
Under review as a conference paper at ICLR 2020

HIGHER-ORDER FUNCTION NETWORKS FOR LEARN-
ING COMPOSABLE 3D OBJECT REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a new approach to 3D object representation where the geometry of
an object is encoded directly into the weights and biases of a second ‘mapping’
network. This mapping network can be used to reconstruct an object by applying its
encoded transformation to points randomly sampled from a simple geometric space,
such as the unit sphere. Next, we extend this concept to enable the composition of
multiple mapping functions. This capability provides a method for mixing features
of different objects through function composition in a latent function space. Our
experiments examine the effectiveness of our method on a subset of the ShapeNet
dataset. We find that this representation can reconstruct objects with accuracy
equal to or exceeding state-of-the-art methods with orders of magnitude fewer
parameters. Our smallest reconstruction network has only about 7000 parameters
and shows reconstruction quality on par with state-of-the-art object representation
architectures with millions of parameters.

1 INTRODUCTION

This paper is primarily concerned with the problem of learning compact 3D object representations
and estimating them from images. If we consider an object to be a continuous surface in R3, it is
not straightforward to directly represent this infinite set of points in memory. In working around this
problem, many learning-based approaches to 3D object representation suffer from problems related
to memory usage, computational burden, or sampling efficiency. Nonetheless, neural networks with
tens of millions of parameters have proven effective tools for learning expressive representations of
geometric data. In this work, we intend to show that object geometries can be encoded into neural
networks with thousands, rather than millions, of parameters with little or no loss in reconstruction
quality.

To this end, we propose an object representation that encodes an object as a function that maps
points from a canonical space, such as the unit sphere, to the set of points defining the object. In
this work, the function is approximated with a small multilayer perceptron. The parameters of this
function are estimated by a ‘higher order’ encoder network, thus motivating the name for our method:
Higher-Order Function networks (HOF). This procedure is shown in Figure 1. There are two key
ideas that distinguish HOF from prior work in 3D object representation learning: fast-weights object
encoding and interpolation through function composition.

(1) Fast-weights object encoding: Representing an object as the weights and biases of a mapping
network. ‘Fast-weights’ in this context generally refers to methods that use network weights that
are not fixed; at least some of weights are estimated on a per-sample basis. This approach stands in
contrast to existing methods which encode objects as vector-valued inputs to a decoder network with
fixed weights. Empirically, we find that our approach enables a dramatic reduction (two orders of
magnitude) in the size of the mapping network compared to the decoder networks required by other
methods.

(2) Interpolation through function composition: Our functional formulation allows for interpolation
between inputs by composing the roots of our reconstruction functions. We demonstrate that the
functional representation learned by HOF provides a rich latent space in which we can ‘interpolate’
between objects, producing new, coherent objects sharing properties of the ‘parent’ objects.

1



Under review as a conference paper at ICLR 2020

In order to position HOF among other methods for 3D reconstruction, we first define a taxonomy
of existing work and show that HOF provides a generalization of current best-performing methods.
Afterwards, we demonstrate the effectiveness of HOF on the task of 3D reconstruction from an RGB
image using a subset of the ShapeNet dataset (Chang et al., 2015). The results, reported in Table 1
and Figure 2, show state-of-the-art reconstruction quality using orders of magnitude fewer parameters
than other methods.

Figure 1: Top: Overview of HOF. The encoder network gφ encodes the geometry of the object
pictured in each input image directly into the parameters of the mapping function fθ, which produces
a reconstruction as a transformation of a canonical object (here, the unit sphere). Bottom: We
visualize the transformation fθ by showing various subsets of the inputs X and their corresponding
mapped locations in red and green, respectively. In each frame, light gray shows the rest of X and
dark gray shows the rest of the reconstructed object.

2 RELATED WORK

The selection of object representation is a crucial design choice for methods addressing 3D recon-
struction. Voxel-based approaches (Choy et al., 2016; Häne et al., 2017) typically use a uniform
discretization of R3 in order to extend the highly successful convolutional neural network (CNN)
based approaches to the 3D world. However, the inherent sparsity of 3D surfaces make voxelization
inefficient in terms of both memory and computation time. Partition-based approaches such as
octrees (Tatarchenko et al., 2017; Riegler et al., 2017) address the space efficiency shortcomings of
voxelization, but they are tedious to implement and inefficient to query. Point set representations,
discrete (and typically finite) subsets of the continuous geometric object, have also gained popularity
due to the fact that they retain the simplicity of voxel based methods while eliminating their storage
and computational burden (Qi et al., 2017a; Fan et al., 2017; Qi et al., 2017b; Yang et al., 2018; Park
et al., 2019). The PointNet architecture (Qi et al., 2017a;b) was an architectural milestone that made
manipulating point sets with deep learning methods a competitive alternative to earlier approaches;
however, PointNet is concerned with processing, rather than generating, point clouds. Further, while
point clouds are more flexible than voxels in terms of information density, it is still not obvious how
to adapt them to the task of producing arbitrary- or varied-resolution predictions. Independently
regressing each point in the point set requires additional parameters for each additional point (Fan
et al., 2017; Achlioptas et al., 2018), which is an undesirable property if the goal is high-resolution
point clouds.

