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ABSTRACT

The effectiveness of Convolutional Neural Networks (CNNs) has been substan-
tially attributed to their built-in property of translation equivariance. However,
CNNs do not have embedded mechanisms to handle other types of transforma-
tions. In this work, we pay attention to scale changes, which regularly appear in
various tasks due to the changing distances between the objects and the camera.
First, we introduce the general theory for building scale-equivariant convolutional
networks with steerable filters. We develop scale-convolution and generalize other
common blocks to be scale-equivariant. We demonstrate the computational effi-
ciency and numerical stability of the proposed method. We compare the proposed
models to the previously developed methods for scale equivariance and local scale
invariance. We demonstrate state-of-the-art results on MNIST-scale dataset. Fi-
nally, we demonstrate that the proposed scale-equivariant convolutions show re-
markable gains on STL-10 when used as drop-in replacements for non-equivariant
convolutional layers.

1 INTRODUCTION

Scale transformations occur in many image and video analysis tasks. It is a natural consequence of
the variable distances among objects, or between objects and the camera. There are two options to
deal with scale changes: models should have an internal notion of scale and transform the prediction
accordingly, or models should be invariant to scale changes by design. In image classification, when
scale changes are commonly a factor of 2, class prediction can be made independent of the scale. In
image segmentation, visual tracking, or object detection, scale changes can reach factor 10 or more.
The ideal prediction should scale proportionally to the input. For example, a segmentation map of a
pedestrian nearby should be easily converted to that of the distant person just by downscaling.

Convolutional Neural Networks (CNNs) demonstrate state-of-the-art results in a wide range of tasks.
Despite their built-in translation equivariance, they do not have a particular mechanism for dealing
with scale changes. One way to make CNNs account for is to train them with data augmentation
Barnard & Casasent (1991). This is, however, suitable only for global transformations. Henriques
& Vedaldi (2017) and Tai et al. (2019) use the canonical coordinates of scale transformations to
reduce scaling to well-studied translations. Their approaches allow for scale equivariance, but break
translation equivariance instead.

Several attempts have been made to extend CNNs to scale and translation symmetry. Some works
used input or filter resizing to account for scaling in deep layers Xu et al. (2014); Kanazawa et al.
(2014). Tensor resizing is rather slow and involves interpolation. In Ghosh & Gupta (2019) the au-
thors pre-calculate filters defined on several scales to build scale-invariant networks, while ignoring
the important case of scale equivariance. In contrast, Worrall & Welling (2019) employ the theory
of semigroup equivariant networks with scale-space as an example, but the method is suitable for
integer downscale factors only.

In this paper we develop a theory of scale-equivariant networks. We demonstrate the concept of
steerable filter parametrization which allows for scaling without the need for tensor resizing. Then
we derive scale-equivariant convolution and demonstrate a fast algorithm for its implementation.
Furthermore, we experiment to determine to what degree the mathematical properties actually hold
true. Finally, we conduct a set of experiments comparing our model with other methods for scale
equivariance and local scale invariance.
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The proposed model has the following advantages compared to other scale-equivariant models:

1. It is equivariant to scale transformations with arbitrary discrete scale factors and is not
limited to either integer scales or scales tailored by the image pixel grid.

2. It does not rely on any image resampling techniques during training, and therefore, pro-
duces deep scale-equivariant representations free of any interpolation artifacts.

3. The algorithm is based on the combination of tensor expansion and 2-dimensional convo-
lution and demonstrates the same computation time as the general CNN with comparable
filter bank.

2 PRELIMINARIES

Before we move into scale-equivariant mappings, we discuss some aspects of equivariance, scaling
transformations, symmetry groups, and functions defined on them. For simplicity, in this section, we
consider only 1-dimensional functions. The generalization to higher-dimensional cases is straight-
forward.

Equivariance Let us consider some mapping g. It is equivariant under Lθ if and only if there exists
L′θ such that g ◦ Lθ = L′θ ◦ g. In case L′θ is the identity mapping, the function g is invariant.

In this paper we consider scaling transformations. In order to guarantee the equivariance of the pre-
dictions to such transformations and to improve the performance of the model we seek to incorporate
this property directly inside CNNs.

