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ABSTRACT

Factorization Machines (FMs) is an important supervised learning approach due
to its unique ability to capture feature interactions when dealing with high-
dimensional sparse data. However, FMs assume each sample is independently ob-
served and hence incapable of exploiting the interactions among samples. On the
contrary, Graph Neural Networks (GNNs) has become increasingly popular due
to its strength at capturing the dependencies among samples. But unfortunately,
it cannot efficiently handle high-dimensional sparse data, which is quite common
in modern machine learning tasks. In this work, to leverage their complementary
advantages and yet overcome their issues, we proposed a novel approach, namely
Deep Relational Factorization Machines, which can capture both the feature in-
teraction and the sample interaction. In particular, we disclosed the relationship
between the feature interaction and the graph, which opens a brand new avenue to
deal with high-dimensional features. Finally, we demonstrate the effectiveness of
the proposed approach with experiments on several real-world datasets.

1 INTRODUCTION

Many supervised learning tasks need to model data with numerous categorical features, which is
usually converted into a set of binary features using one-hot encoding. However, when the original
categorical features have high cardinalities, such data becomes high-dimensional and sparse. The
difficulty in modeling such data is that, most machine learning techniques rely on co-occurrence
of features to model their interactions, while in sparse data such co-occurrences are relatively rare
compared to the number of possible feature combinations, and hence over-fitting occurs. This is par-
ticularly common in web applications, which may involve high-cardinality categorical features such
as user IDs, item IDs, and ZipCodes, etc. Factorization Machines (FMs) was introduced byRendle
(2010) to model such high-dimensional sparse data. The key idea of FMs is learning a latent vector
of each one-hot encoded feature, and capture an arbitrary pairwise (order-2) interaction by inner
product of respective latent vectors. The success of FMs has been evidenced by applications such
as click-through rate prediction (Rendle, 2012; Ta, 2015) and recommendation (Rendle et al., 2011;
Wu et al., 2017).

To further improve the performance of FMs, numerous variants have been proposed (Blondel et al.,
2016; Chen et al., 2019; Guo et al., 2017; He & Chua, 2017; Juan et al., 2016; Lian et al., 2018;
Qu et al., 2016; Wang et al., 2017; Xiao et al., 2017). For instance, Field-aware Factorization
Machine (FFM) (Juan et al., 2016) is proposed to conduct fine-grained feature interaction. With
the development of deep neural networks in recent years, some deep variants have been proposed.
For instance, DeepFM (Guo et al., 2017) combines FM and deep neural networks (DNN) to do
both the second-order and high-order feature interaction. Deep & Cross Network (DCN) (Wang
et al., 2017) stacks multiple interaction layer to learn the high-order feature interaction. Attentional
Factorization Machines (Xiao et al., 2017) employs a neural attention network to additionally weight
each interaction term in FMs. Order-aware Embedding Neural Network (Guo et al., 2019) learns an
order-specific latent vector for each binary feature in Higher-order Factorization Machines.

However, all the aforementioned FMs variants only focus on the feature interaction. In real-world
applications, there also exists sample interaction. For instance, when predicting CTR in a social
network, two users in the same basketball group have a large probability to click the same adver-
tisement of basketball shoes since they are supposed to have similar hobbies for basketball. Thus,
it is necessary and helpful to incorporate the sample interaction when conducting prediction. Graph
Convolutional Networks (GCN) and the ilk (Kipf & Welling, 2016) use a graph convolution opera-
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tion to capture the correlation between nodes in a graph. Specifically, this operation aggregates all
neighbors’ information when making prediction for each node (sample) in a graph. As a result, the
prediction encodes the interaction between nodes. Recently, GCN has been widely used in numer-
ous applications to capture the interaction in the sample level, such as recommendation (Wang et al.,
2019; Ying et al., 2018). However, although GCN can incorporate the sample interaction, yet it is
difficult for GCN to deal with the sparse categorical features well.