Many current approaches to representation and reconstruction follow an encoder-decoder paradigm,
where the encoder and decoder both have learned weights that are fixed at the end of training. An

2



Under review as a conference paper at ICLR 2020

Figure 2: From left to right: Input RGB image, ground truth point cloud, reconstruction from
FoldingNet (Yang et al., 2018), reconstruction from DeepSDF (Park et al., 2019), and our method.

image or set of 3D points is encoded as a latent vector ‘codeword’ either with a learned encoder as
in Yang et al. (2018); Lin et al. (2018); Yan et al. (2016) or by direct optimization of the latent vector
itself with respect to a reconstruction-based objective function as in Park et al. (2019). Afterwards,
the latent code is decoded by a learned decoder into a reconstruction of the desired object by one
of two methods, which we call direct decoding and contextual mapping. Direct decoding methods
directly map the latent code into a fixed set of points (Choy et al., 2016; Fan et al., 2017; Lin et al.,
2018; Michalkiewicz et al., 2019); contextual mapping methods map the latent code into a function
that can be sampled or otherwise manipulated to acquire a reconstruction (Yang et al., 2018; Park
et al., 2019; Michalkiewicz et al., 2019; Mescheder et al., 2019). Direct decoding methods generally
suffer from the limitation that their predictions are of fixed resolution; they cannot be sampled more
or less precisely. With contextual mapping methods, it is possible in principle to sample the object
to arbitrarily high resolution with the correct decoder function. However, sampling can provide a
significant computational burden for some contextual mapping approaches as those proposed by
Park et al. (2019) and Michalkiewicz et al. (2019), requiring post-processing such as applying the
Marching Cubes algorithm developed by Lorensen and Cline (1987). We call contextual mapping
approaches that encode context by concatenating a duplicate of a latent context vector with each input
latent vector concatenation (LVC) methods. In particular, we compare with LVC methods such as
FoldingNet (Yang et al., 2018) and DeepSDF (Park et al., 2019).

HOF is a contextual mapping method that distinguishes itself from other methods within this
class through its approach to representing the mapping function: HOF uses one neural network
to estimate the weights of another. Conceptually related methods have been previously studied
under nomenclature such as the ‘fast-weight’ paradigm (Schmidhuber, 1992) and more recently
‘hypernetworks’ (Ha et al., 2016). However, the work by Schmidhuber (1992) deals with encoding
memories in sequence learning tasks. Ha et al. (2016) suggest that estimating weights of one network
with another might lead to improvements in parameter-efficiency. However, this work does not
leverage the key insight of using network parameters that are estimated per sample in vision tasks,
only sequence modeling as in Schmidhuber (1992).

3 HIGHER-ORDER FUNCTION NETWORKS

HOF is motivated by the independent observations by both Yang et al. (2018) and Park et al. (2019)
that LVC methods do not perform competitively when the context vector is injected by simply
concatenating it with each input. In both works, the LVC methods proposed required architectural
workarounds to produce sufficient performance on reconstruction tasks, including injecting the latent
code multiple times at various layers in the network. HOF does not suffer from these shortcomings

3



Under review as a conference paper at ICLR 2020

due to its richer context encoding (the entire mapping network encodes context) in comparison
with LVC. We compare the HOF and LVC regimes more precisely in Section 3.2. Quantitative
comparisons of HOF with existing methods can be found in Table 1.

3.1 A FAST-WEIGHTS APPROACH TO 3D OBJECT REPRESENTATION AND RECONSTRUCTION

We consider the task of reconstructing an object point cloud O from an image. We start by training a
neural network gφ with parameters φ (Figure 1, top-left) to output the parameters θ of a mapping
function fθ, which reconstructs the object when applied to a set of points X sampled uniformly from
a canonical set such as the unit sphere. (Figure 1, top-right). We note that the number of samples
in X can be increased or decreased to produce higher or lower resolution reconstructions without
changing the network architecture or retraining, in contrast with direct decoding methods and some
contextual mapping methods which use fixed, non-random samples from X (Yang et al., 2018). The
input to gφ is an RGB image I . Although our implementation takes 64×64×3 RGB images as input,
our method is general to any input representation for which a corresponding differentiable encoder
network can be constructed to estimate θ. Given I , we compute the parameters of the mapping
network θI as

θI = gφ(I) (1)

That is, the encoder gφ : R3×64×64 → Rd directly regresses the d-dimensional parameters θI of the
mapping network fθI : Rc → R3, which maps c-dimensional points in the canonical space X to
points in the reconstruction Ô (see Figure 1). We then transform our canonical space X with fθI in
the same manner as other contextual mapping methods:

Ô = {fθI (xi) : xi ∈ X} (2)

During training, we sample an image I and the corresponding ground truth point cloud model O,
where O contains 10,000 points sampled from the surface of the true object. We then obtain the
mapping fθI = gφ(I) and produce an estimated reconstruction of O as in Equation 2. In our training,
we only compute fθI (x) for a sample of 1000 points in X . However, we find that sampling many
more points (10-100× as many) at test time still yields high-quality reconstructions. This sample
is drawn from a uniform distribution over the set X . We then compute a loss for the prediction Ô
using a differentiable set similarity metric such as Chamfer distance or Earth Mover’s Distance. We
focus on the Chamfer distance as both a training objective and metric for assessing reconstruction
quality. The asymmetric Chamfer distance CD(X,Y ) is a quasimetric often used for quantifying the
similarity of two point sets X and Y and is given as

CD(X,Y ) =
1

|X|
∑
xi∈X

min
yi∈Y

||xi − yi||2 (3)

The Chamfer distance is defined even if sets X and Y have different numbers of points. We train
gφ to minimize the symmetric objective function `(Ô, O) = CD(Ô, O) + CD(O, Ô) as in Fan et al.
(2017).

