
Under review as a conference paper at ICLR 2020

DIFFERENTIABLE ARCHITECTURE COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

In many learning situations, resources at inference time are much more con-
strained than resources at training time. This paper studies a general paradigm,
called Differentiable ARchitecture Compression (DARC), that combines model
compression and architecture search to learn models that are resource-efficient at
inference time. Given a resource-intensive base architecture, DARC utilizes the
training data to learn which sub-components can be replaced by cheaper alter-
natives. The high-level technique can be applied to any neural architecture, and
we report experiments on state-of-the-art convolutional neural networks for image
classification. For a WideResNet with 97.2% accuracy on CIFAR-10, we improve
single-sample inference speed by 2.28× and memory footprint by 5.64×, with no
accuracy loss. For a ResNet with 79.15% Top1 accuracy on ImageNet, we im-
prove batch inference speed by 1.29× and memory footprint by 3.57× with 1%
accuracy loss. We also give theoretical Rademacher complexity bounds in simpli-
fied cases, showing how DARC avoids overfitting despite over-parameterization.

1 INTRODUCTION

In machine learning, resources at inference time are often much more constrained than at training
time. For example, while neural networks for computer vision and natural language processing
(NLP) are routinely trained using GPUs, trained networks are often deployed on embedded systems
or mobile devices with limited memory and computational power. As another example, it is common
to train a model that will be applied continuously in production; while training occurs for a limited
time, the machine performing inference may run indefinitely, and so learning a more efficient model
can directly reduce costs associated with hardware or energy usage. As a result, many recent papers
have studied deep model compression and acceleration. Most of these papers provide resource
efficient model components (Jaderberg et al., 2014; Zhang et al., 2016; Wu et al., 2017) or methods
to prune or quantize parameters (LeCun et al., 1990; Polyak & Wolf, 2015; Li et al., 2016a; He et al.,
2017; Luo & Wu, 2017; Luo et al., 2017; Zhuang et al., 2018).

We propose a general paradigm called Differentiable ARchitecture Compression (DARC) for learn-
ing in the context of constrained resources at inference-time. Rather then suggesting a specific cheap
component and using it blindly throughout a neural network, or trying to tune layer hyperparame-
ters as in network pruning or quantization, our approach is inspired by Neural Architecture Search
(NAS) (Zoph & Le, 2016; Liu et al., 2018a; Pham et al., 2018; Kandasamy et al., 2018; Liu et al.,
2018b). DARC starts with a resource-intensive network design and uses training data to learn which
components can be replaced with efficient alternatives, while maintaining model output quality. The
resource requirement of the final model is controlled via a regularization term, which can be flexibly
defined depending on the objective, such as minimizing inference time or memory footprint.

DARC has a clear intuitive advantage when compared to methods that quantize or prune parameters;
these approaches are inherently restricted in their search space. They cannot replace a layer with a
structurally different layer, or replace two or more layers with a shallow alternative. As examples, it
might be the case that a convolutional layer cannot be pruned without hurting performance but can
be replaced with a depthwise-separable convolution, or an LSTM layer might not be amenable to
weight pruning, but could be replaced with a more efficient self-attention layer. DARC, applied to
deep networks, offers a way to search a rich space in the context of model compression.

The high-level idea is to partition the network into components, and explore alternatives to these
components simultaneously. Replacing all components simultaneously is crucial, as it provides
a data-driven way to decide which components can be replaced with cheap alternatives. Indeed,
replacing layers blindly may sacrifice too much prediction performance, as can be seen in Mo-

1



Under review as a conference paper at ICLR 2020

bileNets (Howard et al., 2017; Sandler et al., 2018), which exclusively use depthwise-separable
convolutions; although computationally efficient, even the most accurate MobileNet model is far
less accurate at ImageNet classification than, say, ResNet50.

We frame the problem of learning good replacement components as a sparse ensemble learning
problem. This view allows us to draw guidelines from simpler analyzable cases, leading to a simple,
gradient-based learning scheme that avoids over-fitting and is fast enough to apply DARC directly
to large datasets such as ImageNet. This contrasts from most NAS methods, which first learn an
architecture on a small dataset and then fit this architecture on the larger dataset.

We present experiments on networks commonly used in computer vision. By applying our tech-
niques on the ResNet Architecture (He et al., 2016), we outperform state-of-the-art models on both
ImageNet and CIFAR-10 datasets, in terms of accuracy vs. throughput and accuracy vs. model size.
A few results from our compression framework: for a WideResNet model achieving 97.2% accu-
racy on CIFAR-10, we improve single-sample inference speed by 2.28× and memory footprint by
5.64×, with no loss in accuracy. For a modified ResNet50 model with 79.15% Top1 accuracy on
ImageNet, we improve inference speed by 1.29× and memory footprint by 3.57× with 1% loss in
accuracy. Both base models are publicly available from the GluonCV Model Zoo (Mod, 2018). Our
experiments empirically demonstrate an intuitive observation that ‘you get what you optimize for’,
in that models minimizing model size tend to be quite different from those maximizing throughput.

We note that, while our experiments are limited to image classification, DARC is applicable to any
deep learning architecture, including models with recurrent cells or transformers, or indeed any
sufficiently modular learning algorithm, as described in Section 2, and any task with a well-defined
objective function in which we would like to reduce inference costs. We see this work as a proof-of-
concept for capabilities of the DARC framework, and the results in this paper give a strong indication
that DARC can be applied to NLP architectures, or optimized for metrics other than those we try
here (e.g. for latency on devices other than GPU, or energy consumption).

2 GENERAL SETTING AND DARC ESTIMATOR

The intuition and motivation for our method starts with a task of model selection. Given a task and
J function families corresponding to candidate models, we are interested in finding the best model
type for the task. We relax this combinatorial optimization problem to a more tractable differentiable
optimization problem (whence the name “differentiable architecture compression”), by allowing
convex combinations of these candidates. This can be thought of as a constrained form of ensemble
learning in which weights are restricted to represent a convex combinations of individual learners.

Then, we posit a budget constraint: each model type has an associated cost (e.g., memory consump-
tion or latency), and the overall cost of the ensemble is the sum of costs of the used models. Our
task is then to learn a convex ensemble over a subset of candidates, with total cost within budget.
We now formalize this approach, with modifications to address technical challenges as they arise.

In the sequel, for any positive integer J , [J ] = {1, 2, ..., J} denotes the set of positive integers at
most J , and ∆J :=

{
x ∈ [0, 1]J :

∑
j∈[J] xj = 1

}
denotes the probability simplex over J elements.