Summarily, FMs and GCNs are two general classes of techniques that are typically used for dif-
ferent applications. Both have been shown to be the state-of-the-art in their own respective areas.
Meanwhile, they also suffer their intrinsic drawbacks. To overcome the disadvantages of using ei-
ther approach independently while inheriting the complementary advantages of both approaches, a
straightforward solution is to combine these two technologies together. However, how to seamlessly
unify these two independent models together to capture both the feature interaction and sample in-
teraction is challenging. To address this issue, we propose a novel Deep Relational Factorization
Machine (DRFM). In particular, to model the relationship between different features, we tackle it
from the perspective of graph. More specifically, the interaction in different orders between features
is reformulated by the path in a feature concurrence graph, with which our method can easily cap-
ture the feature interaction in different order by using graph convolutional operation. As far as we
know, this is the first work dealing with the feature interaction from the graph view. Moreover, to
model the interaction between different samples, we proposed a novel sample interaction compo-
nent which can capture the high-order sample interaction both linearly and exponentially. Extensive
experimental results confirmed the effectiveness of our proposed method. At last, we summarize the
contribution of this work as follows:

• We disclosed the relationship between the feature interaction and the graph, and proposed
a novel graph-based method to deal with the feature interaction. This opens a new avenue
to deal with high-dimensional categorical features.

• We proposed a general framework that fuses FMs and GCNs into a single unified learning
approach, called DRFM. It overcomes the disadvantages of using either approach indepen-
dently while inheriting the complementary advantages of both approaches.

• We demonstrated the effectiveness of DRFM for both link prediction and regression tasks.

2 RELATED WORK

Factorization Machines (FM) was first proposed by Rendle (2010). With a factorized interaction
term, FM is good at dealing with the data with sparse categorical features. However, the standard
FM can only capture the second-order feature interaction. To utilize the high-order feature interac-
tion, Blondel et al. (2016) proposed the high-order factorization machine (HOFM) which explicitly
incorporates the high-order feature combinations. In addition, to conduct fine-grained feature inter-
action, Juan et al. (2016) proposed the Field-aware Factorization Machine (FwFM) which assigns
multiple latent representation to each feature in terms of feature groups. Similarly, Chen et al.
(2019) also proposed to represent each feature with multiple latent representations according to the
frequency of feature occurrences.

Recently, deep neural networks (DNN) have shown promising performance on a wide variety of
tasks, such as computer vision, natural language processing. Inspired by this, some researchers
proposed to combine DNN with FM to fully utilize their advantages. For instance, Factorization-
machine supported Neural Networks (FNN) first pre-trains the factorization machine to get the latent
representation of features and then feeds these representations to DNN to learn high-order feature
interaction implicitly (Zhang et al., 2016). To train FM and DNN in an end-to-end way, Product-
based Neural Network (PNN) proposed by Qu et al. (2016) introduced a product layer to connect
the feature embedding layer and DNN layers. However, both of these two models only focus on the
high-order feature interaction, ignoring the low-order interaction. To address this issue, Guo et al.
(2017) proposed DeepFM which models FM and DNN in two branches and trains them simultane-
ously. Wang et al. (2017) proposed Deep & Cross Network (DCN) to explicitly capture the feature
interaction with different orders. Similarly, xDeepFM (Lian et al., 2018) also aims at capturing fea-
ture interactions with different orders, but it uses the inner product rather than outer product like
DCN.
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As we discussed earlier, FM and its variants aim at capturing the feature interaction. In some real-
world applications, it is necessary to capture the sample interaction. To do that, Kipf & Welling
(2016) proposed graph convolutional networks (GCN). Specifically, GCN employs the graph con-
volutional operation to capture the interaction between samples and their neighbors. Recently, GCN
has been applied to various tasks to capture the sample interaction. For instance, Ying et al. (2018)
proposed PinSage to explore the item-item interaction in the recommender system. Wang et al.
(2019) proposed the Neural Graph Collaborative Filtering (NGCF) to utilize the user-item interac-
tion for recommendation.

3 PRELIMINARIES

In this section, we are going to present some preliminaries about factorization machine and graph
convolutional neural networks.

Throughout this paper, a graph is represented by G = (V, E) where V = {vi} represents the node
set and E = {(vi, vj)} represents the edge set. In this paper, we focus on the attributed graph and
the node feature matrix is represented by X = [x1,x2, · · · ,xn] ∈ Rd×n. In this work, we focus
on the high-dimensional categorical features, which are very common in real-world applications,
such as recommendation and CTR prediction. Specifically, we assume the feature of each node is
represented as xi = [0, 1, 0, · · · , 1, 1, 0, 0]T ∈ Rd whose features is categorical and the number of
non-zero values is much less than d. In addition, if a node has the ground-truth (e.g. the regression
task in our experiment), it is denoted by Y = [yi] ∈ Rn. Note that we will use samples and nodes
interchangeably throughout this paper.

