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ABSTRACT

We propose a novel generative adversarial network for visual attributes manipu-
lation (ManiGAN), which is able to semantically modify the visual attributes of
given images using natural language descriptions. The key to our method is to
design a novel co-attention module to combine text and image information rather
than simply concatenating two features along the channel direction. Also, a detail
correction module is proposed to rectify mismatched attributes of the synthetic im-
age, and to reconstruct text-unrelated contents. Finally, we propose a new metric
for evaluating manipulation results, in terms of both the generation of text-related
attributes and the reconstruction of text-unrelated contents. Extensive experiments
on benchmark datasets demonstrate the advantages of our proposed method, re-
garding the effectiveness of image manipulation and the capability of generating
high-quality results.

1 INTRODUCTION

Image manipulation refers to the task of changing various aspects of given images from low-level
colour or texture (Zhang et al., 2016; Gatys et al., 2016) to high-level semantics (Zhu et al., 2016),
and has numerous potential applications in video games, image editing, and computer-aided design.
Recently, with the development of deep learning and generative models, automatic image manipu-
lation becomes possible, including image inpainting (Iizuka et al., 2016; Pathak et al., 2016), image
colourisation (Zhang et al., 2016), style transfer (Gatys et al., 2016; Johnson et al., 2016), and do-
main or attribute translation (Lample et al., 2017; Isola et al., 2017).

However, all the above works mainly focus on specific tasks, and only few studies (Dong et al.,
2017; Nam et al., 2018) concentrate on more general and user-friendly image manipulation by using
natural language descriptions. Also, as shown in Fig.1, current state-of-the-art methods can only
generate low-quality images and fail to effectively manipulate given images on more complicated
datasets, such as COCO (Lin et al., 2014). The less effective performance is mainly because (1)
simply concatenating text and image cross-domain features along the channel direction, the model
may fail to precisely correlate words and corresponding visual attributes, and thus cannot modified
specific attributes required in the text, and (2) conditioned only on a global sentence vector, current
state-of-the-art methods lack important fine-grained information at the word-level, which prevents
an effective manipulation using natural language descriptions.

In this paper, we aim to manipulate given images using natural language descriptions. In particu-
lar, we focus on modifying visual attributes (e.g., category, texture, colour, and background) of input
images by providing texts that describe desired attributes. To achieve this, we propose a novel gener-
ative adversarial network for visual attributes manipulation (ManiGAN), which allows to effectively
manipulate given images using natural language descriptions and to produce high-quality results.

The contribution of our proposed method is fourfold: (1) instead of simply concatenating hidden
features generated from a natural language description and image features encoded from the input
image along the channel direction, we propose a novel co-attention module where both features can
collaborate to reconstruct the input image and also keep the synthetic result semantically aligned
with the given text description, (2) a detail correction module (DCM) is introduced to rectify mis-
matched attributes, and to reconstruct text-unrelated contents existing in the input image, (3) a new
metric is proposed, which can appropriately reflect the generation of text-related visual attributes
and the reconstruction of text-unrelated contents involved in the image manipulation, and (4) exten-
sive experiments on the CUB (Wah et al., 2011) and COCO (Lin et al., 2014) datasets are performed
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Figure 1: Examples of image manipulation using natural language descriptions. Current state-of-the-
art methods only generate low-quality images, and fail to do manipulation on COCO. In contrast,
our method allows the input images to be manipulated accurately corresponding to the given text
descriptions while preserving text-unrelated contents.

to demonstrate the superiority of our model, which outperforms existing state-of-the-art methods
both qualitatively and quantitatively.

2 RELATED WORK

There are few studies focusing on image manipulation using natural language descriptions. Dong
et al. (2017) proposed a GAN-based encoder-decoder architecture to disentangle the semantics of
both input images and text descriptions. Nam et al. (2018) implemented a similar architecture, but
introduced a text-adaptive discriminator that can provide specific word-level training feedback to
the generator. However, both methods are limited in performance due to a less effective text-image
concatenation method and a coarse sentence condition.

Our work is also related to conditional image manipulation. Brock et al. (2016) introduced a VAE-
GAN hybridisation model to modify natural images by exploring the latent features. Isola et al.
(2017) and Zhu et al. (2017) introduced paired and unpaired image-to-image translation methods
based on conditional adversarial networks, respectively. However, all these methods focus mainly
on image-to-image same-domain translation instead of image manipulation using cross-domain text
descriptions.