Scaling Given a function f : R→ R, a scale transformation is defined as follows:

Ls[f ](x) = f(s−1x), ∀s > 0 (1)

We refer to cases with s > 1 as upscale and to cases with s < 1 as downscale. If we convolve the
downscaled function with an arbitrary filter ψ and perform a simple change of variables inside the
integral, we get the following property:

[Ls[f ] ? ψ](x) =

∫
R
Ls[f ](x′)ψ(x′ − x)dx′ =

∫
R
f(s−1x′)ψ(x′ − x)dx′

= s

∫
R
f(s−1x′)ψ(s(s−1x′ − s−1x))d(s−1x′) = sLs[f ? Ls−1 [ψ]](x)

(2)

In other words, convolution of the downscaled function with a filter can be expressed through a
convolution of the function with correspondingly upscaled filter and the downscaling afterwards.
Equation 2 shows us that the standard convolution is not scale-equivariant.

Steerable Filters In order to make computations simpler, we reparametrize ψσ(x) = σ−1ψ(σ−1x),
which has the following property:

Ls−1 [ψσ](x) = ψσ(sx) = s−1ψs−1σ(x) (3)

It gives a shorter version of Equation 2:

Ls[f ] ? ψσ = Ls[f ? ψs−1σ] (4)

We will refer to such a parameterization of filters as Steerable Filters because the scaling of these
filters is the transformation of its parameters. Note that we may construct steerable filters from of
any function. This has the important consequence that it does not restrict our approach. Rather it will
make the analysis easier for discrete data. Moreover, note that any linear combination of steerable
filters is still steerable.

Scale-Translation Group All possible scales form the scaling group S. Here we consider the
discrete scale group, i.e. scales of the form . . . a−1, a−1, 1, a, a2, . . . with base a as a parameter
of our method. Analysis of this group by itself breaks the translation equivariance of CNNs. Thus
we seek to incorporate scale and translation symmetries into CNNs, and, therefore consider Scale-
Translation Group H . It is a semidirect product of scaling group S and the group of translations
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T ∼= R. In other words: H = {(s, t)|s ∈ S, t ∈ T}. For multiplication of group elements we
have (s2, t2) · (s1, t1) = (s2s1, s2(t1 + t2)). And for the corresponding scaling and translation
transformations, we have Lst = LsLt 6= LtLs, which means that the order of the operations
matters.

From now on, we will work with functions defined on groups, i.e. mappings H → R. Note, that
simple function f : R → R may be considered as a function on H with constant value along the
S axis. Therefore, Equation 4 holds true for functions on H as well. One thing we should keep in
mind is that when we apply Ls to functions on H and R we use different notations. For example
Ls[f ](x′) = f(s−1x′) and Ls[f ](s′, x′) = f((s, 0)−1(s′, x′)) = f(s−1s′, s−1x′)

Group-Equivariant Convolution Given group G and two functions f and ψ defined on it, G-
equivariant convolution is given by

[f ?G ψ](g) =

∫
G

f(g′)Lg[ψ](g′)dµ(g′) =

∫
G

f(g′)ψ(g−1g′)dµ(g′) (5)

Here µ(g′) is the Haar measure also known as invariant measure Folland (2016). For T ∼= R we
have dµ(g′) = dg′. For discrete groups, the Haar measure is the counting measure, and integration
becomes a discrete sum. This formula tells us that the output of the convolution evaluated at point g
is the inner product between the function f and the transformed filter Lg[ψ].

3 SCALE-EQUIVARIANT MAPPINGS

Now we define the main building blocks of scale-equivariant models.

