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ABSTRACT

We propose to undertake the problem of representation learning for time-series
by considering a Group Transform approach. This framework allows us to, first,
generalize classical time-frequency transformations such as the Wavelet Transform,
and second, to enable the learnability of the representation. While the creation of
the Wavelet Transform filter-bank relies on the sampling of the affine group in order
to transform the mother filter, our approach allows for non-linear transformations
of the mother filter by introducing the group of strictly increasing and continuous
functions. The transformations induced by such a group enable us to span a larger
class of signal representations. The sampling of this group can be optimized
with respect to a specific loss and function and thus cast into a Deep Learning
architecture. The experiments on diverse time-series datasets demonstrate the
expressivity of this framework which competes with state-of-the-art performances.

1 INTRODUCTION

The selection of the time-frequency representation for analyzing, classifying, and predicting
time-series has long been studied (Coifman & Wickerhauser, 1992; Mallat & Zhang, 1993; Gribonval
& Bacry, 2003). To this day, the front-end processing of time-series remains a keystone toward the
improvement of a wealth of applications such as health-care (Saritha et al., 2008; Cosentino et al.,
2016)), environmental sound (Balestriero et al., 2018; Lelandais & Glotin, 2008), and seismic data
analysis (Seydoux et al., 2016; Liu & Fomel, 2013). The common denominator of the recorded
signals in these fields is their undulatory behavior. While these signals share this common behavior,
two significant factors imply the need of learning the representation: 1) time-series are intrinsically
different because of their physical nature, 2) the machine learning task can be different even within
the same type of data. Therefore, the representation should be induced by both the signal and the task
at hand.

An all too common approach to performing inference on time-series consists of building a
Deep Neural Network (DNN) that operates on a spectral decomposition of the time-series such
as Wavelet Transform (WT) or Mel Frequency Spectral Coefficients (MFSC). The selection of
the judicious transform is either performed by an expert in the signal at hand, or by considering
the aforecited selection methods and their derivatives. However, an inherent drawback is that the
selection of the time-frequency transform is often achieved with criteria that do not align with
the task. For instance, a selection based on the sparsity of the representation while the task is
the classification of the signals. Besides, these selection methods and transformations require
substantial cross-validations of a large number of hyperparameters such as mother filter fam-
ily, number of octaves, and number of wavelets per octave, size of the window (Cosentino et al., 2017).

To alleviate these drawbacks, we present a Learnable Group Transform (LGT) that can be
learned jointly with the inference optimization problem and the data at hand. Our methodology is
developed through the lens of harmonic analysis, which generalizes the Fourier Transform using
group theory. We will study the learnability of a group transform. Well-known group transforms
are the Short-Time Fourier Transform (STFT) and the Continuous Wavelet Transform (CWT). The
theoretical building blocks of time-frequency analysis via group transforms are well developed in
Coorbit Theory Feichtinger & Gröchenig (1989) and Generalized Coherent States Grossmann et al.
(1985; 1986). In order to build a group transform, one requires to select two elements; a mother filter
and a group (Section 2).
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The learnability of a mother filter has been already developed in Ravanelli & Bengio (2018);
Balestriero et al. (2018); Cakir et al. (2016); Zeghidour et al. (2018). Recently, Khan & Yener
(2018) investigated the learnability of the affine transformations, that is, the sampling of dilation
parameter of the affine group inducing the CWT. This filter-bank is then used to build a group
transform of the signal. In this work, we propose to extend the learnability of the affine transform
into strictly increasing and continuous functions enabling non-linear transformations of the mother
filter (Section 3).

This generalization allows for greater flexibility in the learnable spectral decomposition. This
flexibility improves the linearization capability of the representation as it eases the learning of a
spectral decomposition that is able to discard intricate patterns in the time-series that are nuisances.
Also, it implies that for fixed network topology, replacing the learnable affine group with the
continuous group leads to a larger class of spannable functions which improves the approximation
property of the DNN at hand (Winkler & Le, 2017; Balestriero & Baraniuk, 2018). In order to show
the generality of our approach, we apply our algorithm on two diverse time-series classification
problems (Section 4).