Consider the conventional supervised learning setting, in which we have an i.i.d. training dataset
(X1, Y1), ..., (Xn, Yn)

IID∼ P(X,Y ) from some joint distribution P(X,Y ) on X × Y . Fix a loss
function L : R × Y → [0,∞], and a hypothesis class H of R-valued functions. We would like to
learn a function h : X → R, h ∈ H that minimizes the risk R(h) := E(X,Y )∼P(X,Y )

[L (h(X), Y )].

The usual empirical risk minimization (ERM) estimator is ĥERM := arg minh∈H R̂(h) where, for
any hypothesis h ∈ H, R̂(h) := 1

n

∑n
i=1 L (h(Xi), Yi) denotes the empirical risk. To derive our

resource-constrained objective, we impose a few structural assumptions on our hypothesis classH:

(A1) H = Conv
⋃
j∈[J]Hj is the convex hull of a union of J classesH1, ...,HJ .

(A2) Each classHj class has a known cost Cj ≥ 0 of using a hypothesis hj ∈ Hj at test-time.

(A3) Costs are additive: hypothesis h =
∑J
j=1 αjhj ∈ H has cost C`0(α) =

∑J
j=1 Cj1{αj>0}.

(A4) We have a known budget B ≥ 0 for the final model at test-time.

2



Under review as a conference paper at ICLR 2020

As we show in Section 3, these assumptions arise naturally in architecture compression. Given
assumptions equation A1-equation A4, the constrained ERM estimate is ĝ =

∑
j∈[J] α̂j ĥj , where

(α̂0, ĥ0) := arg min
α∈∆J ,ĥj∈Hj

R̂

∑
j∈[J]

αjhj

 , subject to C`0(α) ≤ B. (1)

The above estimator is difficult (NP-hard) to compute, due to the non-smooth, non-convex budget
constraint C`0(α) ≤ B. Since this constraint bounds the `0 norm of α (weighted by C), the usual
remedy would be to relax the constraint to one on the `1 norm of α (weighted by C), namely
C`1(α) :=

∑
j∈[J] Cjαj ≤ B. Unfortunately, due to the constraint that α lies in the probability

simplex ∆J (which implies
∑
j∈[J] αj = 1), the `1 constraint is insufficient to induce sparsity on

α. Fortunately, sparse optimization on ∆J is well-studied, with many solutions proposed (Pilanci
et al., 2012; Kyrillidis et al., 2013; Li et al., 2016b). Due to ease of implementation, we adopt a
simple but effective solution proposed by (Kyrillidis et al., 2013), which involves alternating gradient
updates with a projection operation P∆J : RJ\RJ− → ∆J , given by P∆J (α) = α+

‖α+‖1 , where
α+ = (max{0, α1}, ...,max{0, αj}) ∈ RJ+.

P∆J is easy to compute, enforces the simplex constraint α ∈ ∆J exactly, and induces sparsity
on α. For an intuition of how this works, one can note that ∇‖α‖22/2 = α, so that the update
α/‖α‖1 = α − (1− 1/‖α‖1)α can be viewed as a gradient step for minimizing −‖α‖22/2 with
adaptive step size (1− 1/‖α‖1). As a technicality, we note that the projection P∆J (α) is undefined
when α ∈ RJ− has no positive components. However, for realistic gradient step sizes η, this never
occurs, since, after each gradient update,

∑
j∈[J] αj ≥ 1−O(η).

Finally, a natural initial point for our procedure is one where C`1(α) > B, hence we re-
express the constraint C`1(α) ≤ B as a penalty λC`1(α). Since the value of λ correspond-
ing to B is not known a priori, we iteratively increase λ until the solution of the optimiza-
tion problem satisfies the budget constraint. The resulting DARC procedure is shown Algo-
rithm 1. We note that the “stopping criterion” for the inner loop can be as simple as a fixed num-
ber of training epochs (as in our experiments), or a more sophisticated early-stopping criterion.

Algorithm 1: DARC algorithm for general hypotheses
Data: Training Data {(Xi, Yi)}ni=1, J candidates h1,w1

, ..., hj,wj with initial parameters w1, ..., wj
and costs c1, ..., cj ≥ 0, initial cost penalty parameter λ0 > 0, budget B.

Result: α,w1, ..., wj such that h =
∑
j∈[J] αjhj,wj has small risk R(h) and cost C`0(α) ≤ B

1 α← (1/J, ..., 1/J), λ← λ0 ;
2 while C`0(α) > B do
3 while stopping criterion is not met do
4 (α,w1, ..., wJ)← (α,w1, ..., wJ)− η

(
∇α,w1,...,wJ R̂

(∑
j∈[J] αjhj,wj

)
+ C`1(α)

)
;

5 α← P∆J (α);
6 end
7 λ← 2λ
8 end

3 APPLYING DARC TO DEEP NETWORKS

DARC can be applied in a myriad of ways to compress deep neural networks. In all of these ways,
the basic premise is to intelligently replace components of the network with cheaper components.

Consider a Neural Network (NN) with L layers. For layer `, let W` be the parameters of the layer,
and g` be the function mapping inputs and parameters to the output (in layers having no parameters,
W can be an empty token). For example, for a fully connected layer, W is a matrix, the input x is a
vector, and g is the matrix-vector multiplication function. We can write the NN as a function:

f(x) = gL(WL, gL−1(WL−1, · · · g1(W1, x) · · · )), (2)
To apply DARC, we consider a set of replacement candidates (g`,2,W`,2), . . . , (g`,J` ,W`,J`) for
each layer ` (with g`,1,W`,1 denoting the original function and weight of the layer). For each candi-
date j in layer `, DARC takes as input an associated cost C`,j ≥ 0. Examples of such costs include

3



Under review as a conference paper at ICLR 2020

parameters count, FLOPs, or latency, which are usually easy to calculate or estimate experimentally.
Applying DARC to neural network compression then involves four main steps:
1. Layerwise Continuous Relaxation: First, we replace each g`,W` with a weighted average
g̃`(W̃`, α`, x) =

∑J`
j=0 α`,jg`,j(W`,j , x), where α` ∈ ∆J` . The original network is replaced

by f̃(x) = g̃L(W̃L, αL, · · · g̃1(W̃1, α1, x) · · · ).
2. DARC Model Initialization: Before training the DARC model, we need to initialize the α

weights and the parameters of the compression candidates. We initialized the α parameters as
uniform vectors α` = (1/J`, 1/J`, ..., 1/J`). The other option we considered was to put all
weight on the original candidate (α` = (1, 0, ..., 0)), so that the initial model was equivalent to
the original model being compressed. However, this makes the gradient of the loss 0 with respect
to all parameters of the compression candidate, preventing these from training. Furthermore, the
non-convex regularization discourages the weights of α` to shift towards a value that makes use
of the compression candidates. As for candidate parameters, we initialized each compression
candidate to mimic the original layer, which we know gives good prediction results. In some
cases, this can be done analytically (e.g. via PCA for lower dimensional fully-connected layers);
more generally, this can be done via SGD, training the new candidate to minimize squared loss
between its outputs and those of the original layer g`,1(W`,1, x). Since this is only for initializa-
tion, it suffices to use a small training sample and crude optimization procedure.