Scale Convolution In order to derive scale convolution we start from group equivariant convolution
with G = H . We first use the property of semidirect product of groups which splits the integral,
then choose the appropriate Haar measures and finally use the properties of steerable filters. Given
the function f(s, t) and a steerable filter ψσ(s, t) defined on H , a scale convolution is given by:

[f ?H ψσ](s, t) =

∫
S

∫
T

f(s′, t′)Lst[ψσ](s′, t′)dµ(s′)dµ(t′)

=
∑
s′

∫
T

f(s′, t′)Lt[ψs−1σ](s−1s′, t′)dt′ =
∑
s′

[f(s′, ·) ? ψs−1σ(s−1s′, ·)](t)
(6)

And for the case of Cin input and Cout output channels we have:

[f ?H ψσ]m(s, t) =

Cin∑
n=1

∑
s′

[fn(s′, ·) ? ψn,m,s−1σ(s−1s′, ·)](t), m = 1 . . . Cout (7)

The proof of the equivariance of this convolution to transformations fromH is given in Appendix A.

Kondor & Trivedi (2018) prove that a feed-forward neural network is equivariant to transformations
from G if and only if it is constructed from G-equivaraint convolutional layers. Thus Equation 7
shows the most general form of scale-equivariant layers which allows for building scale-equivariant
convolutional networks with such choice of S. We will refer to models using scale-equivariant layers
with steerable filters as Scale-Equivariant Steerable Networks, or shortly SESN1

Nonlinearities In order to guarantee the equivariance of the network to scale transformations, we
use scale equivariant nonlinearities. We are free to use simple point-wise nonlinearities. Indeed,
point-wise nonlinearities ν, like ReLU commute with scaling transformations:

[ν ◦ Ls[f ]](s′, x′) = ν(Ls[f ](s′, x′)) = ν(f(s−1s′, s−1x′))

= ν[f ](s−1s′, s−1x′) = [Ls ◦ ν[f ]](s′, x′)
(8)

Pooling Until now we did not discuss how to convert an equivariant mapping to invariant one. One
way to do it is to calculate the invariant measure of the signal. In case of translation, such measure
could be the maximum value, for example.

1pronounced ‘season’
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First of all, we propose the maximum scale projection defined as f(s, x) → maxs f(s, x). This
transformation projects function f from H to T . Therefore, the representation stays equivariant to
scaling, but loses all information about the scale itself.

Secondly, we are free to use spatial max-pooling with a moving window or global max pooling.
Transformation f(s, x)→ maxx f(s, x) projects function f from H to S. The obtained representa-
tion is invariant to scaling in spatial domain, however, it stores the information about scale.

Finally, we can combine both of these pooling mechanism in any order. The obtained transformation
produces scale invariant function. It is useful to utilize this transformation closer to the end of the
network, when the deep representation must be invariant to nuisance input variations, but already
has very rich semantic meaning.

4 IMPLEMENTATION

In this paragraph we discuss efficient implementation of Scale-Equivariant Steerable Networks. We
illustrate all algorithms in Figure 1. For simplicity we assume that zero padding is applied when it
is needed both for spatial axes and for scale axis.

Filter Basis A direct implementation of Equation 7 is impossible due to several limitations. First,
the infinite number of scales in S calls for a discrete approximation. We truncate the scale group
and limit ourselves to NS scales and use discrete translations instead of continuous ones. Train-
ing of SESN involves the search of optimal filter in functional space which is a problem by itself.
Rather than solving it, we choose a complete basis of Nb steerable functions Ψ = {ψs−1σ,i}Nb

i=1 and
represent convolutional filter as a linear combination of basis functions with trainable parameters
w = {wi}Nb

i=1. In other words, we do the following substitution in Equation 7: ψσ → κ =
∑
i wiΨi

In our experiments we use a basis of 2D Hermite polynomials with 2D Gaussian envelope, as it
demonstrates good results. The basis is pre-calculated for all scales and fixed. For filters of size
V × V , the basis is stored as an array of shape [Nb, S, V, V ]. See Appendix C for more details.

Conv T →H If the input signal is just a function on T with spatial size U × U , stored as an array
of shape [Cin, U, U ], then Equation 7 can be simplified. The summation over S degenerates, and the
final result can be written in the following form:

convTH(f, w,Ψ) = squeeze(conv2d(f, expand(w ×Ψ))) (9)

Here w is an array of shape [Cout, Cin, Nb]. We compute filter w×Ψ of shape [Cout, Cin, S, V, V ] and
expand it to shape [Cout, CinS, V, V ]. Then we use standard 2D convolution to produce the output
with CoutS channels and squeeze it to shape [Cout, S, U, U ]. Note that the output can be viewed as
a stack of feature maps, where all the features in each spatial position are vectors of S components
instead of being scalar as in standard CNNs.