Recently, text-to-image generation has drawn much attention due to the success of GANs in gener-
ating photo-realistic images. Reed et al. (2016) first proposed to use conditional GANs to generate
plausible images from given text descriptions. Zhang et al. (2017) stacked multiple GANs to gen-
erate high-resolution images from coarse- to fine-scale. Xu et al. (2018) implemented a spatial
attention mechanism to explore the fine-grained information at the word-level. However, all afore-
mentioned methods mainly focus on generating new photo-realistic images from texts, and not on
manipulating specific visual attributes of given images using natural language descriptions.

3 GENERATIVE ADVERSARIAL NETWORKS FOR IMAGE MANIPULATION

Let I denote an input image required to be modified, and S′ denote a text description given by a
user. We aim to semantically manipulate the input image I using the given text S′, and also keep
the visual attributes of the modified image I ′ semantically aligned with S′ while preserving text-
unrelated contents existing in I . To achieve this, we first adopt the ControlGAN (Li et al., 2019), as
our basic framework, as it can effectively control text-to-image generation, and manipulate visual
attributes of synthetic images. Then, we propose two novel components: (1) co-attention module,
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Figure 2: The architecture of the co-attention module and the generator used in the detail correction
module. In (b), CoA denotes the co-attention module.

and (2) detail correction module to achieve effective image manipulation. We elaborate our model
as follow, and the full architecture diagram is shown in Appendix A.

3.1 CO-ATTENTION MODULE

As shown in Fig. 2 (a), our co-attention module takes two inputs: (1) the hidden features h ∈
RC×H×D, where C is the number of channels, H and D are the height and width of the feature
map, respectively, and (2) the regional image features v ∈ R256×17×17 of the input image I encoded
by the GoogleNet (Szegedy et al., 2015). The activation value h′ ∈ RC×H×D is given by h′ =
h � W (v) + b(v), where W (v) and b(v) are the learned weights and biases dependent on the
regional features v, and � denotes Hadamard element-wise product. We use W and b to represent
the functions that convert the regional features v to scaling and bias values. Then, the activation value
h′ serves as the input for the next stage. We also apply the co-attention module before implementing
an image generation network to produce synthetic images; please see Appendix A for more details.

This linear combination form has been widely used in normalisation techniques (Park et al., 2019;
Dumoulin et al., 2016; Huang & Belongie, 2017; De Vries et al., 2017), but, different from them,
(1) our co-attention module is only applied at specific positions instead of all normalisation layers,
which requires less computational resources, and (2) our co-attention module is designed to incor-
porate text and image cross-domain information, where W helps the model to focus on text-related
visual attributes, while b provides input image information to help to reconstruct text-unrelated con-
tents. Also, we experimentally find that implementing our co-attention module at all normalisation
layers fails to produce reasonable images, which indicates that the normalisation techniques may
not be suitable for the tasks requiring different domain information. Following Park et al. (2019),
the functions W and b are implemented by a simple two-layer convolutional network, see Fig. 2 (a).

What has been learned by the co-attention module? To better understand what has been learned
by our co-attention module, we conduct an ablation study shown in Fig. 3 to evaluate the effective-
ness of W and b. As we can see, without W , some visual attributes cannot be perfectly generated
(e.g., white belly in row 1 and the red head in row 2), and without b, the text-unrelated contents
(e.g., background) are hard to preserve, which verify our assumption that W behaves as an attention
function to help the model focus on text-related visual attributes, and b helps to complete missing
text-unrelated details existing in the input image. Also, the visualisation of the channel feature maps
of W (v) shown in the last three columns of Fig. 3 validates the attention mechanism of W .

3.2 DETAIL CORRECTION MODULE

The main purpose of our model is to incorporate input images and then generate modified images
aligned with given text descriptions. Then, it may inevitably produce some new visual attributes
or mismatched contents that are not required in the given texts. To fix this issue, we propose a
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The bird has a black bill, a red crown, and a white belly. (top)
This bird has wings that are black, and has a red belly and a red head. (bottom)

Original Ours w/o W Ours w/o b Ours Visualisation of W (v)

Figure 3: Ablation studies of the learned W and b. The texts on the top are the given descriptions
containing desired visual attributes, and the last three columns are the channel feature maps ofW (v).

detail correction module (DCM) to rectify inappropriate attributes, and to reconstruct text-unrelated
contents existing in the input images.