3. Training the Relaxed Model: We minimize the empirical risk, simultaneously over the mixture
weights (αs) and the candidate weights (W̃ s) as described in Algorithm 1.

4. Selecting a Sub-Model: As discussed above, for sufficiently large λ, Algorithm 1 converges to
a solution with small (weighted) `0 norm; i.e., α` will have a small number of non-zero entries.
Thus, we remove candidate g`,j (and its weight α`,j) from the network if α`,j = 0.

During optimization, we jointly optimize α and the model parameter on the same data, contrast-
ing from other gradient based NAS approaches (Liu et al., 2018b) that split data into two training
sets, optimize model parameters on one and α weights on the other. In Section 4 we analyze the
Rademacher complexity of our procedure in a simple setting and show that under the condition
that the original model class defined by g`,1 is richer than the alternatives, optimizing all parameters
jointly does not hurt generalization guarantees when compared to the original optimization objective
where J` = 1. Unlike for NAS, this condition holds naturally for model compression.

Efficient Approximate Convolutions Computation in most deep networks used in computer vi-
sion problems, such as image classification, image segmentation, and object detection, is dominated
by convolutional layers. This has motivated several papers on efficient approximations to convolu-
tion, such as depthwise-separable convolution (Jaderberg et al., 2014; Zhang et al., 2016; Howard
et al., 2017), bottleneck convolution (Sandler et al., 2018), and shifts (Wu et al., 2017).

In a standard convolution layer we have k × k filters for every input and output channel. Denot-
ing the output channels by Yi and the input channels by Xj , the i’th output channel is defined as
Yi =

∑
j Xj ∗ Fi,j . Here Fi,j is the appropriate filter and ∗ is the convolution operator. Restrict-

ing the discussion to the setting where the number of output and input channels are the same, a
fully-grouped convolution is a more constrained alternative in which the filter is k × k but each
output is computed based on a single input channel. A depthwise-separable convolution consists
of a full-grouped convolution followed by a standard 1 × 1 convolution. In most setting this op-
eration requires less compute and memory resources. A shift layer is an even cheaper alternative
to depthwise-separable where the Fi’s are fixed and have only a single non-zero element, resulting
in computational complexity equivalent to a single 1 × 1 convolution. We use DARC to compress
CNNs by considering alternatives from among the above options, for each convolution layer.

4 THEORETICAL RESULTS

Here, we discuss generalization power models learned by DARC. We restrict our attention to the
simple case of learning an ensemble of models; as described below, the result has implications
for our algorithm for training DARC. This setting actually applies not only for DARC but also for
various NAS methods such as DARTS (Liu et al., 2018b) or ENAS (Pham et al., 2018). Indeed,
these methods aim to choose one out of several options in each layer. While these methods differ in
how this ensemble is learned, our generalization bound is independent of the learning technique.

4



Under review as a conference paper at ICLR 2020

Recall that DARC learns a convex combination of functions from J classes H1, . . . ,Hj . Here, we
analyze generalizability of this process via Rademacher complexity Bartlett & Mendelson (2003):

Definition 1 (Rademacher Complexity). Let H be a class of functions mapping X → R and let
n ∈ N. Denote by Xn

1 = (X1, ..., Xn) n IID samples from X . Let σ a uniform random vector in
{−1, 1}n. The Rademacher complexity ofH is R(H) = Eσ,Xn1

[
suph∈H

1
n

∑
i∈[n] σih(Xn,i)

]
.

It is well known that the Rademacher complexity of a classH is equal to that of the convex hull ofH.
Based on this fact, for h = (h1, . . . , hJ) ∈

∏J
j=1Hj , α ·h =

∑J
j=1 αjhj , we have a generalization

bound on the difference between true risk R and empirical risk R̂:

Theorem 1. Suppose we jointly estimate α, h1, ..., hJ ; i.e.,
(
α̂, ĥ1, ..., ĥJ

)
:=

arg minhj∈Hj ,α∈∆J :C·α≤B
∑n
i=1 L (α · h(Xi), Yi). Let L(h(x), y) = 1{f(x)6=y} be 0-1 loss.

Then, w.p. ≥ 1−δ (over n training samples), R
(
α̂ · ĥ

)
− R̂

(
α̂ · ĥ

)
≤ R

(⋃
j∈[J]Hj

)
+
√

log 1/δ
n .

Since Theorem 1 follows from standard Rademacher generalization bounds (e.g., (Bartlett &
Mendelson, 2003, Theorem 5(b))), we omit its proof. According to Theorem 1, generalization
error depends on a standard

√
(log 1/δ)/n term and Rademacher complexity of the union of classes

H1, ...,HJ . If H1, ...,HJ are diverse, this union can be quite rich and so R
(
∪j∈[J]Hj

)
might be

large, leading to overfitting. However, consider an example where H1 is the family of full convolu-
tions,H2 is the family of depthwise-separable convolutions,H3 is the family of sparse convolutions,
etc. Here, we actually have H1 =

⋃
j∈[J]Hj ; thus, Rademacher complexity is simply that of the

original model (i.e., with J = 1). Formally:

Corollary 1. Suppose that every sub-model is contained in H1; i.e., H2, ...,HJ ⊆ H1. Then, the
Rademacher complexity of DARC is at most that of the original model: R (H) ≤ R (H1).

Even ifH1 (
⋃
j∈[J]Hj , in the setting of model compression the alternative familiesHj , j > 1 are

cheaper replacements for H1 suggesting that R(H1) ≈ R(
⋃
j∈[J]Hj). This observation motivates

our learning framework – it shows us that there is no need to split the training set, train the model
parameters on one split and the control parameters on the other, as in many NAS papers (Cai et al.,
2018; Liu et al., 2018b).

We note that does not motivate a change in the learning framework of NAS. A key difference be-
tween NAS and DARC is that candidate models H1, ...,HJ in NAS are intentionally diverse; their
union is much richer than any individual. This translates to large R

(⋃
j∈[J]Hj

)
, motivating a

need to avoid jointly optimizing α and model parameters on a single training set. When keeping
a validation set aside for training α, given the limited number of update steps typical in NAS pa-
pers, generalization error may be closer to the setting of fixed α, wherein Rademacher complexity
is bounded by

∑
j αjR(Hj) (Cortes et al., 2014), potentially much smaller than in Theorem 1.