2 BACKGROUND AND NOTATIONS

We first highlight the properties of certain group transforms by expressing their time-frequency tiling.
Then we develop the theoretical tools necessary to build a group transform and illustrate it via the
wavelet transform.

2.1 TIME-FREQUENCY TILING

Figure 1: Time-Frequency Tilings at a given time τ : (left)
Short-Time Fourier Transform, i.e., constant bandwidth,
(middle) Wavelet Transform, i.e., proportional bandwidth,
(right) Learnable Group Transform, i.e, adaptive bandwidth,
the ”tiling” is induced by the learned group underlying the
filter-bank decomposition.

Let’s assume that a filter ψ, has nar-
row localization in time denoted by
∆t and a narrow localization in fre-
quency denoted by ∆ω, then, in the
time-frequency plane, these spreads
respectively define the width and the
height of a rectangular tile, Figure (1)
(Mallat, 1999). The area of these tiles,
defined by ∆t∆ω, is lower bounded
from the Heisenberg uncertainty prin-
ciple. In other words, the spread of
a filter and its Fourier transform are
inversely proportional. Following this
principle, we can observe that in the
case of STFT (resp. WT with a Gabor
wavelet), at a given time τ , the signal
is transformed by a window of con-
stant bandwidth (resp. proportional bandwidth) modulated by complex exponential resulting in
a uniform tiling (resp. proportional) on the frequency axis, Figure (1). In the case of chirp-like
filter, as proposed in Baraniuk & Jones (1996), each tile is a sheared rectangular, more generally, an
affinely transformed rectangular. In this case, as well, the lower bound area of the sheared rectangular
is constrained by the uncertainty principle. As such, the understanding of the benefits of various
time-frequency decompositions can be achieved by analyzing how they tile the time-frequency plane.
For instance, in the case of WT, the precision in frequency degrades as the frequency increases while
its precision in time increases. In the case of STFT, the uniform tiling implies that the precision is
constant along the frequency axis. In our propose framework, the LGT allows for an adaptive tiling
as illustrated in Figure (1). In the next section we show how the group underlying a group transform
induces such a time-frequency tiling.

2.2 GROUP AND REPRESENTATION

For further details on the group theoretical aspects described in this section, the reader should refer to
Vilenkin (1978).
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Definition 1. A group is a set G with a multiplicative operation � that respects enclosure, identity
element, inverse element, and associativity.

The representation of the group determines its action on a function space and bridges the gap between
group theory and linear algebra, allowing to compute the transformation of a function following the
rules induced by the specific group at hand. The representation of a group can be thought as a far-
reaching generalization of the exponential function property, exp(x+ y) = exp(x) exp(y),∀x, y ∈
R (Baraniuk, 1993). In fact, it is defined as,

Definition 2. A linear continuous representation ρ of a group G on the linear space H is defined as

ρ : G→ GL(H), (1)

where GL(H) is the the group of linear map in H such that ∀g, g′ ∈ G

ρ(g � g′) = ρ(g)ρ(g′). (2)

It is in fact a homomorphism from the group G to the group of linear continuous map in H. For
instance, let H be a vector space such as R3, the representation of the group is induced by 3 × 3
matrices. In this case, the operation on the right of (2) is a matrix multiplication, where each matrix
depends on the group elements g and g′. This concept extends to linear operators acting on functional
spaces.

This structure-preserving map defines the action of a group on elements of function spaces. Group
transforms such as STFT and CWT can be expressed in such a way by selecting a mother filter space
and a group. The representation of the group in the mother filter space provides an operator that takes
as input an element of the group and acts on the filter to transform it. A filter-bank can thus be created
by iterating this process with different group elements. Therefore, the selected group carries the
characteristics of the filter-bank and consequently, the group transform and its time-frequency tiling.

