
Under review as a conference paper at ICLR 2020

ALL NEURAL NETWORKS ARE CREATED EQUAL

Anonymous authors
Paper under double-blind review

ABSTRACT

One of the unresolved questions in deep learning is the nature of the solutions that
are being discovered. We investigate the collection of solutions reached by the same
network architecture, with different random initialization of weights and random
mini-batches. These solutions are shown to be rather similar - more often than
not, each train and test example is either classified correctly by all the networks,
or by none at all. Surprisingly, all the network instances seem to share the same
learning dynamics, whereby initially the same train and test examples are correctly
recognized by the learned model, followed by other examples which are learned
in roughly the same order. When extending the investigation to heterogeneous
collections of neural network architectures, once again examples are seen to be
learned in the same order irrespective of architecture, although the more powerful
architecture may continue to learn and thus achieve higher accuracy. This pattern of
results remains true even when the composition of classes in the test set is unrelated
to the train set, for example, when using out of sample natural images or even arti-
ficial images. To show the robustness of these phenomena we provide an extensive
summary of our empirical study, which includes hundreds of graphs describing
tens of thousands of networks with varying NN architectures, hyper-parameters
and domains. We also discuss cases where this pattern of similarity breaks down,
which show that the reported similarity is not an artifact of optimization by gradient
descent. Rather, the observed pattern of similarity is characteristic of learning com-
plex problems with big networks. Finally, we show that this pattern of similarity
seems to be strongly correlated with effective generalization.

1 INTRODUCTION

The recent success of deep networks in solving a variety of classification problems effectively, in some
cases reaching human-level precision, is not well understood. One baffling result is the incredible
robustness of the learned models: using variants of Stochastic Gradient Descent (SGD), with random
weight initialization and random sampling of mini-batches, different solutions are obtained. While
these solutions typically correspond to different parameter values and possibly different local minima
of the loss function, nevertheless they demonstrate similar performance reliably.

To advance our understating of this issue, we are required to compare different network instances.
Most comparison approaches (briefly reviewed in Appendix A) are based on deciphering the internal
representations of the learned models (see Lenc & Vedaldi, 2015; Alain & Bengio, 2016; Li et al.,
2016; Raghu et al., 2017; Wang et al., 2018). We propose a simpler and more direct approach –
comparing networks by their classifications of the data. To this end, we represent each network
instance by 2 binary vectors which capture the train and test classification accuracy. Each vector’s
dimension corresponds to the size of the train/test dataset; each element is assigned 1 if the network
classifies the corresponding data point correctly, and 0 otherwise.

Recall the aforementioned empirical observation - different neural network instances, obtained by
repeatedly training the same architecture with SGD while randomly sampling its initial weights,
achieve similar accuracy. At the very least, this observation predicts that the test-based vector
representation of different networks should have similar L1/L2 norms. But there is more: it has been
recently shown that features of deep networks capture perceptual similarity reliably and consistently,
similarly across different instances and different architectures (Zhang et al., 2018). These results
seem to suggest that our proposed representation vectors may not only have a similar norm, but
should also be quite similar as individual vectors. But similar in what way?

1



Under review as a conference paper at ICLR 2020

In this paper, we analyze collections of deep neural networks classifiers, where the only constraint
is that the instances are trained on the same classification problem, and investigate the similarity
between them. Using the representation discussed above, we measure this similarity by two scores,
consistency score and consensus score, as defined in §2. Like other comparison approaches (see
Appendix A), our analysis reveals a high level of similarity between trained networks. Interestingly,
it reveals a stronger sense of similarity than previously appreciated: not only is the accuracy of all the
networks in the collection similar, but so is the pattern of classification. Specifically, at each time
point during the learning process (or in each epoch), most of the data points in both the train and test
sets are either classified correctly by all the networks, or by none at all.

As shown in §3, these results are independent of choices such as optimization method, hyper-
parameter values, the detailed architecture, or the particular dataset. They can be replicated for a
fixed test set even when each instance in the collection sees a different train set, as long as the training
data is sampled from the same distribution. Moreover, the same pattern of similarity is observed
for a wide range of test data, including out-of-sample images of new classes, randomly generated
images, or even artificial images generated by StyleGAN (Karras et al., 2019). These results are also
reproduce-able across domains, and were reproduced using BiLSTM (Hochreiter & Schmidhuber,
1997) with attention (Bahdanau et al., 2014) for text classification. We may therefore conclude that
different network instances compute similar classification functions, even when being trained with
different training samples.

It is in the dynamic of learning, where the results of our analysis seem to go significantly beyond
what has been shown before, revealing an even more intriguing pattern of similarity between trained
NN instances. Since deep NNs are almost always trained using gradient descent, each network can
be represented by a time series of train-based and test-based representation vectors, one per epoch.
We find that network instances in the collection do not only show the same pattern of classification
at the end of the training, but they also evolve in the same way across time and epochs, gradually
learning to correctly or incorrectly classify the same examples in the same order.

When considering bigger classification problems such as the classification of ImageNet with big
modern CNN architectures, a more intricate pattern of dynamics is evident: to begin with, all networks
wrongly classify most of the examples, and correctly classify a minority of the examples. The learning
process is revealed by examples moving from one end (100% false classification) to the other end
(100% correct classification), which implies two things: (i) the networks learn to correctly classify
examples in the same order; (ii) the networks agree on the examples they misclassify throughout.