3.2 COMPARING WITH LVC METHODS

We compare our mapping approach with LVC architectures such as DeepSDF (Park et al., 2019) and
FoldingNet (Yang et al., 2018). These architectures control the output of the decoder through the
concatenation of a latent ‘codeword’ vector with each input xi ∈ X . We consider the case in which
the latent vector is only concatenated with inputs in the first layer of the decoder network fθ, which
we assume to be an MLP. We are interested in analyzing the manner in which the network output
with respect to xi may be modulated by varying z.

If the vector ai contains the pre-activations of the first layer of fθ given an input point xi, we have

ai =Wxxi +W zz+ b

where Wx, W z, and b are fixed, and only z is a function of I . If we absorb the parameters W z and
b into φ (as W z and b are fixed for all xi), we can define a new, equivalent latent representation

4



Under review as a conference paper at ICLR 2020

b∗ =W zz+ b = h(I) for some h. This gives

ai =Wxxi + h(I)

Thus the LVC approach is equivalent to estimating a fixed subset of the parameters θ of the decoder
fθ on a per-sample basis (the bias). From this perspective, HOF is an intuitive generalization: rather
than estimating just the bias, we allow our encoder to modulate all of the parameters in the decoder
fθ on a per-sample basis.

Having demonstrated HOF as a generalization of existing contextual mapping methods, in the next
section, we present a novel application of contextual mapping that leverages the compositionality of
the estimated mapping functions to aggregate features of multiple objects or multiple viewpoints of
the same object.

3.3 EXTENDING CONTEXTUAL MAPPING METHODS: FEATURE AGGREGATION THROUGH
FUNCTION COMPOSITION

An advantageous property of methods that use a latent codeword is that they have been empirically
shown to learn a meaningful space of object geometries, in which interpolating between object
encodings gives new, coherent object encodings (Fan et al., 2017; Yang et al., 2018; Park et al., 2019;
Groueix et al., 2018). HOF, on the other hand, does not obviously share this property: interpolating
between the mapping function parameters estimated for two different objects need not yield a new,
coherent object as the prior work has shown that the solution space of ‘good’ neural networks is highly
non-convex (Li et al., 2018). Indeed, we confirm empirically in Figure 6 that naively interpolating
between reconstruction function in the HOF regime does in fact produce meaningless blobs. However,
with a small modification to the HOF formulation in Equation 2, we can in fact learn a rich space of
functions in which we can interpolate between objects through function composition.

We propose an extension of the formulation in Equation 2, where an object is represented as the k-th
power of the mapping fθI :

Ô = {fkθI (x) : x ∈ X} (4)

where fk is defined as the composition of f with itself (k − 1) times: fk(x) = f(f (k−1)(x)) where
f0(x) := x. We call a mapping fθI whose k-th power reconstructs the object O in image I the
k-mapping for O.

This modification to Equation 2 adds an additional constraint to the mapping: the domain and
codomain must be the same. However, evaluating powers of f leverages the power of weight sharing
in neural network architectures; for an MLP mapping architecture with l layers, evaluating its k-th
power is equivalent to an MLP with (l − 1)× k layers with shared weights, which is equivalent to
a recurrent neural network with weight sharing in time. This formulation also has connections to
earlier work on continuous attractor networks as a model for encoding memories in the brain as k
becomes large (Seung, 1998).

In Section 4.3, we conduct experiments in a setting in which we have acquired RGB images I and J of
two objects, OI and OJ , respectively. Applying our encoder to these images, we obtain k-mappings
fθI and fθJ , which have parameters θI = gφ(I) and θJ = gφ(J), respectively. We hypothesize that
we can combine the information contained in each mapping function fθi by evaluating any of the 2k

possible functions of the form:

finterp = (fθ1 ◦ ... ◦ fθk) (5)

where the parameters of each mapping fθi are either the parameters of fθI or fθJ . Figures 4,5 and 6
show that interpolation with function composition provides interesting, meaningful outputs in experi-
ments with k = 2 and k = 4.

4 EXPERIMENTAL EVALUATIONS

We conduct various empirical studies in order to justify two key claims. In Sections 4.1 and 4.2, we
compare with other contextual mapping architectures to demonstrate that HOF provides equal or

5



Under review as a conference paper at ICLR 2020

Table 1: Summary of results comparing various reconstruction architectures. Reported Chamfer
distance values include standard error in parentheses. HOF-1 and HOF-3 are HOF variants with 1
and 3 hidden layers, respectively.

Method CD(P,T) CD(T,P) Average CD Parameters Layers
HOF-1 1.517 (0.0040) 1.021 (0.0028) 1.269 (0.0068) 7,171 2
HOF-3 1.480 (0.0028) 1.014 (0.0020) 1.247 (0.0048) 34,052 4

FoldingNet 1.563 (0.0064) 1.534 (0.0053) 1.549 (0.0117) 1,056,775 6
DeepSDF 1.521 (0.0029) 0.962 (0.0018) 1.242 (0.0047) 1,578,241 8
Baseline1 1.846 1.701 1.774 60,000,000+ 8

better performance with a significant reduction in parameters and compute time. In Section 4.3 we
demonstrate that extending contextual mapping approaches such as HOF with multiple compositions
of the mapping function provides a simple and effective approach to object interpolation. Further
experimentation, including ablation studies and a simulated robot navigation scenario, can be found
in A.1.