The DCM consists of a generator and a discriminator, and is trained alternatively by minimising
both objective functions. The generator, shown in Fig. 2 (b), takes three inputs: (1) the last hidden
features hlast ∈ RC′×H′×D′

from the main module (we call our model without the DCM as main
module), (2) the word features, and (3) visual features v′ ∈ R128×128×128 that are extracted from the
input image I by the VGG-16 (Simonyan & Zisserman, 2014) pretrained on ImageNet (Russakovsky
et al., 2015). We have also applied GoogleNet (Szegedy et al., 2015) and ResNet (He et al., 2016)
for feature extraction, but both do not perform well. Please refer to Appendix D for a detailed
description of the detail correction module.

3.3 OBJECTIVE FUNCTIONS

We train the main module and detail correction module separately, and the generator and discrim-
inator in both modules are trained alternatively by minimising both the generator loss LG and dis-
criminator loss LD.

Generator objective. The loss function for the generator follows those used in ControlGAN (Li
et al., 2019), but we introduce a regularisation term Lreg = 1 − 1

CIHIWI
||I ′ − I|| to prevent the

network achieving identity mapping, which can penalise large perturbations when the generated
image becomes the same as the input image.

LG =−1

2
EI′∼PG [log(D(I ′))]︸ ︷︷ ︸

unconditional adversarial loss

−1

2
EI′∼PG [log(D(I ′, S))]︸ ︷︷ ︸
conditional adversarial loss

+LControlGAN + λ1Lreg,
(1)

LControlGAN = λ2LDAMSM + λ3(1− Lcorre(I
′, S)) + λ4Lrec(I

′, I), (2)

where the unconditional adversarial loss makes the synthetic image I ′ indistinguishable from the real
image I , the conditional adversarial loss aligns the generated image I ′ with the given text description
S, LDAMSM (Xu et al., 2018) measures the text-image similarity at the word-level to provide fine-
grained feedback for image generation, Lcorre (Li et al., 2019) determines whether words-related
visual attributes exist in the image, and Lrec (Li et al., 2019) reduces randomness involved in the
generation process. λ1, λ2, λ3, and λ4 are hyperparameters controlling the importance of additional
losses. Note that we do not use Lrec when we train the detail correction module.

Discriminator objective. The loss function for the discriminator follows those used in Control-
GAN (Li et al., 2019), and the function used to train the discriminator in the detail correction module

4



Under review as a conference paper at ICLR 2020

is the same as the one used in the last stage of the main module.

LD =−1

2
EI∼Pdata [log(D(I))]− 1

2
EI′∼PG [log(1−D(I ′))]︸ ︷︷ ︸

unconditional adversarial loss

−1

2
EI∼Pdata [log(D(I, S))]− 1

2
EI′∼PG [log(1−D(I ′, S))]︸ ︷︷ ︸

conditional adversarial loss

+ λ3((1− Lcorre(I, S)) + Lcorre(I, S
′)),

(3)

where S′ is a given text description randomly sampled from the dataset, the unconditional adversarial
loss determines whether the given image is real, and the conditional adversarial loss reflects the
semantic similarity between images and texts.

Analysis. To prevent the model picking the input image as the solution, i.e., the model becomes
an identity mapping network, we first introduce a regularisation term Lreg to penalise large perturba-
tions when the generated image becomes the same as the input image, and then we stop the training
early when the model reaches a stage achieving the best trade-off between the generation of new vi-
sual attributes aligned with given text descriptions and the reconstruction of text-unrelated contents
existing in the input images. As for when to stop training, it is based on our proposed measurement
metric, called manipulative precision (see Fig. 4), which is discussed in Sec. 4.

4 EXPERIMENTS

To evaluate our model, extensive quantitative and qualitative experiments are carried out. Two state-
of-the-art approaches on image manipulation using natural language descriptions, SISGAN (Dong
et al., 2017) and TAGAN (Nam et al., 2018), are compared on the CUB birds (Wah et al., 2011) and
more complicated COCO (Lin et al., 2014) datasets. Results for these two baselines are reproduced
based on the code released by the authors. Please refer to Appendix A, B, and C for a detailed
description of our network structures, the datasets, and training configurations.

Quantitative results. As mentioned above, our model can generate high-quality images compared
with state-of-the-art methods. To demonstrate this, we adopt the inceptions score (IS) (Salimans
et al., 2016) as the quantitative evaluation measure. In our experiments, we evaluate the IS on a
large number of manipulated samples generated from mismatched pairs, i.e., randomly chosen input
images manipulated by randomly selected text descriptions.