As shown in §4, these results hold regardless of the network’ architecture. To drive this point home
we compare a variety of public domain architectures such as VGG19 (Simonyan & Zisserman,
2014), AlexNet (Krizhevsky et al., 2012), DenseNet (Huang et al., 2017) and ResNet-50 (He
et al., 2016). In all cases, different architectures may learn at a different pace and achieve
different generalization accuracy, but they still learn in the same order. Thus all networks start
by learning roughly the same examples, but the more powerful networks may continue to learn
additional examples as learning proceeds. A related phenomenon is observed when extending the
analysis to simpler learning paradigms, such as deep linear networks, SVM, and KNN classifiers.

Our empirical study extends to cases where these robust patterns of similarity break down, see §5.
For example, when randomly shuffling the labels in a known benchmark (Zhang et al., 2016), the
agreement between different classifiers disappear. This stands in agreement with (Morcos et al.,
2018), where it is shown that networks that generalize are more similar than those that memorize.

Nevertheless, the similarity in learning dynamic is not an artifact of learnability, or the fact that the
networks have converged to solutions with similar accuracy. To see this we constructed a test case
where shallow CNNs are trained to discriminate an artificial dataset of images of Gabor patches (see
Appendix C). Here it is no longer true that different network instances learn in the same order; rather,
each network instance follows its own path while converging to the final model. The similarity in
learning dynamic is likewise not an artifact of using gradient descent. To see this we use SGD to train
linear classifiers to discriminate vectors sampled from two largely overlapping Gaussian distributions.
Once again, each classifier follows its own path while converging to the same optimal solution.

2



Under review as a conference paper at ICLR 2020

2 METHODOLOGY AND NOTATIONS

Given some neural network architecture f , and a labeled dataset X = f(xi, yi)gM
i=1 where xi 2 Rd

denotes a single data point and yi 2 [K] its corresponding label, we define and analyze the consistency
of f when repeatedly trained on X from scratch. Let SE denote the set of different extents (total
epochs of X) used to train f , where jSE j = E. 8e 2 SE we create a collection of N instances of f ,
denoted Fe = ffe

1 , ..., f
e
Ng. Each instance fe

i is initialized independently using Xavier initialization
(Glorot & Bengio, 2010), then trained with SGD on randomly sampled mini-batches for e epochs.

We measure the consistency of architecture f by comparing the predictions of the different instances
in each collection Fe, and analyze this consistency throughout the entire learning process as it
changes with e. Thus for epoch e, we define the consistency score of an example (x,y) as follows:

ce(x, y) =
1

N

N∑
i=1

1[fe
i (x)=y]

The consistency score ce(x, y) measures the classifiers’ agreement when x is correctly classified.
However, it does not take into account the classifiers’ agreement when it is not. We therefore define
in addition the consensus score, a complementary score that measures the consensus of the classifiers
- the largest number of classifiers that classify each example by the same label:

se(x, y) = max
k2[K]

1

N

N∑
i=1

1[fe
i (x)=k]

We say that example (xi, yi) is easier than example (xj , yj) during epoch e, if ce(xi, yi) �
ce(xj , yj). We say that example (xi, yi) is learned at least as fast as example (xj , yj) if from
some epoch e0 and onward, example (xi, yi) is easier than example (xj , yj). This is formally given
by: 9e0 2 SE : 8e > e0 ce(xi, yi) � ce(xj , yj).

When all the classifiers in Fe are identical, the consistency score of each example is either 0 or
1, and its consensus is 1. This results in a perfect bi-modal distribution of consistency scores;
we quantify bi-modality using the following measure suggested by Pearson (1894) for an RV X:
kurtusis(X) � skewness2(X) � 1; the lower this measure is, the more bi-modal X is. On the
other hand, when all classifiers independently choose class labels, the distribution of both scores is
expected to resemble a Gaussian1, centered around the average accuracy of the classifiers for the
consistency score, and a slightly higher value for the mean consensus score. It follows that the higher
the mean consensus is, and the more bi-modal-like the distribution of consistency scores is around 0
and 1, the more similar the set of classifiers is.

Throughout this paper we empirically investigate the distribution of the two scores defined above,
using different architectures and datasets. We also examine the effects of other factors, such as
resampling the train data, or classifying out-of-sample test data. For the most part, we focus on
CNNs trained on visual classification tasks (although the results are reproduced in other domains),
and analyze the distribution of consistency scores throughout the entire learning process.

3 DIVERSITY IN A SINGLE ARCHITECTURE

In this section, we investigate collections of classifiers obtained from a single NN architecture f .

Same training set. We start with the simplest condition, where all instances in collection F
are obtained by training with the same training set X, with different initial conditions and with
independently sampled mini-batches. When using datasets of natural images, during learning the
consistency among all networks in F is high, see Figs. 1a,b and Fig. 2.

Upon initialization, all networks are effectively i.i.d random variables, and therefore the distribution
of consistency scores is approximately normal around random chance1 – 1

K for K labels. After a
few epochs (in many cases a single epoch is enough, see Appendix D), the consistency distribution

1For large enough N this follows immediately from the central limit theorem.