4.1 COMPARISON WITH OTHER METHODS FOR 3D MODEL RECONSTRUCTION

We test HOF’s ability to reconstruct an object given a single RGB image of the object using the
asymmetric Chamfer distance metrics (Equation 3) as reported in Lin et al. (2018). We evaluate
HOF on a subset of the ShapeNet dataset including 13 classes, as initially reported in Yan et al.
(2016) and later in Lin et al. (2018). The dataset contains 31773 ground truth point cloud models for
training/validation and 7926 for testing. For each point cloud, there are 24 RGB renders of the object
from a fixed set of 24 camera positions. For both training and testing, each point cloud is shifted
so that its bounding box center is at the origin in line with Fan et al. (2017). We also note that, as
discussed further in Section A.3, learning in a viewer-centric frame can further improve performance.
At test time, there is no post-processing performed on the predicted point cloud. The architectures we
compare are:

1. HOF-1: 1 hidden layer containing 1024 hidden neurons

2. HOF-3: 3 hidden layers containing 128 hidden neurons

3. DeepSDF as described in Park et al. (2019), with 8 hidden layers containing 512 neurons
each

4. FoldingNet as described in Yang et al. (2018), with 2 successive ‘folds’, each with a 3-layer
MLP with 512 hidden neurons

5. EPCG architecture as reported in Lin et al. (2018)

Results are reported in Table 1. Chamfer Distance scores are scaled by 100 as in line with Lin et al.
(2018). We find that HOF performs significantly better than that direct decoding baseline of Lin et al.
(2018) and performs on par with other contextual mapping approaches with 30× fewer parameters. In
order to provide a fair comparison with the baseline method, we ensure that ground truth objects are
scaled identically to those in Lin et al. (2018) and scale reported Chamfer distance scores by 100 for
convenience. We report both ‘forward’ Chamfer distance CD(Pred, Target) and ‘backward’ Chamfer
distance CD(Target, Pred), again in line with the convention established by Lin et al. (2018). Table 2
contains a class-wise breakdown. Qualitative comparisons of the outputs of HOF with state-of-the-art
architectures are shown in Figure 2.

4.2 RUNTIME PERFORMANCE COMPARISON

We compare HOF with the decoder architectures proposed in Park et al. (2019) and Yang et al. (2018)
in terms of inference speed. Figure 3 shows the full results of this experiment, which measures how
long it takes for each network to map a set of N samples from the canonical space X into the object
reconstruction (ignoring the processing time for estimating the latent state z for DeepSDF/FoldingNet
and the function parameters θ for HOF; we use the same convolutional neural network architecture
for both). We find that even for medium-resolution reconstructions (N > 1000), the GPU running

6



Under review as a conference paper at ICLR 2020

Figure 3: Runtime analysis comparing HOF with DeepSDF and FoldingNet architectures. HOF-1
and HOF-3 are HOF with 1 and 3 hidden layers, respectively.

Figure 4: Left. An example of inter-class interpolation between two objects by function composition.
We show the ground truth objects OA and OB , a single evaluation of their respective decoding
functions (giving fA(X) and fB(X)), as well as the possible permutations of compositions, which
makes up the leaf nodes in each tree. In fB(fA(X)), we see the wings straighten but remain narrow.
In fA(fB(X)), we observe the wings broaden, but they remain angled. Right. An example of
inter-class interpolation, mixing a table and a rifle. We observe what might be interpreted as a gun
with legs in fB(fA(X)) and a table with a single coherent stock in fA(fB(X)).

times for the DeepSDF/FoldingNet architectures and HOF begin to diverge. This difference is even
more extreme in the CPU running time comparison (an almost 100× difference). This performance
improvement may be significant for embedded systems that need to efficiently store and reconstruct
3D objects in real time; our representation is small in size, straightforward to sample uniformly
(unlike a CAD model), and fast to evaluate.

4.3 OBJECT INTERPOLATION

To demonstrate that our functional representation yields an expressive latent object space, we show
that the composition of these functions produces interesting, new objects. Figure 4 shows in detail the
composition procedure. If we have estimated 2-mappings for two objectsOA andOB , we demonstrate
that fθA(fθB (X)) and fθB (fθA(X)) both provide interesting mixtures of the two objects and mix
the features of the objects in different ways; the functions are not commutative. This approach is
conceptually distinct from other object interpolation methods, which decode the interpolation of
two different latent vectors. In our formulation, we visualize the outputs of an encoder that has
been trained to output 2-mappings in R3. In addition, Figure 5 demonstrates a smooth gradient of
compositions of the reconstruction functions for two airplanes, when a higher order of mappings
(k = 4) is used.

To further signify the expressiveness of the composition-based object interpolation, we compare it
against a method that performs interpolation in the network parameter space. This latter approach
resembles a common way of performing object interpolation in LVC methods: Generate latent
codewords from each image, and synthesize new objects by feeding the interpolated latent vectors
into the decoder.

As a proxy for the latent vector interpolation used in LVC methods, we generate new objects as
follows. After outputting the network parameters θA and θB for the objects OA and OB , we use the

7



Under review as a conference paper at ICLR 2020

Figure 5: An example of intra-class interpolation between two objects with finer granularity, k = 4.