Based on aforementioned terminologies, Factorization Machine (FM) is defined as follows:

ŷi = b+wTxi +
∑
p<q

〈vp,vq〉xi,pxi,q (1)

where ŷi ∈ R denotes the prediction of node vi, xi = [xi,p] ∈ Rd represents node features where
xi,p is the p-th feature of node vi, vp ∈ Rk stands for the embedding of the p-th feature. Compared
the regular linear model, FM can capture the interaction between different features. Specifically,
in the non-linear term, the dot product 〈vp,vq〉 computes the interaction between feature xi,p and
xi,q . However, FM can only capture the interaction inside each node, ignoring interaction between
different nodes.

Convolution is an effective operator to capture the local correlation. The regular convolutional op-
erator is used to extract features by exploring the feature correlation. On the contrary, the graph
convolutional operator is proposed to explore the sample correlation. Specifically, the graph con-
volutional operation in the l-th hidden layer of the Graph Convolutional Neural Network (GCN)is
defined as follows:

zl+1
i =

1√
|N (i)|

∑
i′∈N (i)

1√
|N (i′)|

Wl+1hl
i′

hl+1
i = f(zl+1

i )

(2)

where hl
i ∈ Rdl denotes the hidden representation of node vi in the l-th layer, Wl+1 ∈ Rdl×dl+1

represents the model parameter, N (i) indicates the neighbors of node vi, and f(·) stands for the
non-linear activation function. It can be found that the representation zl+1

i of the i-th sample is
constructed by aggregating its neighbors. In this way, GCN can capture the sample interaction.
However, although GCN can explore the interaction between different samples, yet it is not good at
exploring the feature interaction. In the following section, we will propose a new model to address
these two issues of FM and GCN.

4 DEEP RELATIONAL FACTORIZATION MACHINE

As shown in Eq. (1), the regular FM (Rendle, 2010) only considers the interaction between different
features, ignoring the interaction between different samples. In many real-world applications, the
sample interaction might be important for prediction. For instance, in a recommender system, the
interaction between users and items is important to make accurate recommendation. If ignoring this
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kind of interaction, it will be difficult to find the potential items to do recommendation. Another good
example is the campaign performance prediction in online advertising. Specifically, an advertiser
may only change a small part of its original campaign, such as targeting countries, and launch a new
campaign. As a result, these two campaigns share a lot of common information. If we can capture
the correlation between these two campaigns, it will be beneficial to get better prediction result.

Based on the aforementioned intuition, a natural question is that: how to capture the feature interac-
tion and sample interaction simultaneously? A straightforward method is to combine them together
directly as follows:

yi = yFM
i + yGCN

i ,

yFM
i = wTxi +

∑
p<q

〈vp,vq〉xi,pxi,q ,

yGCN
i = g(f(

1√
|N (i)|

∑
i′∈N (i)

1√
|N (i′)|

Wl+1xl
i′))

(3)

where g(·) denotes the prediction function based on node features. Although this straightforward
method can explore the feature interaction and sample interaction simultaneously, yet it can be seen
that GCN and FM are almost independent. Specifically, the prediction from FM does not use the
sample interaction and that from GCN does not involve the feature interaction too.

To address this issue, we propose the Deep Relational Factorization Machine (DRFM). In detail, our
proposed DRFM also has two components: the sample interaction component and the relational fea-
ture interaction component. As for the sample interaction component, we proposed a novel sample
interaction layer which acts on the sample graph. As for the relational feature interaction compo-
nent, we proposed to capture both the high-order feature interaction based on the feature graph and
the sample interaction based on the sample graph.

4.1 RELATIONAL FEATURE INTERACTION

The relational feature interaction (RFI) component aims at dealing with the categorical features to
capture the feature interaction. At the same time, it should capture the sample interaction. Based on
these goals, the prototype of our relational feature interaction component is defined as follows:

hFI(xi) = wTxi +
∑
p<q

〈vp,vq〉xi,pxi,q

yRFI
i =

1√
|N (i)|

∑
i′∈N (i)

1√
|N (i′)|

hFI(xi′)
(4)

where hFM (xi′) denotes the feature-interaction kernel which is used to deal with categorical fea-
tures to capture the feature interaction, yRFI

i represents the prediction for node vi from the RFI
component which considers both the feature interaction and sample interaction. Compared with the
naive method, we can find that our proposed RFI can capture the sample interaction when dealing
with categorical features, while the naive method cannot.