3



Under review as a conference paper at ICLR 2020

changes dramatically, transforming to a bi-modal distribution peaking around 0 and 1. This abrupt
distribution change is robust, and rather striking: from a state where most of the examples are being
classi�ed correctly by1

K of the networks, now most of the examples are being misclassi�ed by all
the networks, while a small fraction is being correctly classi�ed by all the networks. When learning
proceeds, the improvement in accuracy affects a shift of points from the peak at0 to the peak at1,
and the distribution remains bi-modal, see Figs. 1a,b and Fig. 2.

The data is learned in a speci�c order which is insensitive to the network initialization and the
sampling of the mini-batches. This is true for both the train and test sets. It indicates that the networks
capture similar functions in corresponding epochs: they classify correctly the same examples, and
also consistently misclassify the same examples. Had the learning of the different network instances
progressed independently, we would have seen a different dynamic: as illustrated in Fig. 1c, the
distribution of consistency scores of independent learners remains Gaussian in all epochs, where the
Gaussian's mean slowly shifts while tracking the improved accuracy.

a)

b)

c)

Figure 1: The distribution of consistency scores throughout the entire learning process, for27
instances of ResNet-50 trained over ImageNet: a) Train set; b) Test set. Epochs shown, from left to
right: 1; 2; 5; 30; 40; 70; 100. All the networks converged before the �nal epoch. c) Distribution of
consistency scores over ImageNet test set, using independent models with accuracy matched to b).

a)

b)

Figure 2: The distribution of consistency scores during the learning process of20instances of VGG19
trained on CIFAR-100. Epochs shown:0; 1; 10; 30; 60; 80; 100. a) Train set; b) Test set.

The consistency score is not affected by how similar the misclassi�cations are. For this purpose
we have the consensus score, which measures consistency regardless of whether the label is true or
false: a consensus score of 1 indicates that all networks have classi�ed the datapoint in the same way,
regardless of whether it is correct or incorrect. Fig. 3a shows the distribution of consensus scores
for the cases depicted in Fig. 1, showing that indeed all the network instances classify examples in
almost the same way, even when they misclassify. Had the learning of the different network instances
progressed independently, the dynamic would have been different as shown in Fig. 3b.

Similar results are seen when analyzing a classi�cation problem which involves text, see Fig. 4. We
applied a BiLSTM with attention using Glove (Pennington et al., 2014) over 39K training and 1K
test questions from stack over�ow (Public domain dataset a). Labels consist of 20 mutually exclusive
programming language tags assigned by users.

Robustness. The results reported above are extremely robust, seen in all the datasets and architec-
tures that we have investigated. In addition to the results shown above on ImageNet (Deng et al.,

4



Under review as a conference paper at ICLR 2020

a)

b)

Figure 3: a) The distribution of consensus scores of27 instances of ResNet-50 models trained on
ImageNet, in corresponding epochs as in Fig. 1b. b) Illustration of the distribution of consensus
scores using independent models with similar accuracies as a), cf. with Fig. 1c.

a)

b)

Figure 4: Like Fig. 1, for100 instances of attention based BiLSTM trained on text classi�cation.
Epochs shown:0; 1; 2; 3; 4; 5; 10. a) Train set; b) Test set.

2009), CIFAR-100 (Krizhevsky & Hinton, 2009) and the text classi�cation task, similar results are
obtained for a wide range of additional image datasets as shown in Appendix D, including: MNIST
(LeCun et al., 1998) - Fig. 11, Fashion-MNIST - Fig. 12, CIFAR-10 and CIFAR-100 - Figs. 2,15,17,
tiny ImageNet (Public domain dataset b) - Fig. 18, ImageNet - Figs. 1,26, VGGfaces2 (Cao et al.,
2018) - Fig. 16, and some subsets of these datasets - Figs. 13,14,22.

We investigated a variety of public domain architectures, including AlexNet, DenseNet and ResNet-
50 for ImageNet, VGG19 and a stripped version of VGG (denoted st-VGG) for CIFAR-10 and
CIFAR-100, and several different handcrafted networks for other data sets (see details in Appendix B).
The results can be replicated when changing the following hyper-parameters: learning rate, optimizer,
batch size, dropout, L2-regularization, width, length and depth of layers, number of layers, number
and size of kernels, and activation functions. These hyper-parameters differ across the experiments
detailed both in the main paper and in Appendix D.2

Different training sets. The observed pattern of similarity does not depend on each network
instance being trained by the same train set, as long as each train set is sampled from the same
distribution. To see this, we randomly split the train set into several partitions. Each of theN
networks in the collection is trained using a random partition, after which we compute the distribution
of consistency scores using the unmodi�ed test set. Once again, all the networks trained with the
same partition show a bi-modal distribution of consistency scores over their training partition. More
interestingly, all networks, regardless of the partition used for training, show a bi-modal distribution
of consistency scores over the test set as would have been the case had they been trained on the same
train set, see Fig. 22 in Appendix E.

Out of sample test sets. Using the collection of ResNet-50 instances whose analysis is shown
in Figs. 1,3, we further examined the consensus score3 of the collection on out of sample test sets
as shown in Fig. 5. We see that the consensus is always higher than expected from independent
classi�ers. Interestingly, the more natural the images are and the more similar the distributions of the
train and test images are, the higher the consensus is and the further away it gets from the consensus
of independent classi�ers.

2All the code is ready for distribution, and will be published upon acceptance.
3Since the classes in the test sets are not present in the train, only the consensus score remains relevant.