Figure 6: Inter-class interpolation between two objects using function composition and parameter
interpolation. We see that the composition-based interpolation preserves some geometric features
such as chair legs, car roof, and airplane wings. Direct interpolation of the network parameters fails
to meaningfully capture features from the parent objects. We use k = 4, and (fB ◦ fB ◦ fA ◦ fA)(X)
for the interpolations with composition.

interpolated parameters θ′ = (θA + θB)/2 to represent the mapping function. In Figure 6, we show
that our composition-based interpolation is more capable of generating coherent new objects whose
geometric features inherited from the source objects are preserved better.

5 CONCLUSION AND FUTURE WORK

We presented Higher Order Function Networks (HOF), which generate a functional representation of
an object from an RGB image. The function can be represented as a small MLP with ‘fast-weights’,
or weights that are output by an encoder network gφ with learned, fixed weights. HOF demonstrates
state-of-the-art reconstruction quality, as measured by Chamfer distance with ground truth models,
with far fewer parameters than existing methods. Additionally, we extended contextual mapping
methods to allow for interpolation between objects by composing the roots of their corresponding
mapping functions, which also proved effective for the problem of multi-view reconstruction.

For future work, we would like to further improve on the parameter-efficiency of HOF, for example
with versions of HOF that output only a sparse but flexible subset of the parameters of the mapping
function. In addition, connections with other works investigating the properties of ‘high-quality’
neural network parameters and initializations such as HyperNetworks (Ha et al., 2016), the Lottery
Ticket Hypothesis (Frankle and Carbin, 2018), and model-agnostic meta learning (Finn et al., 2017).

There are many interesting applications of HOF in domains such as robotics. A demonstrative
application in motion planning can be found in Appendix B.2.2. Using function representations
directly for example for manipulation or navigation tasks, rather than generating intermediate 3D
point clouds, is also an interesting avenue of future work. We hope that the work presented in this
paper provides a basis for future developments of efficient 3D object representations and neural
network architectures.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan, Qi-Xing Huang, Zimo
Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher
Yu. Shapenet: An information-rich 3d model repository. CoRR, abs/1512.03012, 2015. URL
http://arxiv.org/abs/1512.03012.

Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin Chen, and Silvio Savarese. 3d-r2n2: A
unified approach for single and multi-view 3d object reconstruction. In European Conference on
Computer Vision, pages 628–644. Springer, 2016.

Christian Häne, Shubham Tulsiani, and Jitendra Malik. Hierarchical surface prediction for 3d object
reconstruction. In 2017 International Conference on 3D Vision (3DV), pages 412–420. IEEE,
2017.

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. Octree generating networks: Efficient
convolutional architectures for high-resolution 3d outputs. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2088–2096, 2017.

Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep 3d representations
at high resolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3577–3586, 2017.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for
3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 652–660, 2017a.

Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set generation network for 3d object
reconstruction from a single image. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 605–613, 2017.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in Neural Information Processing Systems,
pages 5099–5108, 2017b.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point cloud auto-encoder via
deep grid deformation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 206–215, 2018.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape representation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 165–174, 2019.

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations
and generative models for 3d point clouds. In International Conference on Machine Learning,
pages 40–49, 2018.

Chen-Hsuan Lin, Chen Kong, and Simon Lucey. Learning efficient point cloud generation for dense
3d object reconstruction. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. Perspective transformer nets:
Learning single-view 3d object reconstruction without 3d supervision. In Advances in Neural
Information Processing Systems, pages 1696–1704, 2016.

Mateusz Michalkiewicz, Jhony K. Pontes, Dominic Jack, Mahsa Baktashmotlagh, and Anders
Eriksson. Deep level sets: Implicit surface representations for 3d shape inference. CoRR,
abs/1901.06802, 2019. URL http://arxiv.org/abs/1901.06802.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4460–4470, 2019.

9

http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1901.06802


Under review as a conference paper at ICLR 2020

William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface construction
algorithm. In Maureen C. Stone, editor, SIGGRAPH, pages 163–169. ACM, 1987. ISBN 0-89791-
227-6. URL http://dblp.uni-trier.de/db/conf/siggraph/siggraph1987.
html#LorensenC87.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 4(1):131–139, 1992. doi: 10.1162/neco.1992.4.1.131. URL
https://doi.org/10.1162/neco.1992.4.1.131.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. CoRR, abs/1609.09106, 2016. URL
http://arxiv.org/abs/1609.09106.

Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A
papier-mâché approach to learning 3d surface generation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 216–224, 2018.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems 31,
pages 6389–6399. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7875-visualizing-the-loss-landscape-of-neural-nets.pdf.

H. Sebastian Seung. Continuous attractors and oculomotor control. Neural Networks, 11(7-8):
1253–1258, October 1998. doi: 10.1016/s0893-6080(98)00064-1. URL https://doi.org/
10.1016/s0893-6080(98)00064-1.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Training pruned neural networks.
CoRR, abs/1803.03635, 2018. URL http://arxiv.org/abs/1803.03635.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 1126–1135. JMLR. org, 2017.

Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Josh Tenenbaum, Bill Freeman, and Jiajun Wu.
Learning to reconstruct shapes from unseen classes. In Advances in Neural Information Processing
Systems, pages 2257–2268, 2018.

Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong Zhang, William T Freeman, and Joshua B
Tenenbaum. Learning shape priors for single-view 3d completion and reconstruction. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pages 646–662, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4700–4708, 2017.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Geoffrey Gordon, David Dunson, and Miroslav Dudík, editors, Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of
Machine Learning Research, pages 315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011. PMLR.
URL http://proceedings.mlr.press/v15/glorot11a.html.

10

http://dblp.uni-trier.de/db/conf/siggraph/siggraph1987.html#LorensenC87
http://dblp.uni-trier.de/db/conf/siggraph/siggraph1987.html#LorensenC87
https://doi.org/10.1162/neco.1992.4.1.131
http://arxiv.org/abs/1609.09106
http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
https://doi.org/10.1016/s0893-6080(98)00064-1
https://doi.org/10.1016/s0893-6080(98)00064-1
http://arxiv.org/abs/1803.03635
http://proceedings.mlr.press/v15/glorot11a.html


Under review as a conference paper at ICLR 2020

A ADDITIONAL EXPERIMENTS AND ABLATION STUDIES

A.1 CLASS-WISE RECONSTRUCTION QUALITY COMPARISON

Table 2: Class-weighted asymmetric Chamfer distance results for our method compared to other
recent methods for 3D reconstruction from images as reported in Lin et al. (2018). We use the HOF-3
architecture 1-mapping.

Category 3D-R2N2 PSG EPCG HOF
Choy et al. (2016) Fan et al. (2017) Lin et al. (2018) Ours

Airplane 2.399 / 2.391 1.301 / 1.488 1.294 / 1.541 0.936 / 0.723
Bench 2.323 / 2.603 1.814 / 1.983 1.757 / 1.487 1.288 / 0.914
Cabinet 1.420 / 2.619 2.463 / 2.444 1.814 / 1.072 1.764 / 1.383
Car 1.664 / 3.146 1.800 / 2.053 1.446 / 1.061 1.367 / 0.810
Chair 1.854 / 3.080 1.887 / 2.355 1.886 / 2.041 1.670 / 1.147
Display 2.088 / 2.953 1.919 / 2.334 2.142 / 1.440 1.765 / 1.130
Lamp 5.698 / 7.331 2.347 / 2.212 2.635 / 4.459 2.054 / 1.325
Loudspeaker 2.487 / 4.203 3.215 / 2.788 2.371 / 1.706 2.126 / 1.398
Rifle 4.193 / 2.447 1.316 / 1.358 1.289 / 1.510 1.066 / 0.817
Sofa 2.306 / 3.196 2.592 / 2.784 1.917 / 1.423 1.666 / 1.064
Table 2.128 / 3.134 1.874 / 2.229 1.689 / 1.620 1.377 / 0.979
Telephone 1.874 / 2.734 1.516 / 1.989 1.939 / 1.198 1.387 / 0.944
Watercraft 3.210 / 3.614 1.715 / 1.877 1.813 / 1.550 1.474 / 0.967
Mean 2.588 / 3.342 1.982 / 2.146 1.846 / 1.701 1.534 / 1.046

A.2 ABLATION STUDIES

We compare the performance of several variants of HOF on the reconstruction task. First, in Table 3,
we compare different training regimes for HOF: canonical frame training (as reported in Table 2),
camera frame training, and projection-regularized training.

Table 3: Comparisons of class-weighted asymmetric Chamfer distances of variants of HOF-3 1-
mapping.

Method Canonical Frame Camera Frame Regularized DeepSDF Park et al. (2019)
Avg CD 1.534 / 1.046 1.486 / 0.979 1.547 / 1.036 1.567 / 1.077

Projection Regularization Intuitively, we might expect that fθ(X) would approximate the Eu-
clidean projection function; e.g. fθ(X) ≈ ProjY (X). However, qualitatively, we find that without
constraining fθ this is not the case. Figure 7 highlights this distinction. Our mapping fθ learns a less
interpretable mapping from the canonical set X to the object O. In order to encourage the mapping
to produce a more interpretable mapping from the canonical set X to the object O, we regularize the
transform fθ to penalize the ‘distance traveled’ of points transformed by fθ. A regularization term
with a small coefficient (λ = 0.01) is effective in encouraging this behavior, and making this change
results in little deviation in performance, while providing a more coherent mapping.

This penalty for the mapping computed by fθI for each point in the sample X̃ is given as

R(fθI , X̃) =
1

X̃

∑
xi∈X̃

||fθI (xi)− xi||22 (6)

where X̃ is a sample from the canonical set X . We might instead directly penalize the difference
between fθI and the Euclidean projection over the sampled set X̃ as:

R(fθI , X̃) =
1

X̃

∑
xi∈X̃

||fθI (xi)− argminoi∈O||oi − xi||2||22 (7)

11



Under review as a conference paper at ICLR 2020

Figure 7: Slices of the sphere where the input points are sampled from and their projections in the
predicted point set. Above: minimizing the Chamfer distance only. Below: Minimizing Chamfer
distance with the regularization expression in Equation 6. In both cases, the mapping is smooth, but
only with regularization is the mapping close to the intuitive projection mapping.

However, we find that this regularization can be overly constraining, for example in cases where points
are sampled near the boundaries of the Voronoi tesellation of the target point cloud. The formulation
in Equation 6 gives the mapping greater flexibility while still giving the desired semantics.

