR10 training set and was pruned in a structured manner to
keep strong teacher nodes. The student is over-parameterized based on teacher’s remaining channels.

Strong/weak teacher node. To check the convergence behavior, we set up a diverse strength of
teacher nodes. For teacher k, we make ||vy| ~ 1/kP, where p is a factor that control how strong the
energy decay is across different teacher nodes. p = 0 means all teacher nodes are symmetric.

6.1 THE ALIGNMENT AND FAN-OUT WEIGHTS

First we check whether Theorem [4 and Theorem [3] are correct in the 2-layer setting. Fig. ] shows
student nodes correlate with different teacher nodes over time. Fig. [3|shows for different degrees of
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Figure 3: Convergence of a 2-layered network with 10 teacher nodes and 1x/2x/5x/10x student nodes. For
a student node, we plot its max correlation among teacher as x coordinate and its fan-out weight norm as y
coordinate. We plot results from 32 random seed. Student nodes of different seeds are in different color. A
“useless” student node that has low correlations with teachers and low fan-out weight norm (TheoremE[)
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Figure 4: Convergence of student nodes (in different colors). p = 1. More students nodes converge to
teacher-0. In contrast, teacher—4 was not explained until later.

over-parameterization (1x, 2x and 5x), nodes that do not align with the teacher nodes (correlation
is low), the magnitude of fan-out weights is small; otherwise the nodes which aligns well with the
teacher have high fan-out weights.

Similar phenomenon happens in multi-layered setting (Fig. [3)). For each student node k, the x-axis
is the max correlation of a student among teacher node, and y-axis is Ey [Bxx (x)]-

6.2 THE EFFECT OF OVER-PARAMETERIZATION

We plot the average rate of a teacher node that is matched with at least one student node successfully
(i.e., correlation > 0.95). Fig.[6] shows that stronger teacher nodes are more likely to be matched,
while weaker ones may not be explained well. On the other hand, over-parameterized student can
explain more teacher nodes, while 1x parameterization gets stuck despite long training and it has
sufficient capacity to fit the teacher perfectly.

Note that from loss (in Appendix Fig. [IT), the difference is not large since weak teacher nodes do
not substantially affect final loss. However, for state-of-the-art, every teacher node can be important.

Besides the final matching rate, the convergence speed of student nodes (Fig. [7) towards different
teacher node is also very different. Many student nodes converge to a strong teacher node. Once the
strong teacher node was covered well, weaker teacher nodes are covered after many epochs.

In CIFARI10, the convergence behavior of student network is shown in Fig.[8] Over-parameterization
boosts the teacher-student alignments, measured by mean of maximal normalized correlation

Pmean = MeEAN ¢ teacher MAXj/ ¢ student T, ;Tfj/ at each layer, and improves the generalization.

7 CONCLUSION AND FUTURE WORK

In this paper, we use student-teacher setting to analyze how an (over-parameterized) deep ReLU
student network trained with SGD learns from the output of a teacher. When the magnitude of gra-
dient per sample is small (student weights are near the critical points), the teacher can be proven to
be covered by (possibly multiple) students and thus the teacher network is recovered in the lowest
layer. By analyzing training dynamics, we also show that strong teacher node with large ||v*|| is
reconstructed first, while weak teacher node is reconstructed slowly. This reveals one important rea-
son why the training takes long to reconstruct all teacher weights and why generalization improves
with more training. As the next step, we would like to extend our analysis to finite sample case, and
analyze the training dynamics in a more formal way. Verifying the insights from theoretical analysis
on a large dataset (e.g., ImageNet) is also the next step.
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8 APPENDIX

8.1 LEMMAI[

Proof. We prove by induction. When [ = L we know that g, (x) = f;(x) — f1(x), by setting
Vi(x) = Vi(x) = Icxc and the fact that Dy, (x) = Ioxc (no ReLU gating in the last layer), the
condition holds.