5 EXPERIMENTAL RESULTS

We applied DARC to a number of deep networks from the GluonCV Model Zoo (Mod, 2018) for
image classification on the CIFAR-10 and ImageNet (Russakovsky et al., 2015) datasets; this sec-
tion presents quantitative and qualitative results. We report three performance metrics (model size,
single-sample throughput, and batch throughput), and we specifically considered using DARC to
minimize two of these (model size and batch throughput). Below, “DARC(S)” denotes DARC with
a model (S)ize penalty, and “DARC(T)” denotes DARC with batch (T)hroughput penalty.

Choice of Compression Candidates For each convolutional layer, besides the original (full) con-
volution, we considered 3 compression candidates: a (fully-grouped) depthwise-separable convolu-
tion with 3 × 3 kernels (abbreviated henceforth as “3x3DS”), a full convolution with 1 × 1 kernels
(“1x1FC”), and a 2-layer candidate consisting of a 3x3DS layer followed immediately by a 1x1FC
layer (“3x3+1x1”). In ResNet50, which was already implemented using bottleneck convolutions (He
et al., 2016) consisting of a sequence of 1× 1, 3× 3, and 1× 1 convolutions, the entire bottleneck

5



Under review as a conference paper at ICLR 2020

sub-network was treated as a single component (i.e., all 3 convolutions were replaced with a single
block from the above mentioned alternatives). We intentionally limited the choice of alternatives
to maintain a simple system that can enjoy high throughput without special implementation. Our
precise choice of alternatives is motivated by them already being an established component for deep
networks, proven to work in some settings even without architecture search.

DARC Training Details To maximize fairness when comparing with models in the GluonCV
Model Zoo (Mod, 2018), most aspects of training DARC were based on the training scripts provided
publicly by the Model Zoo1. Due to space constraints, these implementation details are decribed in
Appendix A; a few specific differences from these scripts are described below.

Student-Teacher Initialization: As described in Section 3 we initialized compression candidates to
mimic original layers using student-teacher training. While this training had to be performed sepa-
rately for each compression candidate in each layer of the original model, since each compression
candidate has few parameters, each candidate’s training converged quite quickly. Thus, in CIFAR-10
experiments, we simply ran 1 epoch of the entire training dataset; in ImageNet experiments, we ran
only 1000 batches. A relatively large step size of 0.1 was used, since teacher-student initialization
is only for initialization and fine-tuning can be performed during model-selection.

Main Training Phase: As noted in Algorithm 1, training occurred in blocks of epochs (20
epochs/block for CIFAR-10, 10 for ImageNet), with the compression penalty λ increased after each
block, to obtain a spectrum of compressed models. For each dataset, penalty type, and model size,
the initial value of λ was selected to roughly balance the orders of magnitude of the empirical loss
and the regularization term at the beginning of training. After each block, we: 1) remove candidates
j with αj = 0l, 2) save (for evaluation later) a copy of the DARC model, in which, in any layer
with multiple non-zero α entries, all but the most expensive remaining candidate are removed, and
3) decrease learning rate η and increase compression penalty λ (each by a factor of 2).

This “iterative compression” was repeated until only one compression candidate per layer remained
in the DARC model. Finally, each saved model was fine-tuned for 20 epochs using only prediction
loss (i.e., with λ = 0). This procedure enabled us to obtain a sequence of compressed models at
progressively increasing compression levels. Moreover, this “warm-starting” improved compression
speed since we only perform a total of 30 epochs per λ value, rather than the > 100 epochs needed
for convergence at high levels of compression.

5.1 CIFAR-10 RESULTS

By all metrics, DARC gave the best results when applied to very wide models such as the WideRes-
Net series (specifically, the WideResNet16 10, WideResNet28 10, and WideResNet40 8 mod-
els (Mod, 2018)). Moreover, unlike results on other ResNets, results on WideResNets were rel-
atively similar for both DARC(S) and DARC(T); both versions of DARC selected the 3x3+1x1
candidate for every layer. The reason for this is that very wide convolutions in WideResNet models
can be replaced by depthwise separable convolutions with essentially no loss in accuracy, and im-
provement in throughput for both batches and for single samples (1.4-1.6× for each) and memory
footprint (4-6×). In the case of WideResNet16 10, DARC produces a model with latency (single
sample throughput) comparable to on of the fastest CIFAR-10 model (ResNet20 v1; see Figure 1),
while having accuracy within 0.8% of the best model (ResNeXt29 16x64d), 3.2% accuracy points
above the performance of ResNet20 v1. For complete CIFAR-10 results see Appendix tables 3-4.

5.2 IMAGENET RESULTS

For ImageNet we compressed several ResNet models. To present the size compression results we
provide Table 2 comparing accuracy change as a function of parameter reduction. We compared
to previous published results compressing ResNet50 on ImageNet. To our knowledge these are
the state-of-the-art results among those compressing ResNet50 on ImageNet. For compression as
aggressive as 3×, we incur an accuracy drop of 0.86% while the baseline suffers a drop of 3.26%.
Table 1 gives throughputs of our compressed ResNet34 and ResNet50 models and throughputs of
state-of-the-art competing models, on identical hardware; our compressed models outperform these
competing models, due to our initialization based on pre-trained ResNet34 and ResNet50 models.

1train imagenet.py, train mixup cifar10.py

6

https://gluon-cv.mxnet.io/_downloads/3bb06a6d6d085b1bb501b30aaf6c21c5/train_imagenet.py
https://gluon-cv.mxnet.io/_downloads/b9ff6a58186006845fbf1a6e18d6c13e/train_mixup_cifar10.py


Under review as a conference paper at ICLR 2020

While further details, including other compressed versions, are available in the Appendix (Figures 2
and 3 and Table 5), Table 2 compares prediction performance of DARC(S) with that of state-of-the-
art network pruning techniques applied to ResNet50 on ImageNet, at various compression levels. In
the light (1.5×) compression regime, the result of (Zhuang et al., 2018) outperforms ours. The work
of (Zhuang et al., 2018) complements ours, in that their novelty is in warm-starting the compressed
alternative not only to mimic the original, but also to be informative w.r.t. the label. Since this work
does not have an architecture search component, we suggest that future work combine this clever
warm-start with an architecture search component such as DARC. Once the compression becomes
more aggressive, DARC outperforms the baseline, likely since in that regime (smaller network with
more training epochs), a good architecture is more important than a good warm-start.