Camera Frame Prediction We test the hypothesis suggested in Zhang et al. (2018) that learning
reconstruction in a viewer-centric frame generalizes better than a canonical frame. For this experiment,
we rotate the ground truth point cloud according to the camera position relative to the object during
both training and testing.

Various HOF architectures We compare HOF trained with different architectures and different
orders. Results are summarized in Table 4. We find that we achieve state-of-the-art performance
across all of the formulations. We also note that for both architectures the 2-mapping outperforms the
1-mapping in forward Chamfer distance, but the 1-mapping outperforms the 2-mapping in backwards
Chamfer distance. Future work might investigate the tradeoffs involved in these formulations of the
mapping fθ.

Table 4: Comparisons of architectures and mapping orders. We compare HOF-3, 1-mapping, HOF-3,
2-mapping, HOF-1, 1-mapping, and HOF-1, 2-mapping.

Method HOF-3 1-mapping HOF-3 2-mapping HOF-1 1-mapping HOF-1 2-mapping
Avg CD 1.534 / 1.046 1.498 / 1.078 1.709 / 0.993 1.582 / 1.089

A.3 COLLISION-FREE PATH GENERATION

From Chamfer distance scores alone, it is difficult to determine if one method’s reconstruction
quality is meaningfully different from another’s. In this section, we introduce a new benchmark
to evaluate the practical implications of utilizing 3D reconstructions in the context of an example
task: collision-free path generation. We compare the reconstructions of HOF with Lin et al. (2018),
the most competitive direct decoding method in the reconstruction experiment. This experiment is
intended to give an additional perspective on what a difference in average Chamfer distance to the
ground truth object means. We show that given an RGB image, we can efficiently find a near-optimal
path P̂ between two points around the bounding sphere of the object without colliding with it, and
without taking a path much longer than the optimal path P ∗, where the optimal path is defined as the

12



Under review as a conference paper at ICLR 2020

shortest collision-free path between two given points. A complete definition of the experiment and its
implementation are given in Section B.2.2.

Figure 8: Collision-free path generation. The paths are color-coded as Blue: baseline showing L1

distance, Green: baseline going around a bounding box around the object, Yellow: with GT voxels
as obstacles, Magenta: with EPCG voxels, Cyan: with HOF voxels. The rightmost figure shows all
paths together viewed from three different view points. Best viewed in color.

We quantify the quality of our predictions by measuring both i) the proportion of predicted paths P̂
that are collision-free and ii) the average ratio of the length of a collision-free estimated path P̂ and
the corresponding optimal path P ∗.

These two metrics conceptually mirror the backward and forward Chamfer distance metrics, re-
spectively; a low collision rate corresponds to few missing structures in the reconstructed object
(backward Chamfer, or surface coverage), while successful paths close to the optimal path length
correspond to few extraneous structures in the reconstruction (forward Chamfer, or shape similarity).

We find that HOF provides meaningful gains over the reconstruction method recently proposed
in Lin et al. (2018) in the context of path planning around the reconstructed model. HOF performs
significantly better both in terms of path length as well as collision rate. However, although in Lin
et al. (2018) results were reported on the reconstruction task with objects in a canonical frame, in
the context of robotics, learning in a viewer-centric frame is necessary. It has been noted in Wu
et al. (2018) that generalization might be easier when learning reconstruction in a viewer-oriented
frame. We test this theory by training on both objects in their canonical frame as well as in the
‘camera’ frame. We rotate each point cloud Y into its camera frame orientation using the azimuth and
elevation values for each image. We rotate the point cloud about the origin, keeping the bounding
box centered at (0,0,0). Trained and tested in the viewer-centric camera frame, HOF performs even
better than in the canonical frame, giving Chamfer distance scores of 1.486 / 0.979 (compared with
1.534 / 1.046 for the canonical frame), a notable improvement. The most notably improved classes in
the viewer-centric evaluation is cabinets and loudspeakers; it is intuitive that these particularly ‘boxy’
objects might be better reconstructed in a viewer-centric frame, as their symmetric nature might make
it difficult to identify their canonical frame from a single image.

Results of this comparison, as well as other ablation studies, are reported in Supplementary Table 3.
The path quality performances of the baseline metrics, EPCG Lin et al. (2018) and HOF are presented
in Table 5.

Table 5: Mean values for the collision-free path generation success rate and the optimality of the
output paths. Higher values indicate better performance. Details about baseline metrics Shortest L1

and Shortest Around Bounding Box (SABB) are listed in Supplementary Section B.2.2.

Method Shortest L1 SABB Efficient PCG Lin et al. (2018) Ours
Success rate 0.341 ± 0.35 1.0 ± 0.0 0.775 ± 0.19 0.989 ± 0.06
Optimality 1.0 ± 0.0 0.960 ± 0.05 0.994 ± 0.02 0.998 ± 0.01

B TRAINING/TESTING DATASET AND IMPLEMENTATION DETAILS

In the reconstruction experiment, Chamfer Distance scores are scaled up by 100 as in Lin et al.
(2018) for easier comparison. For the numbers reported in Table 2, we use the best performance
of 3d-r2n2 (5 views as reported in Lin et al. (2018)). In comparing with methods like FoldingNet
Yang et al. (2018) and DeepSDF Park et al. (2019), we focus on efficiency of representation rather

13



Under review as a conference paper at ICLR 2020

than reconstruction quality. The performance comparison in Figure 3 and the ablation experiment in
Table 3 attempt to compare these architectures in this way (FoldingNet is a slightly shallower version
of the DeepSDF architecture; 6 rather than 8 fully-connected layers).