2.3 A GROUP TRANSFORM: THE WAVELET TRANSFORM

As an introductory example, we consider the creation of a wavelet filter-bank utilizing transformation
group. Let’s denote by Gaff the affine group, the so called ”ax + b” group, where the elements
(a, b) ∈ R?+×R, where R?+ = (0,+∞), where the multiplicative operation of the group � is defined
by

(a, b)� (a′, b′) = (aa′, b+ ab′) (3)

Let’s define by ρaff the representation of the affine group in L2(R), i.e., ρaff : Gaff → GL(L2(R)),
such that ρaff is a homomorphism as per Definition 2. Its action on square integrable function ψ is
defined as

[ρaff(g)ψ] (t) =
1√
a
ψ(
t− b
a

), t ∈ R, (4)

where (a, b) are respectively the dilation and translation parameters. The wavelet filter-bank is built
by transforming a mother filter, ψ by the representation ρaff for specific elements of the group. A
visualization of this approach for a Morlet wavelet filter can be seen in Figure (3). The wavelet
transform of a signal si ∈ L2(R) is achieved by

Wψ(g(a,b), si) =
〈
ρaff(g(a,b))ψ, si

〉
,∀g(a,b) ∈ Gaff, (5)

= (ρaff(g(a,0))ψ ? si),∀g(a,0) ∈ Gaff, (6)

where 〈., .〉 denotes the inner product, ? the convolution, and ρaff(g(a,b))ψ the action of the operator
ρaff, evaluated at the group element g(a,b), on the mother filter ψ as per (4). In practice, the filter-bank
is generated by sampling a few elements of the group. For instance, in the case of the dyadic wavelet
transform, the dilation parameters follow a geometric progression of common ratio equals to 2. In
general, the translation parameter is sampled according to the scaling one (Daubechies, 1992). Notice
that in the convolution expression (6), the translation parameter b = 0, in fact the convolution operator
? acts as the translation one. In the case where the translation parameter depends on the scaling one,
a specific stride is used to perform the discrete convolution.
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Note that the STFT can be constructed similarly utilizing the Weyl-Heisenberg group (Feichtinger
et al., 2009), whose representation on L2(R) consists of frequency modulations and translations.
More intricated group representations can be built as in Torrésani (1991) where the combination of
the affine group and Weyl-Heisenberg group is considered.

3 LEARNABLE GROUP TRANSFORM

We now develop the generalization of the affine group and its representation on L2(R). Its application
on signals and learnability is depicted in Figure (2).

Figure 2: Learnable Group Transform: The first column of the left block is the sampling of the
group Ginc as in Section (3.3) which consists of generating strictly increasing continuous functions
ρinc(g(ak,bk)) which stands for the representation of the strictly increasing and continuous group for
the elements of the group g(ak,bk), ∀k ∈ {1, . . . ,K}, where K denotes the number of filters in the
filter-bank. Each generated operators ρinc(g(ak,bk)) are applied (curved arrow) to the mother filter
denoted by ψ (presently a Morlet wavelet), where the imaginary part is shown in red and the real part
in blue. This transformation leads to the filter-bank, ρinc(g(ak,bk)))ψ where g(ak,bk) ∈ Ginc. Then,
the convolution between this generated filter-bank and the signal leads to the group transform, where
the double headed arrows denote the data flow. Each row of the group transform corresponds to the
convolution of the signal with each generated filter. The strictly increasing and continuous piece-wise
linear functions can be learned efficiently by back-propagating the error induced by the generated
group transform.