Now suppose for layer [, we have:

gi(x) = Di(x)[Ai(x)f](x) — B(x)fi(x)] 9
= Dix)V(x) [V"(x)f] (x) = Vi(x)fi(x)] (10)

Using
fi(x) = Di(x)Wfi_1(x) (11)
ff(x) = Di(x)W,Tf(x) (12)
gi-1(x) = Dia(x)Wigi(x) (13)

we have:
gi-1(x) = Dia(x)Wigi(x) (14)
= Di1(x) WDy (x) V" (x) V" ()f] (x) — Vi(x)fi (x)] (15)

VT, (%)

= DOV, () | V(0D GOW,T 64 (%) — Vi) Dy W i () | (16)

—_————— —————
Vit () Vi—i(x)
= D1 (x)VL (%) [V (07 (%) = Viea ()11 (x)] (17)
= Dia(x) [A-1 (0f (%) = Bioa(x)fi-1(x)] (18)
O
8.2 THEOREMII]
Proof. By definition of SGD critical point, we know that for any batch B;, Eqn. vanishes:
Wi = Ex [0 WL, ()| = 37 ailxis W (xi W) = 0 (19)

1€B;

Let U; = g(x;; W), (x4; ). Note that B; can be any subset of samples from the data distri-
bution. Therefore, for a dataset of size N, Eqn. [19|holds for all (Ill\%'[\) batches, but there are only N

data samples. With simple Gaussian elimination we know that for any i, # i2, U;; = U;, = U.
Plug that into Eqn. [I9 we know U = 0 and thus for any 4, U; = 0. Since U is an outer product, the
theorem follows. O

8.3 COROLLARYII]

Proof. The base case is that Vi,(x) = V}(x) = Icxc, which is constant (and thus piece-wise
constant) over the entire input space. If for layer I, V;(x) and V;*(x) are piece-wise constant, then
by Eqn. [ (rewrite it here):

Viei(x) = Vi) Di(x)WT, - Vi, (x) = V" (x) D ()W) (20)
since D;(x) and Dj (x) are piece-wise constant and W;" and W7 are constant, we know that for
layer I — 1, Vj_1(x) and V;* | (x) are piece-wise constant. Therefore, forall { = 1,... L, V;(x) and
V;*(x) are piece-wise constant.

Therefore, A;(x) and B;(x) are piece-wise constant with respect to input x. They separate the
region Ry into constant regions with boundary points in a zero-measured set. [
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Figure 9: Proof illustration for (a) Lemma (b) Lemma and (¢) Theorem

8.4 LEMMA[]

Lemma 2. Consider K ReLU activation functions f;(x) = o(wjx) forj = 1... K. If w; # 0
and no two weights are co-linear, then Zj, cjr fjr(x) = 0 forall x € R suggests that all ¢; = 0.

Proof. Suppose there exists some ¢; 7 0 so that ) _; ¢; f;(x) = 0 for all x. Pick a point xo € OE;
so that WJTXO = 0 but all WJT-,XO # 0 for j/ # j, which is possible due to the distinct weight
conditions. Consider an e-ball By, = {x : [|x — Xo|| < €}. We pick € so that sign(w},x) for
all j' # j remains the same within By, . (Fig. Eka)). Denote [j7] as the indices of activated ReLU
functions in By, . except j.

Then for all x € By, N Ej;, we have:
h(X) = ch/fjr(x) = CjW;-X + Z Cj/W}-,X =0 (21)
J’ J'elit]

Since By, is a d-dimensional object rather than a subspace, for x¢ and x¢ + €ej, € B(xq, €), we
have

h(xo + eey) — h(x0) = e(cjwjr + Z cjwjig) =0 (22)

J'elit]

where e, is axis-aligned unit vector (1 < k < d). This yields

Wi+ Y ey =04 (23)
j'elit]
Plug it back to Eqn. [21] yields
Cjbj + Z Cj/bj/ =0 (24)
J'elit]

where means that for the (augmented) d + 1 dimensional weight:

CjwWj + Z cywir = 0qy1 (25)
Jj'elit]
However, if we pick x’ = x¢ — EHV:?W € Bxy. N EL, then f;(x') = 0 but eyt [ (x) =

—row T~ — .
WX = ec; and thus

> e fi(x) =ec; #0 (26)
j/
which is a contradiction. ]
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8.5 LEMMA[3

Lemma 3 (Local ReLU Independence). Let R be an open set. Consider K ReLU nodes f;(x) =
o(wix), j=1,....,K. w; #0, w; #ywj for j # j" with any v > 0.