Conv H → H The function on H has a scale axis and here are two options for choosing weights
for convolutional filter. The filter may have just one scale and, therefore, does not capture the
correlations between different scales of the input function, or it may have non-unitary extent KS in
the scale axis and capture the correlation between KS neighboring scales. We refer to the second
case as interscale interaction.

It the first case w has shape [Cout, Cin, Nb] and Equation 7 degenerates in the same way as before
convHH(f, w,Ψ) = squeeze(conv2d(expand(f), expand(w ×Ψ))) (10)

We expand f to an array of shape [CinS,U, U ] and expand w×Ψ to have shape [CoutS,CinS, V, V ].
The result of the convolution is then squeezed in the same way as before.

In the case of interscale interaction, we use convHH for each scale sequentially and then just sum
the obtained KS results.

5 RELATED WORK

Various works on group equivariant convolutional networks have been published recently. They
have considered roto-translation groups in 2D Cohen & Welling (2016a); Hoogeboom et al. (2018);
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Figure 1: A representation of scale-convolution using Equation 9 and Equation 10. As an example
we use input signal f with 3 channels. It has 1 scale on T and 4 scales on H . It is convolved with
filter κ = w ×Ψ without scale interaction, which produces the output with 2 channels and 4 scales
as well. Here we represent only channels of the signals and the filter. Spatial components are hidden
for simplicity.

Worrall et al. (2017) and 3D Worrall & Brostow (2018); Kondor (2018); Thomas et al. (2018) and ro-
tation equivariant networks in 3D Cohen et al. (2017); Esteves et al. (2018). In Freeman & Adelson
(1991) authors describe the algorithm for designing steerable filters for rotations. Rotation steerable
filters are used in Cohen & Welling (2016b); Weiler et al. (2018a;b) for building equivariant net-
works. To date the majority of papers on group equivariant networks considered rotations in 2D and
3D, but did not pay attention to scale symmetry. As we have argued above, it is a fundamentally
different case.

Many papers and even conferences have been dedicated to image scale-space — a concept where
the image is analyzed together with all its downscaled versions. Initially introduced in Iijima (1959)
and later developed by Witkin (1987); Perona & Malik (1990); Lindeberg (2013) scale space relies
on the scale symmetry of images. The differential structure of the image Koenderink (1984) allows
one make a connection between image formation mechanism and the space of solutions of the 2-
dimensional heat equation, which significantly improved the image analysis models in the pre-deep
learning era.

One of the first works on scale equivariance and local scale invariance in the framework of CNNs was
proposed by Xu et al. (2014) named SiCNN. The authors describe the model with siamese CNNs,
where the filters of each instance are rescaled using interpolation techniques. It is the simplest case
of equivariance where no interaction between different scales is done in intermediate layers. In SI-
ConvNet by Kanazawa et al. (2014) the original network is modified such that in each layer input
is first rescaled, then convolved and rescaled back to the original size. Finally, the response with
maximum values is chosen between the scales. Thus, the model is locally scale-invariant. In Marcos
et al. (2018), in the SEVF model, the input of the layers is rescaled and convolved multiple times to
form vector features instead of scalar ones. The length of the vector in each position is the maximum
magnitude of the convolution, while the direction of the angle encodes the scale of the image which
gave this response. These scale-equivariant networks rely on image rescaling which is quite slow.
Worrall & Welling (2019) (DSS) generalize the concept of scale-space to deep networks. They use
filter dilation to analyze the images on different scales. While this approach is as fast as the standard
CNN, it is restricted only to integer downscale factors 2, 4, 8 . . . . In Ghosh & Gupta (2019), while
discussing SS-CNN the authors use scale-steerable filters to deal with scale changes. The paper does
not discuss equivariance, which is an important aspect for scale.