However, Eq. (4) can only capture the second-order interaction between different features, ignoring
the high-order interaction. As we know, second order may be not enough due to the complexity
of real-world datasets. Thus, it is necessary to capture the high-order feature interaction. In addi-
tion, the relationship between different features might be highly non-linear. Thus, it is important
to explore the non-linearity between different features. To address these issues, we further propose
a novel high-order feature-interaction kernel. Specifically, we deal with this issue from a totally
new perspective. In particular, given a sample with categorical features, we can construct a con-
current feature graph in terms of the concurrence between different features. For instance, given
x = [0, 1, 0, 1, 1, 0, 0] where the first, fourth, and fifth feature appear simultaneously, then there
should be a link between them in the concurrence graph due to their concurrence, which is shown as
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follows:

G =



1 0 0 0 0 0 0
0 1 0 1 1 0 0
0 0 1 0 0 0 0
0 1 0 1 1 0 0
0 1 0 1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 (5)

For the concurrence graph, each feature is viewed as a node in the graph. As a result, a path in
this graph indicates the concurrence of the features in this graph. Then, a long path corresponds
to a high-order feature interaction, while a short path corresponds to a low-order feature interac-
tion. Consequently, a lot of operations on the graph can be used to deal with the high-dimensional
categorical features. In particular, inspired by the graph convolutional operation, we propose the
following model to capture the high-order interaction between different features layer by layer:

vl+1
p = graph conv(v0

p,v
l
q)

v0
p = σ(Wv0

p)

vl+1
p = σ(Wvl+1

p )

hl+1
i =

∑
p:xi,p=1

vl+1
p

(6)

where vl
p denotes the embedding of the p-th feature in the l-th layer. vl

p encodes the high-order
interaction in high layers. Here, we use the graph conv to capture the interaction between different
features. Unlike the standard graph convolutional operation, we propose the following interaction
kernel:

graph conv(v0
p,v

l
q) = v0

p ◦
∑

q:Gpq=1

vl
q (7)

where ◦ denotes the element-wise product. It can be seen that we always use the embedding in
the input layer v0

p to interact with that in the high layer. In this way, the first layer will capture
the second-order interaction. In the second layer, it will capture the third-order interaction, and in
the high layers, high-order interaction will be captured. In other words, our method can capture
the high-order interaction linearly. On the contrary, if we use vl

p to do the product, the order will
increase in an exponential way which might be too aggressive. Moreover, unlike existing high-order
methods (Wang et al., 2017; Lian et al., 2018), we conduct the non-linear transformation for the
feature embedding in each layer, which is shown in the second and third formulation in Eq. (6), to
handle the highly non-linear relationship. At last, to capture the feature interaction in different order,
we concatenate hl+1

i in all layers as follows:

hFI
i = [(h1

i )
T , (h2

i )
T , · · · , (hL

i )
T ]T

hRFI
i =

1√
|N (i)|

∑
i′∈N (i)

1√
|N (i′)|

hFI
i′

(8)

In summary, we proposed a novel feature interaction component based on the feature concurrence
graph, which can capture the high-order interaction and explore the non-linearity. As far as we
know, this is the first work trying to deal with feature interaction from the graph perspective. This
will open a new avenue to tackle high-dimensional categorical features by using graph operations.

4.2 SAMPLE INTERACTION

With our proposed RFI component, our model can capture the high-order feature interaction. How-
ever, the RFI component cannot capture high-order sample interaction. To address this issue, we
develop a novel sample-interaction (SI) component, which is used to further explore the interaction
between different samples. Moreover, the sample-interaction component should benefit from the
RFI component. Therefore, we enforce the SI component shares the same feature embedding with
RFI component. In this way, the feature embedding will be updated by both components. On the
contrary, in the naive method, two components only share the raw input features. The high-order
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sample interaction information cannot be used to update the feature embedding. As a result, in our
method, the two components can benefit each other.