If there exists cy, . . ., Cx, C. SO that the following is true:

Z ¢ifi(x) +ewlIx=0, VxeR 27
J

and for node j, OE; N R # 0, then c¢; = 0.

Proof. We can apply the same logic as Lemma[2]to the region R (Fig.[9(b)). For any node j, since
its boundary OF; is in R, we can find a similar x, so that xo € 0E; N R and x¢ ¢ OE for any
j' # j. We construct By, .. Since R is an open set, we can always find ¢ > 0 so that By, . C R
and no other boundary is in this e-ball. Following similar logic of Lemma c; = 0. O

8.6 LEMMA[]
Lemma 4 (Relation between Hyperplanes). Let w; and w: two distinct hyperplanes with ||W ;|| =

IW;|| = 1. Denote 6;; as the angle between the two vectors w; and w.. Then there exists
Uy L Wj and wi,Gj = sin 6.

Proof. Note that the projection of W onto W is:

) 1

u; = Pz wj 28

J sin 9]']'/ wi (28)

It is easy to verify that [[@;[| = 1 and w}, G = sin 6. O

8.7 LEMMA[J
Lemma 5 (Evidence of Data points on Misalignment). Let R C R? be an open set. Consider K
ReLU nodes [;(x) = o(wjx), j = 1,..., K. |W;| = 1, w; are not co-linear. Then for a node j

with JE; N R # 0, and € < €, either of the conditions holds:

(1) There exists node j' # j so that sin0;; < MKe'=%/|c;| and |bjr — b;| < Mae'=2°/|c;.

(2) There exists x; € OE; N R so that for any j' # j, w},xj\ > 5€/|c;l.

where 0;;/ is the angle between w; and W, 0 > 0, r is the radius of a d — 1 dimensional ball
S5
contained in OE; N R, M = 12@ %, My = maxxcop;nr ||x|| and My = 2MoM K €} + 5¢2°.

Proof. Define q; = 5¢/|c;|. For each j' # j, define I = {x : [w],x| < ¢;, x € OF;}. We prove
by contradiction. Suppose for any j’' # 7, sin6;;; > KMe =% /|c;| or [bj — bj| > Mael =22 /|c;|.
Otherwise the theorem already holds.

Case 1. When sin;;; > KMe'~°/|c;| holds.

From Lemma we know that for any x € O, if wj,x = —g;, with a;r < 2qjlcj|/MKe' =% =
10¢° /M K, we have x' = x + a;/uj € OF; and wix' = +g;.

Consider a d — 1-dimensional sphere B C €; and its intersection of I, N B for j' # j. Suppose
the sphere has radius 7. For each I;» N B, its d — 1-dimensional volume is upper bounded by:

10
V(I;; NB) <a;iVy_s(r) <€ e Va2 (r) (29)
where V_5(r) is the d — 2-dimensional volume of a sphere of radius r. Intuitively, the intersection
between WJT,X = —q; and B is at most a d — 2-dimensional sphere of radius r, and the “height” is

at most a;.
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Figure 10: (a) Lemmal5] (b) Lemmal6}

Case 2. When sin Hjj/ < KM6175/|C]'| but ‘bj/ — bj| > M261725/|Cj| holds.