5



Under review as a conference paper at ICLR 2020

(a) (b) (c) (d) (e)

Figure 5: The distribution of consensus score3 for 27 instances of ResNet-50 trained on ImageNet,
which are used to classify the following test dataset: (a) Random classi�cation. (b) Images generated
by the random sampling of pixels from a normal distribution. (c) Image generated by StyleGAN
trained on ImageNet. (d) Natural Images from a different dataset - Indoor Scene Recognition
(Quattoni & Torralba, 2009). (e) ImageNet test set.

4 CROSS ARCHITECTURES DIVERSITY

We now extend the analysis of the previous section to include networks instances which are generated
by different architectures. In §4.3 we discuss comparisons with other classi�ers.

4.1 DIFFERENT PUBLIC DOMAIN CONVOLUTIONAL NEURAL NETWORKS

We start by directly extending the previous analysis to two collections generated by two different
architectures. Each architecture is characterized by its own learning pace, therefore it makes little
sense to compare consistency epoch-wise. Instead, we �rst match epochs between the two collections:
in a matched pair of epochs[e1; e2], by de�nition the mean error of the �rst collection in epoche1
is equivalent to the mean error of the second collection in epoche2

4. For each pair of epochs, we
merge the corresponding collections of the two architectures and compute the consistency of the
merged collection. We call this scorecross-consistency. In Fig. 6a,b we plot the distribution of the
cross-consistency score in two matched pairs of epochs, when comparing ResNet-50 and AlexNet;
comparative results for additional pairs of architectures are shown in Appendix D, Figs. 23,24. As
before, the dynamics of the cross-consistency is bi-modal (mean Pearson of0:54 for test and0:65 for
train), suggesting that the network instances of both architectures learn similar classi�ers.

(a)0:39 Accuracy (b) 0:71 Accuracy (c) ResNet-ResNet(d) ResNet-AlexNet(e) ResNet-DenseNet

Figure 6:Comparing collections of networks of different architectures - ResNet-50, AlexNet, and DenseNet,
trained on ImageNet. (a-b) The distribution of thecross-consistencyscore in two matching pairs of epochs. (a)
Accuracy0:39: ResNet-50 epoch4, Alexnet epoch30. (b) Accuracy0:71: ResNet-50 epoch40, Alexnet epoch
80. (c-e) The correlation of theaccessibility scorein 3 pairs of collections of different architectures trained on
ImageNet.X -axis andY -axis: accessibility scorefor the �rst and second collection in the pair respectively. c)
Two collections of ResNet-50,13 instances in each. (d)27 instances of ResNet-50 and22 instances of AlexNet.
(d) 27 instances of ResNet-50 and6 instances of DenseNet.

The distribution of thecross-consistencyscore in Fig. 6a,b implies that the two architectures, ResNet-
50 and AlexNet, learn the data in the same order when trained on the same dataset. We wish to
measure this implication directly. To this end, we measure for a given point and a given collection,
how fast the point has been learned by all the instances in the collection. Note that the sooner a
point is being learned by all network instances, the higher its average consistency should be when
computed over all epochs. We therefore call a point's average consistency itsaccessibility score, and
correlate this score across two collections to compare the order of learning.

We start by correlating theaccessibility scoreof two collections generated by the same architecture.
When comparing two collections of ResNet-50, the correlation is almost1 (r = 0 :99; p � 10� 50,
Fig. 6c). When comparing two collections of two different architectures: ResNet-50 and AlexNet

4Equivalence is determined up to a tolerance of� 1%; results are not sensitive to this value.

6



Under review as a conference paper at ICLR 2020

(r = 0 :87; p � 10� 50, Fig. 6d) or ResNet-50 and DenseNet (r = 0 :97; p � 10� 50, Fig. 6e), once
again the correlation is high. These results are quite surprising given how the error rates of the three
architectures differ: AlexNet Top-1 error:0:45, ResNet-50 Top-1 error:0:24, DenseNet Top-1 error:
0:27. The results of comparing additional pairs of competitive ImageNet architectures are shown in
Appendix D, Figs. 23,24. The results have been replicated for other datasets, including: VGG19 and
st-VGG on CIFAR-10 and CIFAR-100 (Fig. 25).

4.2 LINEAR NETWORKS

Convolutional Neural Networks where the internal operations are limited to linear operators (Oja,
1992) de�ne an important class of CNNs, as their linearity is often exploited in the theoretical
investigation of deep learning. It is natural to wonder, therefore, whether the bi-modal behavior
observed in general CNNs also occurs in this case. The answer is in the af�rmative.

We train100st-VGG networks on the small-mammals dataset (see Appendix C). By replacing all the
activation layers by the identity operator, and changing the max-pooling into average-pooling, a linear
CNN architecture is obtained. The performance of these linear networks is weaker (0:43 average
accuracy) than the original non-linear networks (0:56 average accuracy). Still, the distribution of the
consistency scores throughout the entire learning process is bi-modal (maximum Pearson:0:055),
and this bi-modality is even more pronounced than the bi-modality in the non-linear case (maximum
Pearson:0:22). The bi-modal dynamics of st-VGG can be seen in the top row of Fig. 7a, compared
to the dynamics of linear st-VGG in similar epochs at the bottom row of Fig. 7a.