However, as the IS cannot reflect the quality of the content preservation, the L1 pixel difference
(diff) is calculated between the input images and corresponding modified images. Moreover, using
the pixel difference alone may falsely report a good reconstruction due to over-training that the
model becomes an identity mapping network. To address this issue, we propose a new measurement
metric, called manipulative precision (MP), incorporating both the text-image similarity (sim) (Li
et al., 2019) and the pixel difference, where the text-image similarity is calculated by performing the
cosine similarity on the text features and corresponding image features encoded from the modified
images. This is based on the intuition that if the manipulated images are generated from an identity
mapping network, then the text-image similarity should be low, as the synthetic images cannot
perfectly keep a semantic consistence with given text descriptions. Thus, the measurement metric is
defined as MP = (1− diff)× sim.

As shown in Table 1, our method has the highest MP values on both the CUB and COCO datasets
compared with the state-of-the-art approaches, which demonstrates that our method can better gen-
erate text-related visual attributes, and also reconstruct text-unrelated contents existing in the input
images. The model without main module (i.e., only having the DCM) gets the highest IS, the lowest
L1 pixel difference, and low text-image similarity. This is because the model has become a identity
mapping network and loses the capability of image manipulation.

Qualitative results. Figs. 5 and 6 show the visual comparison between our ManiGAN, SISGAN
(Dong et al., 2017), and TAGAN (Nam et al., 2018) on the CUB and COCO datasets, respectively.
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Table 1: Quantitative comparison: inception score (IS), text-image similarity (sim), L1 pixel differ-
ence (diff), and manipulative precision (MP) of state-of-the-art approaches and ManiGAN on the
CUB and COCO datasets. “w/o CoA” denotes without co-attention module. “w/ Concat.” denotes
using concatenation method to combine hidden and image features. “w/o main” denotes without
main module. “w/o DCM” denotes without detail correction module. For IS, similarity, and MP,
higher is better; for pixel difference, lower is better.

CUB COCO

Method IS sim diff MP IS sim diff MP

SISGAN 2.24 .045 .508 .022 3.44 .077 .442 .042
TAGAN 3.32 .048 .267 .035 3.28 .089 .545 .040

Ours w/o CoA 4.01 .138 .491 .070 5.26 .121 .537 .056
Ours w/ Concat. 3.81 .135 .512 .065 13.48 .085 .532 .039
Ours w/o main 8.48 .084 .235 .064 17.59 .080 .169 .066
Ours w/o DCM 3.84 .123 .447 .068 6.99 .138 .517 .066

Ours 8.47 .101 .281 .072 14.96 .087 .216 .068
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Figure 4: Text-image similarity, L1 pixel difference, and manipulative precision values at different
epochs on the CUB (top) and COCO (bottom) datasets. We suggest to stop training the DCM module
when the model gets the highest MP values shown in the last column.

It can be seen that both state-of-the-art methods are only able to produce low-quality results and
cannot effectively manipulate input images on the COCO dataset. However, our method is capable
to perform an accurate manipulation and keep a highly semantic consistence between synthetic
images and given text descriptions, while preserving text-unrelated contents. For example, shown
in the last column of Fig. 6, SISGAN and TAGAN both fail to achieve an effective manipulation,
while our model modifies the green grass to dry grass and also maps the cow into a sheep.

Note that as birds can have many detailed descriptions (e.g., colour for different parts), we use a
long sentence to manipulate them, while the text descriptions for COCO are more abstract and focus
mainly on categories, thus we use words to do manipulation for simplicity, which has the same effect
as using long detailed text descriptions.

The effectiveness of the co-attention module. To verify the effectiveness of the co-attention mod-
ule, we use the concatenation method to replace all co-attention modules, which concatenates hidden
features h and regional features v along the channel direction, shown in Figs. 7 and 8 (d). As we can
see that our full model can synthesise an object having exactly the same shape, pose, and position
as the one existing in the input image, and also generate new visual attributes aligned with the given
text description on the synthetic image. In contrast, as shown in the last two columns of Figs. 7
and 8 (d), with concatenation method, the model cannot reconstruct birds on the CUB bird dataset,
and fails to do manipulation on the COCO dataset.
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Text
This bird is yellow with a yellow
belly, and has a yellow beak.

A small bird with a red belly, a red
crown, and black wings.

This bird has wings that are brown,
and has an orange belly and an or-
ange breast.

A bird that has a red beak, a grey
head, and a grey belly.