3.1 THE GROUP OF INCREASING AND CONTINUOUS FUNCTIONS

In order to generalize the classical affine group, we propose the group of strictly increasing and
continuous functions. We define its multiplicative operation to be the function composition operation
and denote this group by Ginc = (Cinc(R),�), where

Cinc(R) = {g ∈ C(R)|g is strictly increasing} , (7)

and

∀g′, g ∈ Cinc(R), g′ � g = g′(g(t)),∀t ∈ R, (8)

where C(R) defines the space of continuous functions defined on R. The identity element of this
group is the identity function on R, and the inverse element of g is g−1 the inverse of the function g.
As this group allows non-linear transformations of the mother filter, the filter-bank derived based on
this group has a higher adaptation capability for the pattern of interest in the time-series.
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3.2 REPRESENTATION OF THE GROUP

In this work, we are interested in the action of this group on a prototype function. As discussed
earlier, the group transform is derived from the representation of the group on the mother filter space.
In this section, we present the representation of group Ginc on square-integrable functions. The
transformation of square-integrable prototype functions based on this group allows us to span a wide
range of group transforms as illustrated in Figure (1) and to generalize the wavelet transform. Let’s
define ρinc(g) : Ginc → GL(L2(R)) by

[ρinc(g)ψ](t) = ψ
(
g(t)

)
, ∀ψ ∈ L2(R),∀g ∈ Ginc, (9)

where ψ denotes the mother filter.

Proposition 1. ρinc is a group representation of Ginc on L2(R).

The proof is given in Appendix D.1.

We can see that the increasing and continuous group representation operator ρinc induces a mapping
which depends on the group element g ∈ Ginc. For instance, if g = e , i.e., the identity element of the
group, then we have ρinc(e)ψ = ψ, it is in fact the identity operator in the space of the mother filter.
Given a mother filter ψ ∈ L2(R), ρinc(g)ψ, ∀g ∈ Ginc is a transformation of the mother filter with
respect to the group element g belonging to the strictly increasing and continuous group which can
be visualized in Figure (3). This representation implies a transformation of the mother filter through
a time transformation. Note that in signal processing, such a time transformation is called warping
(Goldenstein & Gomes, 1999; Kerkyacharian et al., 2004).

Figure 3: Transformation of a Morlet Wavelet: For all the filters, the real part is shown in blue and
the imaginary in red. (left) Morlet wavelet mother filter. (middle) Transformation of the mother filter
with respect to the affine group: the parameters of the group are 0 < a < 1, i.e., contraction, and
b = 0, i.e., no translation. (right) Increasing and continuous group transformation of the mother filter
for some randomly generated function g ∈ Ginc leading to chirp-like transform.

3.3 SAMPLING THE GROUP

Sampling the group Ginc can be achieved by a parametrization of strictly increasing and continuous
functions. In the present case, we propose to build a piece-wise affine mapping constrained such that
it belongs to the class of strictly increasing and continuous functions. This constrained piece-wise
affine mapping is defined as

g(a,b)(t) =

n∑
l=1

(alt+ bl)1Il(t), ∀t ∈ R, (10)

s.t.: al > 0, ∀l ∈ {1, . . . , n}, (11)
bl+1 = (al − al+1)tl+1 + bl, ∀l ∈ {1, . . . , n− 1}, (12)

where a = (a1, . . . , an), b = (b1, . . . , bn), 1Il is the indicator function of the intervals Il =
[tl, tl+1),∀l ∈ {2, . . . , n− 1} and I1 = (−∞, t1), In = [tn,+∞), and al and bl denote respectively
the slope and offset of each piece of the function and n is the number of pieces. As such, for each
(a,b) satisfying the constraints (11) and (12) the function g(a,b) is a sample from the group Ginc.
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3.4 LEARNING THE CONTINUOUS PIECE-WISE AFFINE INCREASING MAPS

The goal of learning the group transform leads to an optimization problem where the objective is to
find samples of the group that will produce the representation that minimizes a specific loss function,
thus depending on the signals and the task.