We summarize the information about these models in Table 1. In contrast to other scale-equivariant
models, SESN uses steerable filters which allows for fast scale-convolution with no limitation of
flexibility. With the framework of Scale-Equivariant Convolutional Networks we are free to build
both equivariant and invariant models of different kinds.
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Method Equivariance Admissible Scales Approach Interscale

SiCNN 3 Grid Filter Rescaling 7
SI-ConvNet 7 Grid Input Rescaling 7
SEVF 3 Grid Input Rescaling 3
DSS 3 Integer Filter Rescaling 3
SS-CNN 7 Any Steerable Filters 7

SESN, Ours 3 Any Steerable Filters 3

Table 1: Comparing SESN to SiCNN Xu et al. (2014), SI-ConvNet Kanazawa et al. (2014), SEVF
Marcos et al. (2018), DSS Worrall & Welling (2019) and SS-CNN Ghosh & Gupta (2019). “In-
terscale” refers to the ability of capturing interscale interactions with kernels of non-unitary scale
extent. “Grid” stands for the scales which generate images which lie exactly on the initial pixel grid.

6 EXPERIMENTS

Figure 2: Equivariance error ∆ as a function of number of layers, downscaling applied to the input
image and as a function of number of scale in interscale interaction. The bars indicate standard
deviation.

In this section we conduct the experiments and compare various methods for working with scale
variations in input data. Alongside with SESN, we test local scale invariant SI-ConvNet and SS-
CNN, scale equivariant SiCNN, SEVF and DSS. For SEVF, DSS and SS-CNN we use the code
provided by authors, while for others we reimplement the main buildings blocks.

We provide additional experimental results on time performance of all these methods in Appendix B.
Due to the algorithm proposed in Section 4 SESN allows for training several times faster than other
methods relying on image rescaling.

6.1 EQUIVARIANCE ERROR

We have presented scale-convolution which is equivariant to scale transformation and translation for
continuous signals. While translation equivariance holds true even for discretized signals and filters,
scale equivariance may not be exact. Therefore, before starting any experiments, we check to which
degree the predicted properties of scale-convolution hold true. We do so by measuring the difference
∆ = ‖[LsΦ(f) − ΦLs(f)‖22/‖LsΦ(f)‖22, where Φ is scale-convolution with randomly initialized
weights.

In case of perfect equivariance the difference is equal to zero. We calculate the error on randomly
sampled images from STL-10 dataset Coates et al. (2011). The results are represented in Figure 2.
While discretization introduces some error, it stays very low, and is not much higher than 6% for the
networks with 50 layers. The difference however increases if the input image is downscaled more
than 16 times. Therefore, we are free to use deep networks. However, we should pay extra attention
to extreme cases where scale changes are of very big magnitude. These are quite rare but still appear
in practice. Finally, we see that using SESN with scale interaction introduces extra equivariance
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Method (28× 28) (28× 28) + (56× 56) (56× 56) + # Params

CNN 2.56± 0.04 1.96± 0.07 2.02± 0.07 1.60± 0.09 495 K
SiCNN 2.40± 0.03 1.86± 0.10 2.02± 0.14 1.59± 0.03 497 K
SI-ConvNet 2.40± 0.12 1.94± 0.07 1.82± 0.11 1.59± 0.10 495 K
SEVF Scalar 2.30± 0.06 1.96± 0.07 1.87± 0.09 1.62± 0.07 494 K
SEVF Vector 2.63± 0.09 2.23± 0.09 2.12± 0.13 1.81± 0.09 475 K
DSS Scalar 2.53± 0.10 2.04± 0.08 1.92± 0.08 1.57± 0.08 494 K
DSS Vector 2.58± 0.11 1.95± 0.07 1.97± 0.08 1.57± 0.09 494 K
SS-CNN 2.48± 0.06 2.15± 0.09 1.84± 0.10 1.76± 0.07 494 K

SESN Scalar 2.10± 0.10 1.79± 0.09 1.74± 0.09 1.50± 0.07 495 K
SESN Vector 2.08± 0.09 1.76± 0.08 1.68± 0.06 1.42± 0.07 495 K

Table 2: Classification error of different methods on MNIST-scale dataset, lower is better. In ex-
periment we use image resolution of 28 × 28 and 56 × 56. We test both the regime without data
augmentation, and the regime with scaling data augmentation, denoted with “+”. All results are
reported as mean ± std over 6 different fixed realizations of the dataset. The best results are bold.

error due to the truncation of S. We will build the networks with either no scale interaction or
interaction of 2 scales.