Original

SISGAN

TAGAN

Ours

Figure 5: Qualitative comparison of three methods on the CUB birds dataset.

Text Zebra, dirt. Zebra, green tree. Yellow bus. Kite, grass. Evening. Blue boat. Sheep, dry grass.

Original

SISGAN

TAGAN

Ours

Figure 6: Qualitative comparison of three methods on the COCO dataset.

Also, to further validate the effectiveness of the co-attention module, we conduct an ablation study
shown in Fig. 8 (c). It can be seen that our model without co-attention module that we just con-
catenate text and image features before feeding into the main module, which is used in Dong et al.
(2017) and Nam et al. (2018), fails to produce reasonable images on both datasets. In contrast, our
full model can better generate text-required attributes and also reconstruct text-unrelated contents
shown in the last column. Table 1 also verifies the effectiveness of our co-attention module, as the
values of IS and MP increase significantly when we implement the co-attention module.

The effectiveness of the detail correction module and main module. As shown in Fig. 8 (f), our
model without detail correction module may miss some visual attributes (e.g., the bird missing the
tail at row 2, the zebra missing the mouth at row 3), or generate new contents (e.g., new background
at row 1, different appearance of bus at row 4), which indicates that the detail correction module
can correct inappropriate attributes and reconstruct the text-unrelated contents. Fig. 8 (e) shows that
without the main module, our model fails to do image manipulation on both datasets, which just
achieves an identity mapping. This is mainly because the model cannot precisely correlate words
with corresponding visual attributes, which mostly has been done in the main module.
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A bird with black eye rings and a
black bill, with a yellow crown and
white belly. (matched)

This bird has a yellow bill, a blue
head, blue wings, and yellow belly.
(given)

This beautiful bird is made up ran-
dom patches of red, white, black,
orange, and brown. (matched)

A bird is brown and white in colour,
with a grey belly and short orange
bill. (given)

Text Original Ours, Matched Ours, Given Concat., Matched Concat., Given

Figure 7: Analysis of the co-attention module. “Matched” represents the texts matching original
images. “Given” represents the texts provided by users. “Concat.” denotes that instead of using
co-attention, hidden features are concatenated with image features along the channel direction.

This bird has a
light grey belly,
dark grey wings
and head with a

red beak.

This bird has a
yellow crown,

blue wings and a
yellow belly.

Zebra, green
grass.

Yellow, green,
bus.

a: Text b: Original c: Ours w/o CoA d: Our w/ Concat. e: Ours w/o main
module f: Ours w/o DCM g: Ours

Figure 8: Ablation studies. a: given text describing the desired visual attributes; b: input image; c:
removing the co-attention module and only concatenating image features and text features before
feeding into the main module; d: using concatenation method to replace all co-attention modules; e:
removing the main module and just training the DCM only; f: removing the DCM and just training
the main module only; g: our full model.

5 CONCLUSION

We have proposed a novel generative adversarial network for visual attributes manipulation, called
ManiGAN, which can semantically manipulate the input images using natural language descriptions.
Two novel components are proposed in our model: (1) the co-attention module enables cooperation
between hidden features and image features where both features can collaborate to reconstruct the
input image and also keep the synthetic result semantically aligned with the given text description,
and (2) the detail correction module can rectify mismatched visual attributes of the synthetic result,
and also reconstruct text-unrelated contents existing in the input image. Extensive experimental
results demonstrate the superiority of our proposed method, in terms of both the effectiveness of
image manipulation and the capability of generating high-quality results.
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Figure 9: The architecture of the ManiGAN. The red dashed box indicates detail correction module,
the CoA denotes the co-attention module.

A ARCHITECTURE DETAILS

We adopt the ControlGAN (Li et al., 2019) as the basic framework and replace batch normalisation
with instance normalisation (Ulyanov et al., 2016) everywhere in the generator network except in
the first stage. Basically, the co-attention module can be inserted anywhere in the generator, but we
experimentally find that it is best to incorporate the module before upsampling blocks and image
generation networks; see Fig. 9.

B DATASETS

Our method is evaluated on the CUB birds (Wah et al., 2011) and the MS COCO (Lin et al., 2014)
datasets. The CUB dataset contains 8,855 training images and 2,933 test images, and each image
has 10 corresponding text descriptions. As for the COCO dataset, it contains 82,783 training images
and 40,504 validation images, and each image has 5 corresponding text descriptions. We preprocess
this two datasets based on the methods introduced in Zhang et al. (2017).