Model Accuracy (Top-1) Throughput (224× 224px/s)
ResNet34 (Mod, 2018) 74.4 205
ResNet50 (Mod, 2018) 79.1 148
ProxylessNAS∗ (Cai et al., 2018) 75.1 196
MobileNetV2∗ (Sandler et al., 2018) 72.0 164
MnasNet∗ (Tan et al., 2019) 74.0 164
DARTS∗ (Liu et al., 2018b) 73.1 —
DARC-ResNet34 (ours) 73.9 234
DARC-ResNet50 (ours) 76.8 208

Table 1: Comparison of ResNet34/ResNet50 compressed by DARC(T) with models from state-of-
the-art competing methods (as reported by Cai et al. (2018) in an identical runtime environment).

5.3 DISCUSSION OF COMPRESSED ARCHITECTURES

ResNet-50 Compression Top1/Top5
Disc 1.51× +0.39/+0.14
DARC(S) 1.63× −0.51/−0.16
ThiNet 2.06× −1.87/−1.12
Disc 2.06× −1.06/−0.61
DARC(S) 2.05× −0.63/−0.19
Disc 2.94× −3.26/−1.80
DARC(S) 3.01× −0.86/−0.28
DARC(S) 3.57× −0.99/−0.35
DARC(S) 6.14× −6.09/−4.85

Table 2: Comparison of DARC and state-of-the-
art pruning methods, Disc (Zhuang et al., 2018)
and ThiNet (Luo et al., 2017), when compress-
ing ResNet-50 trained ImageNet for ResNet-50.
(S)ize denotes models optimized by DARC to
minimize model size. Top1/Top5 accuracy of pre-
trained model were 79.15%/94.58% respectively.

In both ResNets and WideResNets, model size
tends to be dominated by a small number of
the largest layers in the model, and is relatively
insensitive to the depth of the network. Thus,
significant compression can be achieved by re-
placing these large layers with 3x3+1x1 can-
didates, which offer compression of nearly 9×
(for 3× 3 convolutions). Since the sizes (num-
ber of convolutional kernels) of ResNet layers
increases from bottom to top (i.e., from input
to output) DARC(S) tends to first replace the
top-most layers (i.e., layers closest to the out-
put) of the network with 3x3+1x1 candidates,
proceeding towards the bottom of the network
as the compression parameter λ increases.

In contrast, model latency is relatively uni-
formly distributed throughout the layers of the
network – the time taken to compute each con-
volutional layer scales only weakly with the
number, size, and grouping of filters. Thus, in ResNets (but not in WideResNets) 3x3+1x1 can-
didates, which replace 1 layer with 2 smaller layers, tend to offer little or no benefit in throughput;
of the compression candidates we considered, only the smallest (3x3DS) candidates offer significant
acceleration (typically of about 2×) over full convolutions. As a result, the acceleration offered by
DARC(T) scales primarily with the number of layers that can be replaced by 3x3DS layers. More-
over, the replaced layers tend to be scattered throughout the network (rather than clustered near the
output of the network). As noted earlier, in WideResNets, each layer is so large that the 3x3+1x1
candidate is much faster than full convolution, and DARC(T) selects this candidate for all layers.

Overall, we see that the optimal compression strategy depends on whether one is optimizing for size
or for speed. This implies that some sort of intelligent replacement of components, as in DARC,
is needed to obtain reliable performance improvements (as opposed to, say random baselines that
have been shown to perform well in pruning). This parallels recent work (Cai et al., 2018) showing
(for NAS) that optimizing for speed on different hardware (GPU, CPU, or mobile) leads to different

7



Under review as a conference paper at ICLR 2020

models. While we focused on GPU throughput, we note that the speedup of depthwise-separable
convolution over full convolution is typically larger on CPU and embedded devices than on GPU
devices. Thus, DARC should also produce efficient architectures for these alternative hardware.

6 RELATED WORK

Work on compressing deep networks has abounded in recent years, with diverse approaches includ-
ing pruning (LeCun et al., 1990; Polyak & Wolf, 2015; Li et al., 2016a; He et al., 2017; Luo &
Wu, 2017; Luo et al., 2017; Zhuang et al., 2018), low-rank factorization (Jaderberg et al., 2014;
Zhang et al., 2016; Howard et al., 2017), fast approximate convolutions (Bagherinezhad et al., 2017;
Wu et al., 2017), knowledge distillation (Hinton et al., 2015; Romero et al., 2014), and quantiza-
tion (Gong et al., 2014; Han et al., 2015; Zhou et al., 2017; Lin et al., 2016); (Cheng et al., 2018)
survey common approaches. In contrast, DARC searches a richer space of alternative models and has
the ability to replace multiple components by a single one (e.g. replacing a bottleneck sub-network
of 3 convolutions with a single convolution). Indeed, though beyond the scope of this paper, DARC
can incorporate or complement many of these methods. Our initialization of compression candidates
by mimicking the original layer is also reminiscent of knowledge distillation.

Another closely-related line of papers concerns Neural Architecture Search (NAS) (Pham et al.,
2018; Kandasamy et al., 2018; Liu et al., 2018b; Gordon et al., 2018; Cai et al., 2018). The most
relevant papers are (Liu et al., 2018b), (Gordon et al., 2018), and (Cai et al., 2018), who all use a
sparse linear component weighting scheme similar to DARC. (Liu et al., 2018b) focused on pure
architecture search, in which the goal is simply to find an architecture maximizing prediction per-
formance, without consideration of inference-time efficiency. (Gordon et al., 2018) do not aim to
replace layers with general alternatives but rather discover parameters in a data-driven way; their
experiments are restricted to results in channel pruning. Recently, (Cai et al., 2018) performed NAS
with a latency regularization term similar to ours.

Our methods differ from these NAS papers in two main ways (summarized in Table 3). First, our
architecture search is guided by an established base model that was already tested and proven use-
ful. This distinction allows a simpler and more efficient learning scheme (motivated in Section 4)
that avoids iterating between training sets, to optimize model and α parameters. Furthermore, start-
ing with a pre-trained model allows us not only to reach an effective architecture, but to warm
start the weight parameters. As evidence of the advantage of starting with a pretrained model,
our compressed model ResNet50(T) on ImageNet has Top1 accuracy ≥ 3% more than models ob-
tained by these NAS papers; thus, it seems that starting architecture search with a highly accurate
base model can improve the efficiency/accuracy trade-off of the learned model. Another distinction
from gradient-based NAS results is our use of sparsity-inducing regularization. Previous methods
make the choice between the candidates via a softmax layer; this restricts the output to be a convex
combination of inputs without optimizing sparsity. Since these methods also aim to find a sparse
combination, they might benefit from a non-convex regularization term as in DARC.