6.2 MNIST-SCALE

Following Kanazawa et al. (2014); Marcos et al. (2018); Ghosh & Gupta (2019) we conduct the
experiments on MNIST-scale dataset. We rescale the images of MNIST dataset LeCun et al. (1998)
to 0.3−1.0 of the original size and pad it with zeros to have the initial resolution. The scaling factors
are sampled uniformly and independently for each image. The obtained dataset is then split into
10,000 for training, 2,000 for evaluation and 50,000 for testing. We generate 6 different realization
and fix them for all experiments.

As a baseline model we use the model described in Ghosh & Gupta (2019), which currently holds
state-of-the-art result on this dataset. It consists of 3 convolutional and 2 fully-connected layers.
Each layer has filters of size 7× 7. We keep the number of trainable parameters almost the same for
all tested methods. It is achieved by varying the number of channels. For scale equivariant models
we add scale projection at the end of the convolutional block.

For SiCNN, DSS, SEVF and our model we additionally train counterparts where after each con-
volution, extra projection layer is inserted. Projection layers transform vector features into scalar
ones. The obtained features are scale invariant and all the layers have now scalar input instead of
vector input. Therefore, we denote these models with “Scalar”. The original models are denoted
as “Vector”. The exact type of projection depends on the way vector features are constructed. For
SiCNN, DSS and SESN we use maximum pooling along the scale dimension, while for SEVF it is
a calculation of the L2-norm of the vector.

All models are trained with Adam optimizer Kingma & Ba (2014) for 60 epochs with a batch size
of 128. Initial learning rate is set to 0.01 and divided by 10 after 20 and 40 epochs. We conduct the
experiments with 4 different settings. Following the idea discussed in Ghosh & Gupta (2019), in ad-
dition to standard setting we train the networks with input images upscaled to 56× 56 using bilinear
interpolation. This results in all image transformations performed by the network becoming more
stable, which produces less interpolation artifacts. For both input sizes we conduct the experiments
without data augmentation and with scaling augmentation, which results in 4 setups in total. We run
the experiments on 6 different realizations of MNIST-scale and report mean ± std calculated over
these runs.

The obtained results are summarized in Table 2. The reported errors may differ a bit from the ones
in the original paper because of the variations in generated datasets and slightly different training
procedure. Nevertheless, we try to keep our configuration as close as possible to Ghosh & Gupta
(2019) which currently demonstrated the best classification accuracy on MNIST-scale. For example,
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SS-CNN reports error of 1.91 ± 0.04 in Ghosh & Gupta (2019) while it has 1.84 ± 0.10 in our
experiments.

SESN significantly outperforms other methods in all 4 regimes. “Scalar” versions of it already
outperform all previous methods, and “Vector” versions make the gain even more significant. The
global architectures of all models are the same for all rows, which indicates that the way scale
convolution is done plays an important role.

6.3 STL-10

Method Error, % # Params

WRN 11.48 11.0 M
SiCNN 11.62 11.0 M
SI-ConvNet 12.48 11.0 M
DSS 11.28 11.0 M
SS-CNN 25.47 10.8 M

SESN-A 10.83 11.0 M
SESN-B 8.51 11.0 M
SESN-C 14.08 11.0 M

Table 3: Classification error on
STL-10. The best results are bold.

In order to evaluate the role of scale equivariance in nat-
ural image classification, we conduct the experiments on
STL-10 dataset Coates et al. (2011). It consists of 8,000
training and 5,000 testing labeled images and a part of
100,000 unlabeled images. The images have resolution
of 96× 96 pixels and RGB channels. Labeled images be-
long to 10 classes such as bird, horse or car. We use only
the labeled subset to demonstrate the performance of the
models in low data regime.