In this case, we want to show that for any x € Q;, [w],x| > ¢; and thus [;; N B = (. If this is not
the case, then there exists x € {2; so that |WJT-/X| < g;. Then since x € OF};, we have:

wx| = [(wy — w,)Tx| = [(W; — W,)T&+ (8 — b,)] < g, (30)
Therefore, from Cauchy inequality and triangle inequality, we have:
Wy = willlI%I] = (W = w;)TX| > [ = bj| = [w]x] (31)
From the condition, we have [|W; — W; || = 2sin 2 < 2sin6,;, < 2K Me'~% /|¢;|. Then
2MoME€ ™ /|ej| = [(Wyr — Wj)TR| = |bjr — bj| — g5 > Mae' " /|ej| = 5e/le;|  (32)

which is equivalent to:

2MoMKe® > My — 5¢* (33)
which means that
My < 2MoM K€ + 5¢* < 2MoM K€ 4 5¢3° (34)
for € < €. This is a contradiction. Therefore, I, N B = () and thus V' (I;; N B) = 0.
Volume argument. Therefore, from the definition of M, we have V(B) = Vy_1(r) >
7\ 2 Va_a(r) = 19€dVa_o(r), then for € < ¢, we have:
10
V(B) = Meng_g(r) > >  V{IynB) (35)

j'#3,j" in case 1
This means that there exists x; € B C Q; so that x; ¢ I;; N B for any j' # j and j’ in case 1. That
is,
IWJT/X]'| > g (36)
On the other hand, for j/ in case 2, the above condition holds for entire €24, and thus hold for the
chosen x;. O

8.8 LEMMA
Lemma 6 (Local ReLU Independence, Noisy case). Let R be an open set. Consider K ReLU nodes

fi(x) =o(wix), j =1,....K. |W;| = 1, w; are not co-linear. If there exists c1, ..., c, c. and
€ < €q so that the following is true:

chfj(x) +ewlx| <€, VXER (37)

J
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and for a node j, OE; N R % . Then there exists node j' # j so that sinf;;; < MKe'~°/|c;| and
|bjr — b;| < M2€'=20/|c;|, where 1,8, M, My are defined in Lemmabut with v’ =1 — be/|c;|.

Proof. Let q; = 5¢/|c;| and Q; = {x : x € OE; N R, B(x,q;) C R}. If situation (1) in Lemmal3]
happens then the theorem holds. Otherwise, applying Lemmawith R ={x:x€R, B(x,q;) C
R} and there exists x; € {2; so that

(wix;| > q; = 5e/|c;] (38)

Let two points x;t = x; £ ¢;w; € R. In the following we show that the three points x; and

xj[ are on the same side of OF;/ for any j° # j. This can be achieved by checking whether

(W]T-,xj)(w;,xji) >0 (Fig.:

(Wl (wlxr) = (wlx) [w]T, (xj & q;W;) (39)
= (Wlx))? & q;(W]x) )W) W, (40)
= Iwix (W] £ ;W) w;) @1

Since |w]T., w;| < 1,itis clear that (WJT, x;) (W], xjt) > 0. Therefore the three points x; and xji are

J
on the same side of 9E;: for any j' # j.
Let h(x) = 3_; ¢ fj(x) + c.wIx, then |h(x)| < e for x € R. Since x;“ +x; = 2x;, we know that
all terms related to w. and w;» with j # j will cancel out (they are in the same side of the boundary
OF;:) and thus:
de > [h(x]) + h(x}) = 2h(x;)| = |cjq;w]w;| = |¢;lq; = 5e (42)

which is a contradiction. O

8.9 THEOREM[Z]

Proof. In this situation, because Dy(x) = Dj(x) = I, according to Eqn. 4} Vi(x) = W] and
Vi¥(x) = W, are independent of input x. Therefore, both A; and B; are independent of input x.

From Assumption |1} since p(x) > 0 in Ry, from Theorem. 1| we know that the SGD critical points
gives g1(x) = D1(x) [A:1ff(x) — B1f1(x)] = 0. Picking node k, the following holds for every
node k and every x € Ry N Ej:

ajf*(x) — Bif(x) = 0 (43)
Here o is the k-th row of A1, Ay = [a, ..., o, |7 and similarly for 3]. Note here layer index
I = 1 is omitted for brevity.