(a) consistency dynamics (b) performance comparison

Figure 7: Comparison of linear and non linear networks. (a) Distribution of consistency scores during
the learning process using: Top - st-VGG, Bottom - linear st-VGG. Epochs shown, from left to right:
0, 10, 30, 90, 140. (b) Non-linear networks easily learn the same points that are easily learned by
linear networks (in red), and more (in blue), see text.

Linear networks converge in just a few epochs, hence ruling thecross-consistency scoreuninformative
in this case. Nevertheless, we still observe that linear and non-linear networks learn examples in
roughly the same order, as shown in Fig. 7b. To understand Fig. 7b, we de�ne for each epoch the
set of "easiest" points, including all the points whose corresponding consistency score is larger than
0:9. For each epoch, there are two such sets:Ce

NL de�ned by the non-linear st-VGG, andCe
L de�ned

by the linear st-VGG. In Fig. 7b, for each epoch, the red bar depicts the number of points shared
by the two setsjCe

NL \ C e
L j, the additional blue bar depictsjCe

NL n Ce
L j, and the dark-red bar depicts

jCe
L n Ce

NL j. In the beginning, the linear and non-linear variants learn roughly the same examples,
while in more advanced epochs the non-linear networks continue to learn examples that remain hard
for the linear networks. Moreover, sincejCe

L n Ce
NL j is always rather small, it follows that examples

which are easy for linear networks are for the most part also easy for non-linear networks, but not
vice versa. Thus, the non-linear networks classify correctly most of the examples that are classi�ed
by the linear networks and more, in agreement with the results described in §4.1.

4.3 CROSS ARCHITECTURES DIVERSITY- OTHER LEARNING PARADIGMS

Up to now, we investigated a variety of neural network architectures, revealing a common learning
pattern. Can we see the same commonalities with other classi�cation methods and paradigms? First,
we consider boosting based on linear classi�ers as weak learners, because the training of both neural
networks and AdaBoost share a dynamic aspect: in neural networks training accuracy increases with
time due to the use of GD, while in AdaBoost accuracy increases over time due to the accumulation

7



Under review as a conference paper at ICLR 2020

of weak learners. We �nd that in both dynamics, there are commonalities in the learning order of
examples. Next, we consider other machine learning paradigms, including SVM, KNN classi�er,
perceptron, decision tree, random forest and Gaussian naïve Bayes. Interestingly, we still �nd a
strong correlation with the order of learning as de�ned above, in that these classi�ers tend to �t those
examples which the neural networks learn �rst. These results are discussed in full in Appendix F.

5 WHEN CONSISTENCY DISTRIBUTION IS NO LONGER BI-MODAL

In Section 3 we discussed the characteristic bi-modal distribution of consistency scores, illustrated
in Fig. 1, which has appeared in all the experiments presented until now, in both the train and test
sets. We have already seen that this bi-modality weakens as the similarity between the distributions
of train and test data is reduced (see Fig. 5). In this section, we investigate the circumstances under
which the bi-modal distribution of consistency scores is no longer seen.

Learning to see Gabor patches. The bi-modal distribution of consistency scores through all stages
of learning is not an inherent property of neural networks. We demonstrate this point using a dataset
of arti�cial images, consisting of Gabor patches: the dataset contains 12 overlapping classes which
differ from each other in orientation, parity and color (see Appendix C).100instances of st-VGG
have been trained to classify this data. Now the distribution of consistency scores, shown in Fig. 8, is
no longer bi-modal. Rather, the distribution is approximately normal most of the time. As learning
proceeds, the mean of the distribution slowly shifts towards1, and the width of the distribution
seems to expand. At convergence, the models have reached similar performance, and the bi-modal
characteristics partially re-appears on the test data.

Figure 8: Arti�cial dataset of Gabor patches,100st-VGG networks. The distribution of consistency
scores is shown at epochs:0; 1; 5; 10; 20; 40; 100. Top: train data; bottom: test data.

Random labels. Bi-modality seems to be associated with successful generalization. To see this,
we take the small-mammals dataset, and reshuf�e the labels such that every image is assigned a
random label (following Zhang et al., 2016). In this case, training accuracy can reach100%when
disabling dropout (that acts as a regularizer), which indicates that the networks can memorize the data.
Interestingly, the distribution of consistency scores in no longer bi-modal, with minimum Pearson
score of1:07 on train set and1:35 on the test set during the entire learning process. Rather, the
distribution in each epoch resembles a Gaussian centered around the mean accuracy of the networks,
see Fig. 9. These results are in agreement with the results of Morcos et al. (2018), which show
different network dynamics when networks perform memorization or generalization.

a)

b)

Figure 9: Small-mammals dataset, randomly shuf�ed labels,100st-VGG networks. The distribution
of consistency scores is shown at epochs:0; 1; 5; 20; 30; 40; 50. Top: train data; bottom: test data.

8



Under review as a conference paper at ICLR 2020

Fully connected networks. Bi-modality is not an artifact of using gradient descent for optimization.
This can be seen in the following analysis. Speci�cally, we consider a fully connected neural network
architecture, with 2 intermediate layers, ELU and dropout. The networks are trained to discriminate
points sampled from two largely overlapping Gaussian distributions in high dimension. The dynamic
distribution of consistency scores is shown in Fig. 10, and resembles the distribution of independent
networks shown in Fig. 1c. While the �nal solutions of the networks are similar, the order in which
examples are being learned when employing SGD optimization is different.