Given a set of signals {si ∈ L2(R)}Ni=1 and given a task specific loss function L, we aim at solving
the following optimization problem

min
(a1,b1)∈Ω1,...,(aK ,bK)∈ΩK

N∑
i=1

L
(
F (Wψ(g, si))

)
, (13)

where N denotes the number of signals, K the number of filters, F represents a DNN, Ωk = {ak ∈
Rn+,bk ∈ Rn|b(k,l+1) = (a(k,l) − a(k,l+1))t(l+1,k) + b(k,l)} ∀k ∈ {1, . . . ,K}, and Wψ(g, si) =

[Wψ(g(a1,b1), si), . . . ,Wψ(g(aK ,bK), si)]
T , and Wψ(g(ak,bk), si) ∀k ∈ {1, . . . ,K} is defined as in

(6) without setting the b parameter to 0. In fact, in the present case, this parameter defines the
piece-wise linear maps as opposed to the translation parameter of the affine group.

To solve this optimization problem for diverse time-series, we propose different settings that might
be more adapted depending on the type of data and task at hand.

We first propose a normalization of the frequency of the transform filter (denoted in the result tables
by nLGT). This normalization helps to reduce the aliasing induced by the filters. We propose to use
f̂ , the normalized frequency f with respect to the maximum slope of the piece-wise affine mapping.
For instance, in the case of a Morlet wavelet, the normalization is as follows

[ρinc(g(a,b))ψ](t) = π−
1
4 exp

(
2πjf̂g(a,b)(t)

)
exp

(
−1

2
(g(a,b)(t)/σ)2

)
,

where f̂ = f/maxl∈{1,...,n} al, j is the imaginary unit, and σ is the width parameter defining the
localization of the wavelet in time and frequency. This normalization will be performed for each
sample of the group, and thus for each generated filter k ∈ {1, . . . ,K} of the filter-bank.

The second setting is a constraint on the domain of the piece-wise affine map as derived in (10)
(denoted in the result tables by cLGT). In the following experiments, we propose a dyadic constraint
of the domain as in the WT. The support of the filter will thus be close to the support of a wavelet
filter-bank. However, the envelop of the filter and the instantaneous frequency will still vary as in the
Chirplet Transform (Baraniuk & Jones, 1996).

4 EXPERIMENTS

For all the experiments and all the settings, i.e., LGT, nLGT, cLGT, cnLGT, the increasing and
continuous piece-wise affine map is initialized randomly, and the optimization is performed with
Adam Optimizer (Kingma & Ba, 2014), and the number of knots of each piece-wise affine map is
256. The mother filter used for our setting is a Morlet wavelet filter. The code of our LGT framework
will be provided on the Github page of the first author.

4.1 ARTIFICIAL DATA: CLASSIFICATION OF CHIRP SIGNALS

We present an artificial dataset that demonstrates how a specific time-frequency tiling might not be
adapted or would require cross-validations for a given task and data. To build the dataset, we generate
one high frequency ascending chirp and one descending high-frequency chirp of size 8192 following
the chirplet formula provided in (Baraniuk & Jones (1996)). Then for both chirp signals, we add Gaus-
sian noise samples (100 times for each class), see Figures in Appendix (B.1). The task aims at being
able to detect whether the chirp is ascending or descending. Both the training and test sets are com-
posed of 50 instances of each class. For all models, set the batch size to 10, the number of epochs to 50.
Each experiment was repeated 5 times with randomly sampled train and test set, and the accuracy was
the result of the average over these 5 runs. For the case of WT and LGT, the size of the filters is 512. As
we can observe in Table (1), the WT, as well as the STFT with few numbers of filters, perform poorly
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on this dataset. The chirp signals to be analyzed are localized close to the Nyquist frequency, and in
the case of WT, we know from Figure 1 that it has a poor frequency resolution in high frequency.
Therefore, through time, the small frequency variations of the chirp are not efficiently captured.