Table 3: Comparison of DARC with NAS methods. “SGD” denotes stochastic gradient descent.
“RL” denotes reinforcement learning.

Method Optimizer Efficient
architecture

Resists
Overfit-

ting

Exploits
pre-

training

Iterative
com-

pression
DARTS (Liu et al., 2018b) SGD 7 7 7 7
ENAS (Pham et al., 2018) RL 7 7 7 7

ProxylessNAS (Cai et al., 2018) SGD/RL 3 3 7 7
MNasNet (Tan et al., 2019) SGD 3 3 7 7

FBNet (Wu et al., 2019) SGD 3 3 7 7
DARC (proposed method) SGD 3 3 3 3

7 CONCLUSIONS AND FUTURE WORK

We have shown that even a simple DARC implementation, with only depthwise-separable approx-
imations as compression candidates, can be used to compress large state-of-the-art deep networks,
improving inference speed and memory footprint. Intelligently making only some layers of the net-

8



Under review as a conference paper at ICLR 2020

work depthwise-separable results in compressed models with much better predictive performance
than simply making all convolutions depthwise-separable, as in (Howard et al., 2017).

While depthwise-separable convolutions are easily implemented in existing deep learning packages
and already offer substantial compression, future work may benefit from more sophisticated approx-
imate convolutions, with efficient implementations. For example, shift operations (Wu et al., 2017)
are promising, as they require no stored parameters and replace the slow multiplications in convo-
lution with fast indexing. Another venue worth pursuing is to compress a model into a shallower
version. Although there are a few ways this could be attempted, such as an Identity candidate or
replacing entire blocks of layers, it is unclear which technique would work best. Finally, we hope to
apply DARC to models other than CNNs (e.g., models with recurrent cells or transformers).

9



Under review as a conference paper at ICLR 2020

REFERENCES

Gluon Model Zoo: Classification. https://gluon-cv.mxnet.io/model_zoo/
classification.html, 2018. Accessed: 2018-12-10.

Hessam Bagherinezhad, Mohammad Rastegari, and Ali Farhadi. Lcnn: Lookup-based convolutional
neural network. In Proc. IEEE CVPR, 2017.

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. J. Mach. Learn. Res., 3:463–482, March 2003. ISSN 1532-4435. URL
http://dl.acm.org/citation.cfm?id=944919.944944.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression and acceleration for deep
neural networks: The principles, progress, and challenges. IEEE Signal Processing Magazine, 35
(1):126–136, 2018.

Corinna Cortes, Mehryar Mohri, and Umar Syed. Deep boosting. In International Conference on
Machine Learning, pp. 1179–1187, 2014.

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir Bourdev. Compressing deep convolutional net-
works using vector quantization. arXiv preprint arXiv:1412.6115, 2014.

Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and Edward Choi. Mor-
phnet: Fast & simple resource-constrained structure learning of deep networks. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2018.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In International Conference on Computer Vision (ICCV), 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. In Proceedings of the British Machine Vision Conference. BMVA Press,
2014.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric Xing.
Neural architecture search with bayesian optimisation and optimal transport. arXiv preprint
arXiv:1802.07191, 2018.

Alex Krizhevsky and Geoff Hinton. Convolutional deep belief networks on cifar-10. Unpublished
manuscript, 40(7), 2010.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Anastasios Kyrillidis, Stephen Becker, Volkan Cevher, and Christoph Koch. Sparse projections onto
the simplex. In International Conference on Machine Learning, pp. 235–243, 2013.

10

https://gluon-cv.mxnet.io/model_zoo/classification.html
https://gluon-cv.mxnet.io/model_zoo/classification.html
http://dl.acm.org/citation.cfm?id=944919.944944


Under review as a conference paper at ICLR 2020

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pp. 598–605, 1990.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016a.

Ping Li, Syama Sundar Rangapuram, and Martin Slawski. Methods for sparse and low-rank recovery
under simplex constraints. arXiv preprint arXiv:1605.00507, 2016b.

Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy. Fixed point quantization of deep convolu-
tional networks. In International Conference on Machine Learning, pp. 2849–2858, 2016.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 19–34, 2018a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Jian-Hao Luo and Jianxin Wu. An entropy-based pruning method for cnn compression. arXiv
preprint arXiv:1706.05791, 2017.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In 2017 IEEE International Conference on Computer Vision (ICCV), pp.
5068–5076. IEEE, 2017.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

Mert Pilanci, Laurent E Ghaoui, and Venkat Chandrasekaran. Recovery of sparse probability mea-
sures via convex programming. In Advances in Neural Information Processing Systems, pp. 2420–
2428, 2012.

Adam Polyak and Lior Wolf. Channel-level acceleration of deep face representations. IEEE Access,
3:2163–2175, 2015.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 4510–4520. IEEE, 2018.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. MnasNet: Platform-aware neural architecture search for mobile. In CVPR, pp.
2820–2828, 2019.

Bichen Wu, Alvin Wan, Xiangyu Yue, Peter Jin, Sicheng Zhao, Noah Golmant, Amir Gholaminejad,
Joseph Gonzalez, and Kurt Keutzer. Shift: A zero flop, zero parameter alternative to spatial
convolutions. arXiv preprint arXiv:1711.08141, 2017.

Bichen Wu et al. FBnet: Hardware-aware efficient convnet design via differentiable neural architec-
ture search. In CVPR, 2019.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep convolutional
networks for classification and detection. IEEE transactions on pattern analysis and machine
intelligence, 38(10):1943–1955, 2016.

11



Under review as a conference paper at ICLR 2020

Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quantiza-
tion: Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou
Huang, and Jinhui Zhu. Discrimination-aware channel pruning for deep neural networks. In
Advances in Neural Information Processing Systems, pp. 883–894, 2018.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

A DARC IMPLEMENTATION DETAILS

In this section, we provide further details about the implementation of DARC used in our experi-
ments.

Environment Details We implemented DARC in Apache MXNet 1.3.1 using Python 3.6 and
CUDA 9.0. Experiments were run on AWS EC2 p3.8xlarge and p3.16xlarge machines, which re-
spectively features 4 and 8 NVIDIA Tesla-V100 GPUs. CIFAR-10 models were each trained with
1 GPU. Smaller ImageNet models (ResNet18 and ResNet34) were trained using 4 GPUs, while the
larger ResNet50 was trained using 8 GPUs.