Figure 10: Consistency distribution of 100 fully connected networks on test data. Epochs shown:
0; 1; 2; 3; 5; 10; 20.

6 SUMMARY AND DISCUSSION

We empirically show that neural networks learn similar classi�cation functions. More surprisingly
with respect to earlier work, the learning dynamics is also similar, as they seem to learn similar
functions also in intermediate stages of learning, before convergence. This is true for a variety
of architectures, including different CNN architectures and LSTMs, irrespective of size and other
hyper-parameters of the learning algorithms. We have veri�ed this pattern of results using many
different CNN architectures, including most of those readily available in the public domain, and many
of the datasets of natural images which are in common use when evaluating deep learning.

The similarity of network instances is measured in the way they classify examples, including known
(train) and new examples. Typically, the similarity over test data is as pronounced as it is over train
data, as long as the train and test examples are sampled from the same distribution. We show that
this similarity extends also to out of sample test data, but it seems to decrease as the gap between the
distribution of the train data and the test data is increased.

This pattern of similarity crosses architectural borders: while different architectures may learn at a
different speed, the data is learned in the same order. Thus all architectures which reach a certain
error rate seem to classify, for the most part, the same examples in the same manner. We also see that
stronger architectures, which reach a lower generalization error, seem to start by �rst learning the
examples that weaker architectures classify correctly, followed by the learning of some more dif�cult
examples. This may suggest that the order in which data is learned is an internal property of the data.

We also discuss cases where this similarity breaks down, indicating that the observed similarity is not
an artifact of using stochastic gradient descent. Rather, the observed pattern of similarity seems to
characterize the learning of complex problems with big networks. Curiously, the deeper the network
is and the more non-linearities it has, and even though the model has more learning parameters, the
progress of learning in different network instances becomes more similar to each other. Un-intuitively,
this suggests that in a sense the number of degrees of freedom in the learning process is reduced, and
that there are fewer ways to learn the data. This effect seems to force different networks, as long
they are deep enough, to learn the dataset in the same way. This counter-intuitive result joins other
non-intuitive results, like the theoretical result that a deeper linear neural network converges faster to
the global optimum than a shallow network (Arora et al., 2018).

We also show that the observed pattern of similarity is strongly correlated with effective generalization.
What does it tell us about the generalization of neural networks, a question which is considered
by many to be poorly understood? Neural networks can memorize an almost limitless number
of examples, it would seem. To achieve generalization, most training protocols employ some
regularization mechanism which does not allow for unlimited data memorization. As a result, the
network �ts only the train and test examples it would normally learn �rst, which are, based on our
analysis, also the "easier" (or more typical) examples. We hypothesize that this may explain why a
regularized network discovers robust solutions, with little variability among its likely instances.

9



Under review as a conference paper at ICLR 2020

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classi�er probes.
arXiv preprint arXiv:1610.01644, 2016.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks.arXiv preprint arXiv:1810.02281, 2018.

Devansh Arpit, Stanis�aw Jastrz�ebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S
Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at
memorization in deep networks. InProceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 233–242. JMLR. org, 2017.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate.CoRR, abs/1409.0473, 2014.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48. ACM,
2009.

Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggface2: A dataset for recognising faces
across pose and age. InInternational Conference on Automatic Face and Gesture Recognition,
2018.

George Cybenko. Approximation by superpositions of a sigmoidal function.Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning?Journal of Machine
Learning Research, 11(Feb):625–660, 2010.

Xavier Glorot and Yoshua Bengio. Understanding the dif�culty of training deep feedforward neural
networks. InProceedings of the thirteenth international conference on arti�cial intelligence and
statistics, pp. 249–256, 2010.

Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep networks.
arXiv preprint arXiv:1904.03626, 2019.

Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost.Statistics and its Interface,
2(3):349–360, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. InProceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.Neural Computation, 9:
1735–1780, 1997.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators.Neural networks, 2(5):359–366, 1989.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. InProceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning
data-driven curriculum for very deep neural networks on corrupted labels.arXiv preprint
arXiv:1712.05055, 2017.

10



Under review as a conference paper at ICLR 2020

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. InProceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4401–4410, 2019.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.arXiv
preprint arXiv:1710.05468, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi�cation with deep convolu-
tional neural networks. InAdvances in neural information processing systems, pp. 1097–1105,
2012.

David Krueger, Nicolas Ballas, Stanislaw Jastrzebski, Devansh Arpit, Maxinder S Kanwal, Tegan
Maharaj, Emmanuel Bengio, Asja Fischer, and Aaron Courville. Deep nets don't learn via
memorization. 2017.

M Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. InAdvances in Neural Information Processing Systems, pp. 1189–1197, 2010.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to
document recognition.Proceedings of the IEEE, 86(11):2278–2324, 1998.

Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their equivariance
and equivalence. InProceedings of the IEEE conference on computer vision and pattern recognition,
pp. 991–999, 2015.

Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John E Hopcroft. Convergent learning: Do
different neural networks learn the same representations? InIclr , 2016.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. InAdvances in Neural Information Processing Systems, pp.
5727–5736, 2018.

Erkki Oja. Principal components, minor components, and linear neural networks.Neural networks, 5
(6):927–935, 1992.