The dataset is normalized by subtracting per-channel
mean and dividing by per-channel standard deviation.
During training, we augment the dataset by applying 12
pixels zero padding and randomly cropping the images to
size 96×96. Additional, random horizontal flip with prob-
ability 50% and Cutout DeVries & Taylor (2017) with 1
hole of 32 pixels are used.

As a baseline we choose WideResNet Zagoruyko & Ko-
modakis (2016) with 16 layers and widening factor of 8. We set dropout probability to 0.3 in all
blocks. Scale equivariant / invariant counterparts are chosen to have a similar number of trainable
parameters. We train SESN-A with just vector features. For SESN-B we use maximum scalar
projection several times in the intermediate layers, and for SESN-C we use interscale interaction.

All models are trained for 1000 epochs with batch size of 128. We use SGD optimizer with Nesterov
momentum of 0.9 and weigh decay of 5 · 10−4. The initial learning rate is set to 0.1 and divided by
5 after 300, 400, 600 and 800 epochs.

The results are summarized in Table 3. We found SEVF training unstable and do not include it
into the table. Pure scale-invariant SI-ConvNet and SS-CNN demonstrate significantly worse results
than the baseline. We note the importance of equivariance for deep networks. We also found that
SESN-C performs significantly worse than SESN-A and SESN-B due high equivariance error caused
by interscale interaction. SESN-B significantly improves the results of both WRN and DSS. This
experiment shows that scale-equivariance is a very useful prior for natural image classification with
deep neural networks.

7 DISCUSSION

In this paper, we have presented the theory of Scale-Equivariant Steerable Networks. We started
from the scaling transformation and its application to continuous functions. We have obtained
the exact formula for scale-equivariant mappings and demonstrated how it can be implemented
for discretized signals. We have demonstrated that this approach outperforms other methods for
scale-equivariant and local scale-invariant CNNs. It demonstrated new state-of-the-art results on
MNIST-scale and significantly improved the classification accuracy on STL-10 compared to its reg-
ular counterparts.

We suppose that the most exciting possible application of SESN is in computer vision for au-
tonomous vehicles. Rapidly changing distances between the objects cause significant scale vari-
ations which makes this well suited for our work. We especially highlight the direction of siamese
visual tracking where the equivariance to principle transformations plays an important role.
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Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Tony Lindeberg. Scale-space theory in computer vision, volume 256. Springer Science & Business
Media, 2013.

Diego Marcos, Benjamin Kellenberger, Sylvain Lobry, and Devis Tuia. Scale equivariance in cnns
with vector fields. arXiv preprint arXiv:1807.11783, 2018.

9



Under review as a conference paper at ICLR 2020

Pietro Perona and Jitendra Malik. Scale-space and edge detection using anisotropic diffusion. IEEE
Transactions on pattern analysis and machine intelligence, 12(7):629–639, 1990.

Kai Sheng Tai, Peter Bailis, and Gregory Valiant. Equivariant transformer networks. arXiv preprint
arXiv:1901.11399, 2019.

Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3d steerable cnns:
Learning rotationally equivariant features in volumetric data. In Advances in Neural Information
Processing Systems, pp. 10381–10392, 2018a.

Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation equiv-
ariant cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 849–858, 2018b.

Andrew P Witkin. Scale-space filtering. In Readings in Computer Vision, pp. 329–332. Elsevier,
1987.

Daniel Worrall and Gabriel Brostow. Cubenet: Equivariance to 3d rotation and translation. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 567–584, 2018.

Daniel E Worrall and Max Welling. Deep scale-spaces: Equivariance over scale. arXiv preprint
arXiv:1905.11697, 2019.

Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Harmonic
networks: Deep translation and rotation equivariance. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5028–5037, 2017.

Yichong Xu, Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, and Zheng Zhang. Scale-invariant con-
volutional neural networks. arXiv preprint arXiv:1411.6369, 2014.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

10



Under review as a conference paper at ICLR 2020

A PROOF OF EQUIVARIANCE

Let us first show that scale-convolution Equation 7 is equivariant to translations.