Representation + Linear Classifier Accuracy
Wavelet Transform (64 Filters) 53.01 ± 5.1
Short-Time Fourier Transform (64 Filters) 65.1 ± 11.9
Short-Time Fourier Transform (128 Filters) 86.6 ± 9.8
Short-Time Fourier Transform (512 Filters) 100 ± 0.0
LGT (64 Filters) 92.9 ± 4.0
nLGT (64 Filters) 95.7 ± 3.3
cLGT (64 Filters) 56.8 ± 1.6
cnLGT (64 Filters) 100.0 ± 0.0

Table 1: Testing Accuracy for the Chirp Signals Classification
Task

In the case of STFT, if the num-
ber of filters is too small, the res-
olution in frequency is also lim-
ited, and thus this variation is as
not captured as well. This illus-
trated the fact in some case nei-
ther the proportional-bandwidth
nor the constant-bandwidth are
suitable. However, using a large
window for the STFT increases
the frequency resolution of the
tiling and thus enables to capture
the difference between the two
classes. In the case of the LGT, the tiling has adapted to the task and produces good performances
except in the cLGT setting. In fact, the domain of the piece-wise linear map is constrained to be
dyadic, and thus the adaptivity of the filter bank is reduced which is not suitable for this specific task.
For all settings, the visualization of the filters, as well as the representations of the signals, can be
found in Appendix (B.1.2,B.1.3).

4.2 SUPERVISED BIRD DETECTION

Representation + Deep Network AUC
MFSC (80 Filters) 77.83 ± 1.34
Conv. Filter init. random (80 Filters) 66.77 ± 1.04
Conv. Filter init. Gabor (80 Filters) 67.67 ± 0.98
Spline Conv. init. random (80 Filters) (Balestriero et al. (2018)) 78.17 ± 1.48
Spline Conv. init. Gabor (80 Filters) (Balestriero et al. (2018)) 79.32 ± 1.52
LGT (80 Filters) 78.41 ± 1.38
nLGT (80 Filters) 75.50 ± 1.39
cLGT (80 Filters) 79.14 ± 0.83
cnLGT (80 Filters) 79.68 ± 1.35

Table 2: Testing AUC for the Bird Detection Task

The proposed Learnable Group Transform is applied to a challenging supervised bird detection
task. The dataset is extracted from the Freesound audio archive Stowell & Plumbley (2013). This
dataset contains about 7, 000 field recording signals of 10 seconds sampled at 44 kHz, representing
slightly less than 20 hours of audio signals. The content of these recordings varies from water
sounds to city noises. Among these signals, some contain bird songs that are mixed with different
background sounds having more energy than the bird song, see Appendix (B.2.1). The given task
is a binary classification where one should predict the presence or absence of bird song. As the
dataset is unbalanced, we use the Area Under Curve (AUC) metric. The results we propose for both
the benchmarks and our models are evaluated on a test set consisting of 33% of the total dataset.
In order to compare with previously used methods, we use the same seeds to sample the train and
test set, the batch size, i.e.,10, and the learning rate cross-validation grid as in Balestriero et al.
(2018). For each model, the best hyperparameters are selected, and we train and evaluated randomly
10-times the models with early stopping, the results are shown in Table (4.2). While the first layer
of the architecture has a model-dependent representation (i.e., MFSC, LGT, Conv. filters,...), we
use the state-of-the-art architecture (Grill & Schlüter (2017)) for the DNN architecture, described
in Appendix (A.2). Notice that this specific DNN architecture has been designed and optimized for
MFSC representation. As we can see, the cnLGT reaches state of the art results.
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Figure 4: Learnable Group Transform - Visualisation of a sample containing a bird song (cLGT),
where (left) at the initialization and (right) after learning. Other representations are displayed in
Appendix (B.2.3)

Figure 5: Learnable Group Transform Filter - Visualisation of a selected filter (cLGT), where the
(left) part corresponds to the filter before training and the (right) part to the filter after training. The
blue and red correspond respectively to the real and imaginary part of the filters. Other filters are
displayed in Appendix ( B.2.2)

4.3 HAPTICS DATASET CLASSIFICATION

The Haptics dataset is a classification problem with five classes and 155 training and 308 testing sam-
ples from the UCR Time Series Repository Chen et al. (2015), where each time-series has 1092 time
samples. As opposed to the bird dataset where features of interests are known, and competitive meth-
ods have been established, there are no hand-crafted features that can perform accurately (see Table 3).