Karl Pearson. Contributions to the mathematical theory of evolution.Philosophical Transactions of
the Royal Society of London. A, 185:71–110, 1894.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. InEMNLP, 2014.

Public domain dataset a. Stack over�ow bigquery program language dataset. On-
line: https://storage.googleapis.com/tensorflow-workshop-examples/
stack-overflow-data.csv , 2019. Accessed: 2019-09-24.

Public domain dataset b. Tiny imagenet challenge. Online:https://tinyimagenet.
herokuapp.com , 2019. Accessed: 2019-05-22.

Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In2009 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 413–420. IEEE, 2009.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
canonical correlation analysis for deep learning dynamics and interpretability. InAdvances in
Neural Information Processing Systems, pp. 6076–6085, 2017.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representations by
back-propagating errors.Cognitive modeling, 5(3):1, 1988.

Andrew I Schein and Lyle H Ungar. Active learning for logistic regression: an evaluation.Machine
Learning, 68(3):235–265, 2007.

11



Under review as a conference paper at ICLR 2020

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition.arXiv preprint arXiv:1409.1556, 2014.

Liwei Wang, Lunjia Hu, Jiayuan Gu, Zhiqiang Hu, Yue Wu, Kun He, and John Hopcroft. Towards
understanding learning representations: To what extent do different neural networks learn the same
representation. InAdvances in Neural Information Processing Systems, pp. 9584–9593, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization.arXiv preprint arXiv:1611.03530, 2016.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. InThe IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

A RELATED WORK

How deep neural networks generalize is an open problem (Kawaguchi et al., 2017). The expressive-
ness of NNs is broad (Cybenko, 1989), and they can learn any arbitrary complex function (Hornik
et al., 1989). This extended capacity can indeed be reached, and neural networks can memorize
datasets with randomly assigned labels (Zhang et al., 2016). Nevertheless, the dominant hypothesis
today is that in natural datasets they "prefer" to learn an easier hypothesis that �ts the data rather than
memorize it all (Zhang et al., 2016; Arpit et al., 2017). Our work is consistent with a hypothesis
which requires fewer assumptions, see Section 6.

The direct comparison of neural representations is regarded to be a hard problem, due to a large
number of parameters and the many underlying symmetries. Many non-direct approaches are available
in the literature: (Li et al., 2016; Wang et al., 2018) compare subsets of similar features across multiple
networks, which span similar low dimensional spaces, and show that while single neurons can vary
drastically, some features are reliably learned across networks. (Raghu et al., 2017) proposed the
SVCCA method, which can compare layers and networks ef�ciently, with an amalgamation of SVD
and CCA. They showed that multiple instances of the same converged network are similar to each
other and that networks converge in a bottom-up way, from earlier layers to deeper ones. Morcos et al.
(2018) builds off the results of (Raghu et al., 2017), further showing that networks which generalize
are more similar than ones which memorize, and that similarity grows with the width of the network.

In various machine learning methods such as curriculum learning (Bengio et al., 2009), self-paced
learning (Kumar et al., 2010) and active learning (Schein & Ungar, 2007), examples are presented to
the learner in a speci�c order (Hacohen & Weinshall, 2019; Jiang et al., 2017). Although conceptually
similar, here we analyze the order in which examples are learned, while the aforementioned methods
seek ways to alter it. Likewise, the design of effective initialization methods is a striving research area
(Erhan et al., 2010; Glorot & Bengio, 2010; Rumelhart et al., 1988). Here we do not seek to improve
these methods, but rather analyze the properties of a collection of network instances generated by the
same initialization methodology.

B ARCHITECTURES

In addition to the public domain architectures described in §3, we also experimented with some
handcrafted networks. Such networks are simpler and faster to train, and are typically used to
investigate the learning of less commonly used datasets, such as the small-mammals dataset and tiny
ImageNet. Below we list all the architectures used in this paper.

st-VGG. A stripped version of VGG which we used in many experiments. It is a convolutional
neural network, containing 8 convolutional layers with 32, 32, 64, 64, 128, 128, 256, 256 �lters
respectively. The �rst 6 layers have �lters of size3 � 3, and the last 2 layers have �lters of size2 � 2.
Every second layer there is followed by2 � 2 max-pooling layer and a0:25 dropout layer. After
the convolutional layers, the units are �attened, and there is a fully-connected layer with 512 units
followed by0:5 dropout. When training with random labels, we removed both dropout layers to
enable proper training, as suggested in Krueger et al. (2017). The batch size we used was100. The
output layer is a fully connected layer with output units matching the number of classes in the dataset,

12



Under review as a conference paper at ICLR 2020

followed by a softmax layer. We trained the network using the SGD optimizer, with cross-entropy
loss. When training st-VGG, we used a learning rate of0:05which decayed by a factor of1:8 every
20 epochs.

Small st-VGG. To compare st-VGG with another architecture, we created a smaller version of
it: we used another convolutional neural network, containing 4 convolutional layers with 32, 32,
64, 64 �lters respectively, with �lters of size3 � 3. Every second layer there is followed by2 � 2
max-pooling and a0:25 dropout layer. After the convolutional layers, the units are �attened, and
there is a fully-connected layer with 128 units followed by0:5 dropout. The output layer is a fully
connected layer with output units matching the number of classes in the dataset, followed by a
softmax layer. We trained the network using the SGD optimizer, with cross-entropy loss. We trained
this network with the same learning rate and batch size as st-VGG.