Training Details Following the original script used to train models in the GluonCV Model Zoo,
we utilized mixup training (Zhang et al., 2017), and optimized cross-entropy loss with Nesterov
accelerated stochastic gradient descent (NAG) with (default) momentum parameter 0.9. As noted in
the main paper, for student-teacher initialization, we used a relatively large learning rate η = 0.1.
Thereafter, for model-selection, we began with an initial learning rate of η = 0.01, which was then
halved after each traning block.

To minimize training time, training batch sizes were selected to be as large as possible without
exceeding GPU memory during training. This resulted in batch sizes (per training GPU) of 256
for ResNets on CIFAR-10, 128 for WideResNets on CIFAR-10, 64 for ResNet18 and ResNet34 on
ImageNet, and 32 for ResNet50 on ImageNet.

For each dataset, penalty type, and model size, the initial value of λ was selected to roughly balance
the orders of magnitude of the empirical loss and the regularization term at the beginning of training.
For CIFAR-10 experiments with size penalization, the initial value of the λ compression penalty was
set to λ = 10−5×L, where L is the number of layers to which DARC was applied (i.e., the number
of full convolutions in the original model). For CIFAR-10 experiments with latency penalization,
we used λ = 104 × L. For ImageNet experiments, we used λ = 10−8 × L with size penalization
and L = 104 × L for latency penalization.

A.1 MEASURES OF MODEL PERFORMANCE

Computational Performance As an estimate of model size, we report the size (on disk) of the
parameter file created by MXNet when saving the model; this correlates well with both the number
of parameters in the model and the footprint of the model in RAM or GPU memory. Since through-
puts are inherently noisy, we report average inference times over 1000 batches. Though multiple
GPUs were used for training DARC, all inference times were computed using a single Tesla V100
GPU. We used batch size 1 to estimate single-sample throughput and batch size 256 to estimate
batch throughput. The cost of each compression candidate (i.e., number of parameters for DARC(S)
or latency for DARC(T)) was calculated or estimated based on the student model trained during
initialization.

Prediction Performance On CIFAR-10, we used standard (“Top1”) prediction accuracy. On Im-
ageNet, we additionally used (“Top5”) accuracy, the fraction of test images for which the correct
label is among the five labels considered most probable by the model. We note that these are the
standard performance used for these datasets (Krizhevsky & Hinton, 2010; Krizhevsky et al., 2012).

12



Under review as a conference paper at ICLR 2020

B SUPPLEMENTARY RESULTS

This section provides detailed numerical results of our experiments:

Figure 1: Throughputs of original and compressed WideResNet models, and of original ResNet20
models, at various batch sizes.

13



Under review as a conference paper at ICLR 2020

Model Top-1 Model Size Throughput (1 Im/batch) Throughput (256 Im/batch)
ResNet20 v1 (O) 92.9 1.05 709.62 53020.76
ResNet20 v1 (S) 92.1 0.90 682.85 53078.90
ResNet20 v1 (S) 92.0 0.78 706.91 52822.23
ResNet20 v1 (S) 90.2 0.60 699.80 53206.18
ResNet20 v1 (S) 89.0 0.26 723.89 53058.42
ResNet20 v2 (O) 92.7 1.05 792.03 52889.67
ResNet20 v2 (S) 92.1 0.85 665.98 53619.09
ResNet20 v2 (S) 91.4 0.67 671.05 54148.44
ResNet20 v2 (S) 91.0 0.48 700.55 54144.82
ResNet20 v2 (S) 90.3 0.26 663.76 56124.30
ResNet20 v2 (S) 89.1 0.25 739.73 55545.69
ResNet56 v1 (O) 94.2 3.31 345.89 18930.70
ResNet56 v1 (S) 93.4 1.60 369.71 19974.62
ResNet56 v1 (S) 93.3 1.34 348.71 20330.08
ResNet56 v1 (S) 92.9 1.18 347.43 20711.30
ResNet56 v1 (S) 92.8 0.60 354.43 21155.00
ResNet56 v1 (S) 92.7 0.59 343.84 21648.25
ResNet56 v2 (O) 94.6 3.30 395.35 19266.32
ResNet56 v2 (S) 93.4 1.12 382.69 20138.11
ResNet56 v2 (S) 93.2 1.12 360.47 20587.73
ResNet56 v2 (S) 93.1 0.93 353.93 20874.39
ResNet56 v2 (S) 92.9 0.71 355.93 20993.20
ResNet56 v2 (S) 92.7 0.63 335.27 21578.89
ResNet56 v2 (S) 92.5 0.59 330.72 22315.29
ResNet110 v1 (O) 95.2 6.68 239.89 9704.98
ResNet110 v1 (S) 94.1 2.84 213.33 10391.16
ResNet110 v1 (S) 94.1 2.38 198.18 10704.93
ResNet110 v1 (S) 94.1 1.10 209.27 10858.91
ResNet110 v1 (S) 93.9 1.10 203.75 11084.18
ResNet110 v1 (S) 93.7 1.09 191.06 11245.70
ResNet110 v2 (O) 95.5 6.68 220.21 9942.27
ResNet110 v2 (S) 94.3 3.13 210.58 10393.19
ResNet110 v2 (S) 94.3 2.08 209.11 10523.53
ResNet110 v2 (S) 94.2 1.97 199.03 10568.06
ResNet110 v2 (S) 93.9 1.21 214.44 10740.52
ResNet110 v2 (S) 93.7 1.14 219.05 11029.72
ResNet110 v2 (S) 93.7 1.09 209.54 11320.08
WideResNet16 10 (O) 96.7 65.34 345.19 4914.29
WideResNet16 10 (S) 96.6 17.11 608.58 6932.60
WideResNet16 10 (S) 96.5 16.23 631.89 7546.51
WideResNet28 10 (O) 97.1 139.24 186.63 2525.49
WideResNet28 10 (S) 97.2 26.42 423.48 3918.92
WideResNet28 10 (S) 97.1 24.67 425.66 4311.35
WideResNet40 8 (O) 97.3 136.47 156.06 2617.89
WideResNet40 8 (S) 97.3 21.31 358.66 4258.24

Table 4: Results of applying size-penalized DARC to CIFAR-10 models. (O)riginal Denotes an
original model taken from the GluonCV Model Zoo (Mod, 2018). (S)ize denotes a model optimized
by DARC to minimize model size. (T)hroughput denotes a model optimized by DARC to maximize
model throughput. Model Size is provided in MB on disk. Throughput numbers are provided in
32px ×32px images/second.