Representation + Classifier Accuracy
DTW (Al-Naymat et al. (2009)) 37.7
BOSS (Schäfer (2015)) 46.4
Residual NN (Wang et al. (2017)) 50.5
COTE (Bagnall et al. (2015)) 51.2
Fully Convolutional NN (Wang et al. (2017)) 55.1
WD + Convolutional NN (Khan & Yener (2018)) 57.5

LGT (96 Filters) + Linear Classifier 53.5
nLGT (96 Filters) + Linear Classifier 50.4
cLGT (96 Filters) + Linear Classifier 58.2
cnLGT (96 Filters)+ Linear Classifier 54.3

Table 3: Testing Accuracy for the Haptics Classification Task

One can see that our method
outperforms other approaches in
the cLGT setting while perform-
ing the classification with a lin-
ear classifier as opposed to other
methods using DNN algorithms.
This demonstrates the capability
of our method to transform the
data efficiently while not requir-
ing a further change of basis.

5 CONCLUSION

We proposed to build a novel
group transform introducing the
group of strictly increasing and
continuous functions as well as a
tractable way to sample it. From bird detection to haptics classification, our approach competes with
state-of-the-art methods without a priori knowledge on the signal power spectrum and outperform
classical hand-crafted time-frequency representations. While we have considered only the use of a
Morlet mother wavelet, a future approach would be to explore the learnability of the group with the
learnability of the mother wavelet proposed in aforecited papers.
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A ARCHITECTURE DETAILS

A.1 ARTIFICIAL DATA

Group Transform + Complex Modulus + Log
Dense Layer (1 sigmoid)

After the Group Transform, a batch-normalization is applied.

A.2 SUPERVISED BIRD DETECTION

Group Transform + Complex Modulus + Log + Average-Pooling (stride:(1, 512) size:(1, 1024))
Conv2D. layer (16 filters 3× 3) and Max-Pooling (3× 3) and ReLU
Conv2D. layer (16 filters 3× 3) and Max-Pooling (3× 3) and ReLU
Conv2D. layer (16 filters 3× 1) and Max-Pooling (3× 1) and ReLU
Conv2D. layer (16 filters 3× 1) and Max-Pooling (3× 1) and ReLU

Dense layer (256) and ReLU
Dense layer (32) and ReLU

Dense layer (1 sigmoid)

At each layer a batch-normalization is applied and for the last three layers a 50% dropout is applied
as in (Grill & Schlüter (2017)). The dimension of the input of the DNN presented is the same for the
different benchmarks.

A.3 HAPTICS DATA

Group Transform + Complex Modulus + Log + Average-Pooling (stride:(1, 64) size:(1, 128))
Dense Layer (5 softmax)

After the Group Transform, a batch-normalization is applied.
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B ADDITIONAL FIGURES

B.1 ARTIFICIAL DATA

B.1.1 DATA

Figure 6: Artificial Dataset: (Top Left) Ascending Chirp, (Top Right) Descending Chirp, i.e. class 0,
(Bottom Left) Ascending Chirp plus Gaussian noise, (Bottom Right) Descending Chirp plus Gaussian
noise, i.e., class 1. The samples contained in the training and testing set are higher in frequency and
close to the Nyquist frequency.

B.1.2 FILTERS

Figure 7: Learnable Group Transform Filters for the Artificial Data - Each row displays two
selected filters (left and right sub-figure) for different settings: (from top to bottom) LGT, nLGT,
cLGT, cnLGT. For each subfigure, the left part corresponds to the filter before training and the right
part to the filter after training. The blue and red denotes respectively the real and imaginary part of
the filters.
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B.1.3 GROUP TRANSFORM

Figure 8: Learnable Group Transform - Visualisation of an ascending chirp sample, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 9: Learnable Group Transform - Visualisation of a descending chirp sample, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.