For teacher j, suppose it is observed by student k, i.e., an N E}, # (0. Given all teacher and student
nodes, note that co-linearity is a equivalent relation, we could partition these nodes into disjoint
groups. Suppose node j is in group s. In Eqn. 3] if we combine all coefficients in group s together
into one term c,w (with [[w7 || = 1), we have:

co=arg— > |lwlB (44)
k’ Eco-linear(j)

“At most” because from Assumption [1] all teacher weights are not co-linear. Note that co-linear(j)
might be an empty set.

By Assumption OFE7; N Ry # () and by observation property, LY N Ey # (), we know that for
R=RyNEy, 0E; N R # (. Applying Lemma we know that ¢, = 0. Since ay; # 0, we know
co-linear(j) # () and there exists at least one student k' that is aligned with the teacher j. O

8.10 THEOREM[3]
Proof.: We basically apply the same logic as in Theorem [2]  Consider the colinear group

co-linear(k). If for all ¥’ € co-linear(k), Buxr = ||[vi||*> = 0, then vi» = 0 and the proof is
complete.

18
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Otherwise, if there exists some student k so that v # 0. By the condition, it is observed by some
student node k,, then with the same logic we will have

> Browlwel =0 (45)
k'’ €co-linear(k)
which is

vl > willwi] =0 (46)

o

k'’ €co-linear(k)

Since k is observed by C students k., k2 k7, then we have:

orMNosy Vg

vl > willwk] =0 (47)

k'’ €co-linear(k)

By the condition, all the C' vectors sz € R® are linear independent, then we know that

> velwell=0 (48)

k’ €co-linear(k)

8.11 COROLLARY

Proof. We can write the contribution of all student nodes which are not aligned with any teacher

nodes as follows:
oY vilwillo(wlTx) (49)

Z Z Vi fr(x)

5 ke&co-linear(s) s ke&co-linear(s)
T
= Za(w; x) Z Vi |[wil| (50)
s k€&co-linear(s)

where w’, is the unit vector that represents the common direction of the co-linear group s. From
Theorem , for group s that is not aligned with any teacher, -, c . jincar(s) V&I|Wk|| = 0 and thus
the net contribution is zero. O

8.12 THEOREM[4]

Proof. In multi-layer case, A;(x) and B;(x) are no longer constant over input x. Fortunately, thanks
to the recursive definition (Eqn. 4)) which only contains input-independent terms (weights) and gating
function, A;(x) and B;(x) are piece-wise constant function over the input Ry.

Note that Ry can be partitioned into R = {R}, R2, ..., R{} and a zero-measure set. Each of them
is constant region for A;(x) and B;(x). Since R} is an intersection of finite open half-planes (from
k’s parent nodes), R} is still an open set.

From the condition, there exists open set R € R and a student observer node k so that 8E;-‘ NELN
R # 0 ((Fig. Ekc)). Let Hp and similarly HF, be the student and teacher nodes whose boundary
intersects with R. Therefore j € Hp. For other teacher/student nodes, they are linear functions
within R and thus can be combined together into wTx. For all weights in Hg, HF, and w., applying
Lemma on RN Ej, we know that the SGD critical point o}, . f}(x) — 8% .f1(x) = 0 leads to
alignment between Hg and HF,. Let group s be the one that contains all weights that are co-linear to
teacher node j (note that no other teacher nodes are involved), and c; its coefficient. Since j € H7,
cs = 0. Since ay;(R) # 0, there exists at least one student node £’ that is co-linear to teacher node
7

O
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8.13 THEOREM[3]