C TRAINING DETAILS

In our setting, we train the detail correction module (DCM) separately from the main module. Once
the main module has converged, we train the DCM subsequently and set the main module as the
eval mode. There are three stages in the main module, and each stage contains a generator and a
discriminator. We train three stages at the same time, and three different-scale images 64×64, 128×
128, 256× 256 are generated progressively.

The main module is trained for 600 epochs on the CUB dataset and 120 epochs on the COCO
dataset using the Adam optimiser (Kingma & Ba, 2014) with the learning rate 0.0002, and β1 = 0.5,
β2 = 0.999. We do not use any learning rate decay, but for visualising generator output at any given
point during the training, we use an exponential running average for the weights of the generator
with decay 0.999.

As for the DCM, there is a trade-off between generation of text-related attributes and the recon-
struction of text-unrelated contents. Based on the manipulative precision (MP) values (see Fig. 4),
we find that training 100 epochs for the CUB, and 12 epochs for the COCO to achieve an appro-
priate balance between generation and reconstruction. The other training setting are the same as in
the main module. The hyperparameters λ1, λ2, λ3, and λ4 are set to 1, 5, 0.5, and 1 for the CUB
dataset, and 15, 5, 0.5, and 1 for COCO, respectively.
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D ARCHITECTURE OF THE DETAIL CORRECTION MODULE

First, the visual features v′ are converted into the same size as the hidden features hlast via a convo-
lutional layer F , denoted ṽ′ = Fv′, where ṽ′ ∈ R128×H′×D′

. Then, we adopt the spatial attention
and channel-wise attention introduced in (Li et al., 2019) to generate spatial attentive word-context
features s ∈ RC′×H′×D′

and channel-wise attentive word-context features c ∈ RC′×H′×D′
, and

concatenate these two features with the hidden features hlast along the channel direction to generate
new hidden features a ∈ R(3∗C′)×H′×D′

. Next, to incorporate the visual features ṽ′, we adopt the
co-attention module here, donated ã = a �W ′(ṽ′) + b′(ṽ′), where W ′ and b′ are learned weights
and bias dependent on visual features ṽ′. Then, the transformed features ã are fed into a series of
residual blocks followed by a convolutional layer to generate hidden features e. Before feeding e
into a network to generate the output image, we apply the co-attention module on the e again to
further strengthen the visual information; see Fig. 2 (b).

E TREND OF MANIPULATION RESULTS

We also track the trend of manipulation results over epoch increases, as shown in Fig. 10. The image
is smoothly modified to achieve the best balance between the generation of new visual attributes
(e.g., dirt background) and the reconstruction of text-unrelated contents (e.g., the appearance of
zebras). However, when the epoch goes larger, the generated visual attributes (e.g., dirt background)
aligned with the given text description are erased, and the synthetic image becomes more and more
similar to the input image. This verifies the existence of the trade-off between the generation of new
visual attributes required in the given text description and the reconstruction of contents existing in
the input image.

Zebra, dirt.

Text Original 3 epochs 6 epochs 9 epochs 12 epochs 15 epochs 18 epochs

Figure 10: Trend of the manipulation results over epoch increases on the COCO dataset.

12



Under review as a conference paper at ICLR 2020

F ADDITIONAL RESULTS

We show additional comparison results between our ManiGAN, SISGAN (Dong et al., 2017), and
TAGAN (Nam et al., 2018) on the CUB (Wah et al., 2011) and COCO (Lin et al., 2014) datasets.

This bird is blue
and grey with a red

belly.

This bird has wings
that are grey and

yellow with a
yellow belly.

This bird is black
in colour, with a
red crown and a

red beak.

This green bird has
a black crown and

a green belly.

A bird with brown
wings and a yellow

body, with a
yellow head.

A white bird with
grey wings and a
red bill, with a

white belly.

Given Text Original SISGAN TAGAN Ours

Figure 11: Additional results between ManiGAN, SISGAN, and TAGAN on the CUB bird dataset.
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Figure 12: Additional results between ManiGAN, SISGAN, and TAGAN on the CUB bird dataset.
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Figure 13: Additional results between ManiGAN, SISGAN, and TAGAN on the COCO dataset.
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Zebra, grass.

Orange bus.

Night.

Kite, green field.

Pizza, pepperoni.

Zebra, water.
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Figure 14: Additional results between ManiGAN, SISGAN, and TAGAN on the COCO dataset.
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