[Lt̂[f ] ?H ψσ](s, t) =
∑
s′

[Lt̂[f ](s′, ·) ? ψs−1σ(s−1s′, ·)](t)

=
∑
s′

Lt̂[f(s′, ·) ? ψs−1σ(s−1s′, ·)](t)

= Lt̂

{∑
s′

[f(s′, ·) ? ψs−1σ(s−1s′, ·)]
}

(t)

= Lt̂[f ?H ψσ](s, t)

(11)

Now we show that scale convolution is equivariant to scale transformations:

[Lŝ[f ] ?H ψσ](s, t) =
∑
s′

[Lŝ[f ](s′, ·) ? ψs−1σ(s−1s′, ·)](t)

=
∑
s′

Lŝ[f(s′, ·) ? ψs−1σ(s−1s′, ·)](t)

=
∑
s′

[f(s′, ·) ? ψŝs−1σ(ŝs−1s′, ·)](ŝ−1t)

= [f ?H ψσ](ŝ−1s, ŝ−1t)

= Lŝ[f ?H ψσ](s, t)

(12)

Finally, we can use the property of semidirect product of groups

Lŝt̂[f ] ?H ψσ = LŝLt̂[f ] ?H ψσ = Lŝ[Lt̂[f ] ?H ψσ] = LŝLt̂[f ?H ψσ] = Lŝt̂[f ?H ψσ] (13)
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B TIME PERFORMANCE

We report the average time per epoch of different methods for scale equivariance and local scale
invariance in Table 4. Experimental setups from Section 6.2 are used. We used 1 Nvidia GeForce
GTX 1080Ti GPU for training the models.

The methods relying on image rescaling techniques during training (SiCNN, SI-ConvNet, SEVF)
demonstrate significantly worse time performance that the ones, using either steerable filters or filter
dilation. Additionally, we see that our method outperforms SS-CNN by a wide margin. Despite
the similar filter sizes and comparable number of parameters between SS-CNN and SESN Scalar,
the second one demonstrates significantly better results due to the algorithm proposed in Section 4.
Finally, DSS performs slightly faster in some cases than our method as each convolution involves
less FLOPs. Dilated filters are sparse, while steerable filters are dense.

Method 28× 28, s 56× 56, s

CNN 3.8 3.8
SiCNN Scalar 13.5 18.9
SiCNN Vector 15.3 22.8
SI-ConvNet 18.4 33.1
SEVF Scalar 21.0 38.4
SEVF Vector 25.4 46.0
DSS Scalar 3.9 5.0
DSS Vector 3.9 4.8
SS-CNN 14.8 16.6

SESN Scalar 3.8 5.11
SESN Vector 3.8 6.8

Table 4: Average time per epoch during training on input data with resolution 28× 28 and 56× 56.

C BASIS

Assuming that the center of the filter is point (0, 0) in coordinates (x, y), we use the filters of the
following form.

ψσ(x, y) = A
1

σ2
Hn

(x
σ

)
Hm

( y
σ

)
exp

[
− x2 + y2

2σ2

]
(14)

HereA is a constant independent on σ, Hn — Hermite polynomial of the n-th order. We iterate over
increasing pairs of n,m to generate the required number of functions

12



Under review as a conference paper at ICLR 2020

D MODEL CONFIGURATION

D.1 MNIST-SCALE

Method Conv 1 Conv 2 Conv 3 FC 1 # Scales

CNN 32 63 95

256

1
SiCNN 32 63 95 7
SI-ConvNet 32 63 95 7
SEVF Scalar 32 63 95 8
SEVF Vector 23 45 68 8
DSS 32 63 95 4
SS-CNN 30 60 90 6
SESN 32 63 95 4

Table 5: Number of channels in convolutional layers, number of units in fully-connected layers and
number of scales used by different models in Section 6.2.

D.2 STL-10

Method Block 1 Block 2 Block 3 # Scales

CNN 16 32 64 1
SiCNN 16 32 64 3
SI-ConvNet 16 32 64 3
SEVF 11 23 45 3
DSS 16 32 64 4
SS-CNN 11 22 44 3
SESN 16 32 64 3

Table 6: Number of channels in convolutional blocks and number of scales used by different models
in Section 6.2. We report the number of channels up to the widening factor.
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