Proof. We follow the logic of Theorem[d] Instead of applying Lemma 3] for gradient that is not zero
but bounded within €, we pick the student observer k£ and we have for Fx N R:

o " (x) — Bif(x)| < e, (51)

we use Lemma |§I and know that there exists a node k’ # j so that sinf; = O (¢!79/|¢;|) and

b — b5| = O (e!7%°/|c;]) for any § > 0. Under the observation of student k, the teacher j
has coefficient c¢j = ag;. Since all teacher weights are distant to each other with positive constant
by > 0 and 6y > 0, with sufficiently small ¢ and € < ¢, this node &’ has to be a student node and
the bound follows. O

8.14 THEOREM

Proof. From the expression we can see that it is positive homogeneous with respect to ||w7|| and
[wrl. So we can assume ||[w7 || = ||wy | = 1. Without loss of generality, we set up the coordinate
system so that w; = [1,0]T and wy, = [cos ¢, sin 0]T. Then

Ex [fi12nf;] = Bx [foazzfl,]w) = > i fl w; (52
£, W20, £ wi>0
oo 2 cos '
— / 'r2p(r)/ { o }cos@'p(9/|r)d9’+e (53)
0 s | S0

where e is the term reflecting the asymmetry of the data distribution p(f;_;) with respect to the plane
spanned by the vectors wy, and w.

If the data distribution p(f;_1) is scale invariant (rescaling the data point won’t change the angular
distribution), then p(#’|r) = p(6’) and we only need to check the angular integral:

3 L0
1(6) — / [ costl ] cos 6'p(6')d6’ (54)
—740
Note that cos? § = £ (1 + cos 26) and sin 6 cos § = 5 sin 26, so we have:
a6 — ([0 porae)w+ [T ]2 ] e 55
0) = —1+9p( ) W ey | sin20’ p(8") (55)
B 3 N N 1/27r cos 0" 97// T %
= (/ngG p(0')do ) w; + 2 s sing” | P D) 5 de (56)
11
where 0" = 20" 4+ 7 and
L) = / T p0)ae (58)
—3+40

1!
" _ )d@” (59)

2T cos @
Lo = sing” | P
0

26
o) - [

0

/
—p <9 — % — ;T)] sin@’d@'} Wi (60)
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where wj is the unit vector that is perpendicular to wy, but still in the plane spanned by wy, and
w;. Note I is the fixed integral of unit vectors weighted by angular distribution of input data on
activated half-plane £ of teacher node j.

If p(f;_1) is rotational symmetric, then € = 0, p(#’) = 5=, then we can compute these terms
analytically: I = 0, I (0) = i(w —0)and I(0) = %sm 9wk O
8.15 THEOREM[]]
Proof. Note that we have:
d d 2W Wk 1
et —_ 2 _ k _ Ty, — wi 61
dt”WkH dr ” H 2||Wk|| ||Wk||Wka Wi Tk (61
Therefore, we have
d
T In ||wi| = W]ry (62)
e Q ( Iwell ) _ d
Wik _ _
at (1“ ||wk,||) = el = Inf[wie|}) = wlre = wire (63)
Note that we have:
d _ d [ wyg wir - 1
—wp=— | — | =1, — =(I- Nry =P 64
e G R A

Let hy, = v‘v;rk. We assume all hy, > 0 (positive correlation), then we have:

d
he = = ] PL vy + Wliy = [[re])2 — B2 + Wl (65)

Ifry =r=w"—), aywy, then we have:

d
ahk = ||I'||2 — hi — Shk (66)

where S = (>, ax||wg||) > 0is independent of k. So
d

a& (hk — hk/) = (hi/ — h%) + S(hk/ — hk) = (hk/ — hk)(hk/ + hy + S) (67)
if hy — hyy > 0, then & (hk hyr) < 0 and vice versa. This means that Eqn. is zero when the
system enters the stable region. On the other hand, if ||rg||?> = ||rx||* + € (e.g., ri has stronger
teacher component), then we have:

d
1 (hk - hk/) = (hk’ - hk)(hk/ + hg + S) + € (68)
which is only zero when hj, > hy. This yields exponential growth of ||wy,|| compared to ||wy/||. O

8.16 ADDITIONAL FIGURES
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Figure 11: Evaluation loss convergence curve.
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