B.1 DATASET

We use the ShapeNet train/validation/test splits of a subset of the ShapeNet dataset Chang et al. (2015)
described in Yan et al. (2016). Point clouds have 100k points. Upon closer inspection, we have found
that this subset includes some inconsistent/noisy labels, including:

1. Inconsistency of object interior filling (e.g. some objects are only surfaces, while some have
densely sampled interiors)

2. Objects with floating text annotations that are represented in the point cloud model

3. Objects that are inconsistently small (scaled down by a factor of 5 or more compared to
other similar objects)

Although these types of inconsistencies are rare, they are noteworthy. We used them as-is, but future
contributions might include both ‘cleaned’ and ‘noisy’ variants of this dataset. Learning from noisy
labels is an important problem but is orthogonal to 3D reconstruction.

B.2 IMPLEMENTATION DETAILS

B.2.1 NETWORK ARCHITECTURE AND TRAINING

For the problem of 3D reconstruction from an RGB image, which we address here, we represent
gφ as a convolutional neural network based on the DenseNet architecture proposed in Huang et al.
(2017). Our encoder network has 3 dense blocks (each containing 4 convolutional layers) followed
by 3 fully connected layers. The schedule of feature maps is [16, 32, 64] for the dense blocks. Each
fully connected layer contains 1024 neurons.

We use two variants of the mapping architecture fθ. One, which we call HOF-1, is an MLP with 1
hidden layer containing 1024 neurons. A second version, HOF-3, is an MLP with 3 hidden layers,
each containing 128 hidden units. Both formulations use the ReLU activation function Glorot et al.
(2011). Because gφ and fθ are all differentiable almost everywhere, we can train the entire system
end-to-end with backpropagation. We use the Adam Optimizer with learning rate 1e-5 and batch size
1, training for 4 epochs for all experiments (1 epoch ≈ 725k parameter updates). Training HOF from
scratch took roughly 36 hours.

B.2.2 PATH PLANNING EXPERIMENT

We use the class ‘chair’ from the dataset described in Section 4.1 in our experiments. The objects from
this class have considerable variation and complexity in shape, thus they are useful for evaluating the
quality of the generated paths.

Path planning is performed in a three dimensional grid environment. All the objects in our dataset
fit inside the unit cube. Given the predicted point cloud of an object, we first voxelize the points by
constructing an occupancy map V = n× n× n centered at the origin of the object with voxel size
2/n. Next, we generate start and end points as follows. We choose a unit vector v sampled uniformly
at random and compute d = n/2 · v/||v||1. We use the end points of d and −d as the start and goal
locations. For each method, we generate the paths with the A* algorithm by using the voxelization of
the predicted point clouds as obstacles, and the sampled start and goal positions. The movement is
rectilinear in the voxel space and the distances are measured with the L1 metric. In the experiments
we use an occupancy grid of size 32 × 32 × 32, and sample 100 start and goal location pairs per
model.

In addition to the paths generated using the predictions from the EPCG Lin et al. (2018) and HOF
methods, we present two other baselines (Figure 9). The first baseline Shortest L1 outputs the shortest
path with the L1 metric ignoring the obstacles in the scene, and the second baseline Shortest Around
Bounding Box (SABB) takes the bounding box of the ground truth voxels as the environment to
generate the path.

14



Under review as a conference paper at ICLR 2020

Figure 9: Baseline path generation methods shown in 2D. The dotted path in blue is produced by
Shortest L1 and the dashed path in green is by SABB. Note that in our experiments we use the
rectilinear shortest path as the output of Shortest L1.

We present the path generation results in Table 5. The baseline Shortest L1 gives the optimal solution
when the path is collision-free. However, since most of the paths go through the object, this baseline
has a poor success rate performance. In contrast, SABB output paths are always collision-free as
the shortest path is computed using the bounding box of the true voxelization as the obstacles in
the environment. The length of the paths generated by SABB are longer compared to the rest of the
methods since the produced paths are ‘cautious’ to not collide with the object. These two baselines
are the best performers for the metric they are designed for, yet they suffer from the complementary
metric. Our method on the other hand achieves almost optimal results in both metrics due to the good
quality reconstructions.

B.2.3 COMPUTING ENVIRONMENT

All GPU experiments were performed on NVIDIA GTX 1080 Ti GPUs. The CPU running times
were computed on one of 12 cores of an Intel 7920X processor.

15


	Introduction
	Related Work
	Higher-Order Function Networks
	A Fast-Weights Approach to 3D Object Representation and Reconstruction
	Comparing with LVC Methods
	Extending Contextual Mapping Methods: Feature Aggregation through Function Composition

	Experimental Evaluations
	Comparison with Other Methods for 3D Model Reconstruction
	Runtime Performance Comparison
	Object Interpolation

	Conclusion and Future Work
	Additional Experiments and Ablation Studies
	Class-wise Reconstruction Quality Comparison
	Ablation Studies
	Collision-free Path Generation

	Training/Testing Dataset and Implementation Details
	Dataset
	Implementation Details
	Network Architecture and Training
	Path Planning Experiment
	Computing Environment