14



Under review as a conference paper at ICLR 2020

Model Top-1 Model Size Throughput (1 Im/batch) Throughput (256 Im/batch)
ResNet20 v1 (O) 92.9 1.05 684.32 52239.12
ResNet20 v1 (T) 91.4 1.03 749.98 34743.19
ResNet20 v1 (T) 90.6 0.93 1144.10 48822.26
ResNet20 v1 (T) 88.3 0.92 1233.44 69868.65
ResNet20 v2 (O) 92.7 1.05 737.07 52336.75
ResNet20 v2 (T) 91.9 1.01 691.04 60078.59
ResNet20 v2 (T) 90.7 0.83 1178.61 59269.61
ResNet20 v2 (T) 90.2 0.83 1275.66 70498.54
ResNet56 v1 (O) 94.2 3.31 377.22 18966.31
ResNet56 v1 (T) 93.5 3.05 389.21 19175.07
ResNet56 v1 (T) 92.9 2.97 398.94 24985.82
ResNet56 v1 (T) 92.5 2.94 399.47 25682.29
ResNet56 v2 (O) 94.6 3.31 389.76 18966.31
ResNet56 v2 (T) 94.4 3.16 398.09 20293.55
ResNet56 v2 (T) 94.3 3.16 409.56 20382.47
ResNet56 v2 (T) 94.3 3.15 409.78 21752.16
ResNet110 v1 (O) 95.2 6.68 213.59 9615.24
ResNet110 v1 (T) 94.5 5.50 222.80 10161.07
ResNet110 v1 (T) 93.1 5.48 229.85 12565.72
ResNet110 v1 (T) 90.3 5.47 237.86 13032.99
ResNet110 v2 (O) 95.5 6.68 174.33 9160.58
ResNet110 v2 (T) 94.9 5.35 225.93 10892.03
ResNet110 v2 (T) 94.5 5.20 226.46 11331.41
ResNet110 v2 (T) 94.3 5.19 233.13 11472.62
WideResNet16 10 (O) 96.7 65.34 349.98 5019.10
WideResNet16 10 (T) 96.1 16.23 601.01 7699.13
WideResNet28 10 (O) 97.2 139.24 158.52 2553.99
WideResNet28 10 (T) 96.8 24.67 455.45 4339.26
WideResNet40 8 (O) 97.3 136.47 155.67 2643.25
WideResNet40 8 (T) 96.4 21.31 395.71 4269.20

Table 5: Results of applying speed-penalized DARC to CIFAR-10 models. (O)riginal Denotes an
original model taken from the GluonCV Model Zoo (Mod, 2018). (S)ize denotes a model optimized
by DARC to minimize model size. (T)hroughput denotes a model optimized by DARC to maximize
model throughput. Model Size is provided in MB on disk. Throughput numbers are provided in
32px ×32px images/second.

15



Under review as a conference paper at ICLR 2020

Model Top-1 Model Size Throughput (1 Im/batch) Throughput (256 Im/batch)
ResNet18 v1 (O) 70.9 44.64 333.86 4044.52
ResNet18 v1 (S) 69.7 37.47 391.47 4142.90
ResNet18 v1 (S) 69.6 30.72 399.27 4196.04
ResNet18 v1 (S) 68.3 14.10 421.47 4281.12
ResNet18 v1 (T) 69.9 42.43 417.64 4296.34
ResNet18 v1 (T) 69.6 38.98 449.36 4473.29
ResNet18 v1 (T) 67.9 36.77 457.60 5173.91
ResNet34 v1 (O) 74.4 83.23 205.15 2441.79
ResNet34 v1 (S) 73.5 37.68 216.68 2480.66
ResNet34 v1 (S) 72.4 31.56 220.29 2543.27
ResNet34 v1 (T) 73.9 70.66 233.92 2693.20
ResNet34 v1 (T) 73.2 60.77 245.57 3289.19
ResNet50 v1 (O) 79.1 97.79 147.61 1242.42
ResNet50 v1 (S) 78.6 59.93 150.82 1257.26
ResNet50 v1 (S) 78.5 47.71 157.79 1263.03
ResNet50 v1 (S) 78.3 32.49 161.64 1298.97
ResNet50 v1 (S) 78.2 27.42 167.92 1359.69
ResNet50 v1 (S) 73.1 15.93 175.34 1492.43
ResNet50 v1 (T) 78.3 92.57 175.68 1518.25
ResNet50 v1 (T) 78.2 71.19 199.76 1602.78
ResNet50 v1 (T) 76.8 69.29 208.01 1682.92
ResNet101 v1 (O) 77.2 170.54 100.25 724.79
ResNet152 v1 (O) 78.1 230.49 69.27 500.19
MobileNet1.0 (O) 69.5 16.24 597.59 4393.48
MobileNet0.75 (O) 66.2 9.94 627.24 6161.25
MobileNet0.5 (O) 61.2 5.13 662.31 9805.38
MobileNetV2 1.0 (O) 70.2 13.53 369.75 3615.16
MobileNetV2 0.75 (O) 68.1 10.15 376.56 4739.72
MobileNetV2 0.5 (O) 64.0 7.59 398.03 7065.31
VGG11 (O) 66.9 506.83 318.53 912.44
VGG13 (O) 68.0 507.54 262.04 613.30
VGG16 (O) 71.5 527.79 205.29 458.85
VGG19 (O) 72.9 548.05 173.37 363.46
DenseNet121 (O) 74.0 30.80 119.88 1104.38
DenseNet161 (O) 76.9 110.31 63.33 508.16
DenseNet169 (O) 75.5 54.65 81.86 881.48
DenseNet201 (O) 76.6 77.30 62.83 673.12

Table 6: Results of applying DARC to ImageNet models. (O)riginal Denotes an original model
taken from the GluonCV Model Zoo (Mod, 2018). (S)ize denotes a model optimized by DARC
to minimize model size. (T)hroughput denotes a model optimized by DARC to maximize model
throughput. Model Size is provided in MB on disk. Throughput numbers are provided in 224px
×224px images classified/second.

16



Under review as a conference paper at ICLR 2020

Figure 2: Compression of ImageNet models, in terms of size, throughput, and latency, when size is
used as the computational penalty in DARC.

17



Under review as a conference paper at ICLR 2020

Figure 3: Compression of ImageNet models, in terms of size, throughput, and latency, when empir-
ical latency is used as the computational penalty in DARC.

18


	Introduction
	General Setting and DARC Estimator
	Applying DARC to Deep Networks
	Theoretical Results
	Experimental Results
	CIFAR-10 Results
	ImageNet Results
	Discussion of Compressed Architectures

	Related Work
	Conclusions and Future Work
	DARC Implementation Details
	Measures of Model Performance

	Supplementary Results