Specifically, the SI component is defined as follows:

ĥl
i = hl

i +
1√
|N (i)|

∑
i′∈N (i)

1√
|N (i′)|

hl
i′ ◦ hl

i

hl+1
i = σ(Wl+1ĥl

i)

(9)

where h0
i =

∑
p:xi,p=1 vp. Compared with the regular graph convolutional operation, our method

conducts an explicit sample interaction by hl
i′ ◦ hl

i. In addition, by using a residual connection, our
method can capture the sample interaction both linearly and exponentially.

Similar with the feature interaction component, to get different orders of sample interaction, we keep
all the intermediate hl

i. Then, we concatenate all of them as the node representation:

hSI
i = [(h1

i )
T , (h2

i )
T , · · · , (hL

i )
T ]T (10)

At last, after obtaining the representation from these two components, we concatenate them together
for prediction as follows:

ŷ = [(hRFI
i )T , (hSI

i )T ]W (11)

With this prediction, we can use our model for both classification and regression tasks.

5 EXPERIMENTS

In this section, we design experiments to verify the performance of the proposed approach.

5.1 DATASETS

• Modcloth is a dataset where users rate the clothes they bought. Each user has five attributes:
[user id, bra size, cup size, hips, height]. Each cloth has three attributes: [item id, size,
category]. There are 47,185 users and 1,364 clothes.

• Renttherunway is a dataset where 88,178 users rate 5,795 clothes they rented. Here, each
user has six attributes: [user id, weight, body type, age, bust size, height] while each cloth
has three attributes : [item id, size, category].

• Book-crossing contains the historical rating information for books by users. Users have
three attributes: [user id, location, age]. Books also have three attributes [isbn, yearofpub-
lication, publisher]. In addition, the number of users is 278,858 and the number of books
is 271,360.

• Company-X-CTR data is an advertiser-level CTR data which includes the winning rate of
each campaign bidding for exposure. Each campaign has 63 categorical attributes.

In our experiments, all attributes of these datasets are transformed to categorical features. Then,
we use the one-hot encoding to represent the categorical feature. Moreover, the first three datasets
construct a bipartite graph respectively. As for the last dataset, campaigns construct a regular graph.
At last, we summarize the statistics of these datasets in Table 1.

5.2 EXPERIMENTAL SETTINGS

Throughout our experiments, we evaluate our method on two tasks: link prediction (Section 5.3) and
regression (Section 5.4). For the link prediction task, we use the first four datasets. In particular, all
the existing links in a graph are viewed as positive links while non-existing links are treated negative
ones. We randomly select 10% positive links for the training set and 10% positive links for the
validation set. The rest positive links are used for the testing set. In addition, we randomly select the
negative links for these three sets where the amount of negative links is same as that of positive links
in each set. As for the regression task, we use the Company-X-CTR data, campaigns with the same
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Table 1: Real-world data used for link prediction and regression. Here, the features of first three
datasets include those of users and items.

Dataset #Nodes #Edges #Features
Modcloth 48,549 40,607 47,222+1,395
Renttherunway 93,973 82,415 88,382+5,902
Book-crossing 550,218 515,568 336,283+288,268
Company-X-CTR 144,876 72,438 48,474

Table 2: Link prediction results (AUC).

Methods Modcloth Renttherunway Book-crossing

DeepFM 0.8839 (±0.0230) 0.7518 (±0.0236) 0.6807 (±0.0651)
DCN 0.8454 (±0.0640) 0.6892 (±0.0467) 0.6720 (±0.0321)
PNN 0.9079 (±0.0083) 0.7565 (±0.0221) 0.7793 (±0.0344)
xDeepFM 0.8919 (±0.0368) 0.7314 (±0.0449) 0.6917 (±0.0266)
GCN 0.8985 (±0.0007) 0.7428 (±0.0005) 0.9075(±0.0004)

DRFM 0.9223 (±0.0003) 0.7930 (±0.0015) 0.9115(±0.0005)
%Gain 1.6% 4.9% 0.4%

placement id are connected to construct the graph. The winning rate of each campaign is normalized
to [0, 1].

To evaluate the performance of our proposed method, we compare it with 5 baseline methods, which
are described as follows:

• DeepFM (Guo et al., 2017) combines the standard FM and multi-layer perceptron neu-
ral (MLP) network together where the input of MLP is the feature embedding from FM.
DeepFM can capture the second-order feature interaction explicitly by FM and high-order
feature interaction implicitly by MLP.