B.2 SUPERVISED BIRD DETECTION

B.2.1 DATA

Figure 10: Bird Detection Dataset - Sample containing a bird song. The red boxes are the locations
of the bird song.

Each data sample, normalized, centered and subsampled by two before experiment.
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B.2.2 FILTERS

Figure 11: Learnable Group Transform Filters for the Bird Detection Data - Each row displays
two selected filters (left and right sub-figure) for different settings: (from top to bottom) LGT, nLGT,
cLGT. For each subfigure, the left part corresponds to the filter before training and the right part to
the filter after training.

B.2.3 GROUP TRANSFORM

Figure 12: Learnable Group Transform - Visualisation of a sample containing a bird song, where
for each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT.
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Figure 13: Learnable Group Transform - Visualisation of a sample without a bird song, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT.

B.3 HAPTICS DATA

B.3.1 DATA

Figure 14: Haptic Dataset - Sample of each class of the Haptic dataset.

Each data is centered and normalized. For the experiments, the number of epochs is set to 1000
and we perform early-stopping and obtain the testing accuracy at this specific epoch as in Khan
& Yener (2018), the batch size was set to 64. In order to avoid overfitting, we perform different
asymmetric zeros-paddings on the training samples. For the testing samples, we perform a symmetric
zeros-padding (512 zeros on each side of the signals).
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B.3.2 FILTERS

Figure 15: Learnable Group Transform Filters for the Haptics Data - Each row displays two
selected filters (left and right sub-figure) for different settings: (from top to bottom) LGT, nLGT,
cLGT, cnLGT. For each subfigure, the left part corresponds to the filter before training and the right
part to the filter after training. The blue and red denotes respectively the real and imaginary part of
the filters.
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B.3.3 GROUP TRANSFORM

Figure 16: Learnable Group Transform - Visualisation of a sample belonging to class 1, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 17: Learnable Group Transform - Visualisation of sample belonging to class 2, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 18: Learnable Group Transform - Visualisation of sample belonging to class 3, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 19: Learnable Group Transform - Visualisation of a sample belonging to class 4, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.
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Figure 20: Learnable Group Transform - Visualisation of a sample belonging to class 5, where for
each row (left) at the initialization and (right) after learning. Each row displays a different setting:
(from top to bottom): LGT, nLGT, cLGT, cnLGT.

C GROUP PARAMETER OPTIMIZATION

In order to learn the group transform module, we can use the back-propagation algorithm and a
gradient-based optimization technique such that the parameters of the group transform module,
denoted by g, can be learned jointly with the parameters of the DNN, or any other differentiable algo-
rithm taking as input the learnable time-frequency representation. Using the notations of Section 3.4
where L denotes a loss function and F a DNN, the learnability of the optimal group transform leading
to the most suitable time-frequency representation is performed by the chain rule,

∂L

∂gk
=

∂L

∂[F (Wψ(gk, si))]
× ∂[F (Wψ(gk, si))]

∂gk
,∀i ∈ {1, . . . , N} , ∀k ∈ {1, . . . ,K} , gk ∈ Ginc,

where [Wψ(gk, si)] is the convolution of the signals si with the transformed filter ρinc(gk)ψ as defined
in (6).
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D PROOFS

D.1 PROOF THEOREM 1

Proof. Let g, g′ ∈ Ginc, then

[ρinc(g
′ ~ g)ψ](t) = ψ((g′ ~ g)(t))

= ψ(g′(g(t)))

and,

[ρinc(g
′)ρinc(g)ψ](t) = [ρinc(g

′)ψ](g(t))

= ψ(g′(g(t)))

which verifies the homogeneity property. The linearity is implied by,

[ρinc(g)(κψ1 + ψ2)](t) = (κψ1 + ψ2)(g(t)) = κψ1(g(t)) + ψ2(g(t)),∀t ∈ R.

where ψ1, ψ2 ∈ L2(R) and κ ∈ R. It is in fact a Koopman operator Korda & Mezić (2018).
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