MNIST architecture. When experimenting with the MNIST dataset, we used some arbitrary
small architecture for simplicity, as most architectures are able to reach over0:99 accuracy. The
architecture we used had 2 convolutional layers, with 32 and 64 �lters respectively of size3 � 3.
After the convolutions, we used2 � 2 max-pooling, followed by0:25 dropout. Finally, we used a
fully connected layer of size128followed by0:5 dropout and Softmax. We used a learning rate of1
for 12epochs, using AdaDelta optimizer and a batch size of100.

Fully connected architecture. When experimenting with fully connected networks, we used a 4
layers network, which simply �attened the data, followed by 2 fully connected layers with1024units,
followed byn an output layer with softmax. We used0:5 dropout after each fully connected layer.
Since these networks converge fast, a wide range of learning rates can be used. Speci�cally, we used
0:04. We experimented with a wide range of numbers of fully connected layers, reaching similar
results.

BiLSTM with Attention. When experimenting on textual data we used a GloVe embeddings, a
layer of BiLSTM of size300, 0:25dropout and recurrent dropout, an attention layer, a fully connected
layer of size256with 0:25dropout and a last fully connected layer to extract output. The networks
were optimized using Adam optimization with a learning rate of0:005and a batch size of256.

C DATASETS

Small Mammals. The small-mammals dataset used in the paper is the relevant super-class of the
CIFAR-100 dataset. It contains2500train images divided into 5 classes equally, and500test images.
Each image is of size32� 32� 3. This dataset was chosen due to its small size, which allowed for
ef�cient experimentation. All the results observed in this dataset were reproduced on large, public
domain datasets, such as CIFAR-100, CIFAR-10, and ImageNet.

Insect. Similarly to the small mammals dataset, the relevant super-class of CIFAR-100.

Fish. Similarly to the small mammals dataset, the relevant super-class of CIFAR-100.

Cats and Dogs. The cats and dogs dataset is a subset of CIFAR-10. It uses only the 2 relevant
classes, to create a binary problem. Each image is of size32 � 32 � 3. The dataset is divided to
20000train images (10000per class) and2000test images (1000per class).

Gabor. The Gabor dataset used in the paper, is a dataset we created which contains 12 classes of
Gabor patches. Each class contains 100 images of Gabor patches which vary in size and orientation.
Classes differ from each other in 3 parameters: 1) Parity - there is a different class for odd and even
Gabor patches (corresponding to the use of sine or cosine respectively). 2) RGB channel - each
class depicts the Gabor patch in a single RGB channel. 3) Orientation - each class can have one of
the following base orientations:45� ; 90� ; 135� ; 180� . The orientation of each class varies by� 30� ,
making some of the classes non-separable, while some classes are. Code for creating this dataset will
be published upon acceptance.

13



Under review as a conference paper at ICLR 2020

Gaussian. The Gaussian dataset used in the fully connected case, is a 2-classes dataset. One class
is sampled from a multivariate Gaussian with mean0 and� = I , while the other class is sampled
from a multivariate Gaussian with mean0:1 and� = I . Other choices for the mean and variance
yield similar results. Each sampled vector was of dimension3072, and then reshaped to32� 32� 3
to resemble the shape of CIFAR images. Each class contained2500train images and500test images.

VGGFace2 subset. We created a classi�cation task for face recognition, using a subset of10
classes from VGGFace2. We chose the classes containing the largest number of images. We chose
600images from each class arbitrarily to be the train set, while the remaining points (between89
and243) served as the test set. Each image was resized to64� 64� 3, using center cropping while
maintaining aspect ratio.

Stack Over�ow. The data from Stack Over�ow is publicly shared and used for tutorials. It contains
39K training samples and 1K test samples, each tagged with one of 20 programming languages as
the language the question asks about. Each question must be regarded more as a paragraph than
a sentence. Many words, terms and symbols are expected to be domain-dependent, and therefore
under-represented in the embeddings.

D ROBUSTNESS OF RESULTS

Similar qualitative results were obtained in all the experiments with natural datasets. To maintain a
fair comparison across epochs, the results for each shown epoche (effectively epoch extent) were
obtained by independently training a different set ofN networks from scratch fore epochs. The
speci�c set of epochsSE , wherejSE j = 7 , that was used in each plot was determined arbitrarily,
to evenly span all sections of learning. All the networks in all test cases converged before the �nal
epoch plotted.

a)

b)

Figure 11: The distribution of consistency scores during the learning process of100 instances of
small architecture (see Appendix B) trained on MNIST. Epochs shown:0; 1; 2; 3; 5; 10; 20. We used
a low learning rate (0:001) to avoid convergence after one epoch. a) Train set; b) Test set.

a)

b)

Figure 12: The distribution of consistency scores during the learning process of100 instances of
st-VGG (see Appendix B) trained on Fashion-MNIST. Epochs shown:0; 1; 5; 10; 15; 20; 25. a) Train
set; b) Test set.

14




	Introduction
	Methodology and notations
	Diversity in a single architecture
	Cross architectures diversity
	Different public domain convolutional neural networks
	Linear networks
	Cross architectures diversity - other learning paradigms

	When consistency distribution is no longer bi-modal
	Summary and discussion
	Related work
	Architectures
	Datasets
	Robustness of results
	Additional results
	Other learning paradigms