• DCN (Wang et al., 2017) is proposed to capture the high-order feature interaction explicitly
by stacking multiple interaction layers together.

• PNN (Qu et al., 2016) uses a product layer to capture the feature interaction explicitly and
then stacks MLP over the product layer to capture the high-order interaction implicitly.

• xDeepFM (Lian et al., 2018) also aims at capturing the high-order feature interaction ex-
plicitly layer by layer like DCN. But it uses a different feature interaction layer from DCN.

• GCN (Kipf & Welling, 2016) is a graph convolutional neural network whose goal is to
capture the correlation among samples for prediction.

Throughout our experiments, we set the embedding size of each feature to 10 for all methods. As
for the sample interaction component of our method, the dimension is set to [16, 16]. To make a
fair comparison, GCN and the baseline methods with an MLP component are also set in the same
way. As for the feature interaction component of our method, the dimension is set to [10, 10, 10].
Similarly, baseline methods with the high-order feature interaction component are also set to the
same dimension. Moreover, the batch size is set to 1024 and the learning rate is set to 0.0001.

5.3 LINK PREDICTION

In Table 2, we show the results for link prediction across a number of graphs from different domains.
In all cases, DRFM outperforms the baseline methods across all the different real-world data sets.
Compared to the best baseline method, DRFM achieves a gain in AUC of 1.6% for Modcloth, 4.9%
for Renttherunway, 0.4% for Book-crossing. From Table 2, we also observe that by combining
FMs and GCNs, the standard deviation in AUC is much smaller than other FM-based methods and
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Figure 1: The link prediction result of
DRFM and DRFM-second. Figure 2: Regression results for

Company-X-CTR.

typically less than GCN as well. These results indicate utility of combining FMs and GCNs for
learning a more accurate and robust model for prediction.

To further verify the effectiveness of our proposed high-order feature interaction component, we
compare DRFM with its variant which replaces the hihg-order feature interaction component with
the regular FM component. Here, we call it DRFM-second since it can only capture the second-
order feature interaction. Due to the space limitation, we only report the result of Modecloth in
Figure 1. It can be seen that DRFM with our high-order feature interaction component has much
better performance than that with only the regular FM component, which confirms the effectiveness
of our high-order feature interaction component.

5.4 REGRESSION

To further verify the performance of our proposed method, we use DRFM to predict the winning
rate of a campaign bidding for exposure. Here, each campaign is configured with different attributes,
such as targeting countries, targeting device types, user segment rules, etc. Advertisers might change
only one or two attributes and launch a another campaign. This new campaign and its original
campaign share a lot of common information so that they are highly correlated. Thus, it will be
beneficial to capture the relationship between different campaigns when making prediction. To this
end, we construct the graph for campaigns. Specifically, in this dataset, this kind of new campaigns
and their original campaigns share the same ID. Thus, we can construct the graph in terms of the
shared ID. More specifically, two campaign are connected if they share a same ID.

The result is shown in Figure 2. Here, to measure the performance of different methods, we use Root
Mean Squared Error (RMSE) as the metric. A smaller value indicates a better result. It can be seen
that the regular GCN performs worse than all the other baseline methods. The possible reason is
that GCN does not utilize the feature interaction for prediction, while feature interaction is confirmed
to be a powerful technique in the high-dimensional CTR prediction. Moreover, our method DRFM
outperforms all state-of-the-art FMs, which confirms the effectiveness of incorporating the relational
information for prediction.

6 CONCLUSION

In this work, we described a new class of models that combine Factorization Machines (FMs) and
Graph Neural Network (GNNs) into a unified learning approach. By seamlessly combining FMs and
GNNs, we obtain the unique advantages offered by each while overcoming the issues that arise when
either is used independently. Using real-world data from different domains, we demonstrated the
effectiveness of combining GNNs and FMs for both link prediction and regression tasks. While this
work demonstrated the utility of combining FMs and GNNs in a single unified learning framework,
there remains many open research problems to investigate in future work. One important future
direction is to explore other FM and GNN variants (besides the vanilla ones used in this work), and
systematically investigate the utility and effectiveness of these different combinations.
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