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ABSTRACT

Simulation of molecular and crystal systems enables insight into interesting chem-
ical properties that benefit processes ranging from drug discovery to material
synthesis. However these simulations can be computationally expensive and time
consuming despite the approximations through Density Functional Theory (DFT).
We propose the Valence Interaction Message Passing Neural Network (VIMPNN)
to approximate DFT’s ground-state energy calculations. VIMPNN integrates
physics prior knowledge such as the existence of different interatomic bounds to
estimate more accurate energies. Furthermore, while many previous machine learn-
ing methods consider only stable systems, our proposed method is demonstrated on
unstable systems at different atomic distances. VIMPNN predictions can be used
to determine the stable configurations of systems, i.e. stable distance for atoms – a
necessary step for the future simulation of crystal growth for example. Our method
is extensively evaluated on a augmented version of the QM9 dataset that includes
unstable molecules, as well as a new dataset of infinite- and finite-size crystals,
and is compared with the Message Passing Neural Network (MPNN). VIMPNN
has comparable accuracy with DFT, while allowing for 5 orders of magnitude
in computational speed up compared to DFT simulations, and produces more
accurate and informative potential energy curves than MPNN for estimating stable
configurations.

1 INTRODUCTION

Chemical simulations have many useful industrial applications ranging from drug discovery to the
production of materials for daily use (Schütt et al., 2017). Simulating crystal systems in particular
provides useful properties such as surface absorption, chemical reactions, and surface magnetism
(Bilek & Skála, 1978). Quantum Mechanical (QM) simulations can be used for the calculation
of ground-state energies based upon the interaction of atoms. By simulating a chemical system at
different interatomic distances, it is possible to determine a stable configuration where the atomic
interaction is at an equilibrium (minimum potential energy). While QM simulations can be less
time consuming than physical experimentation, they typically require large amounts of computing
resources and do not scale well to larger system sizes (Jiang et al., 2003; Baima et al., 2017).

To address this difficultly in determining the ground-state energy, the Kohn-Sham Density Functional
Theory (DFT) may be used to simplify the calculations by considering the electronic density in
place of individual electrons. DFT has proved useful in QM due to its good trade-off between
speed of computation and chemical accuracy (Cohen et al., 2012). However, as DFT calculations are
proportional to the number of interacting electrons (Lanyon et al., 2010) computation for large systems
remains intractable. As many interesting and realistic systems are formed from a large number of
atoms, a computationally efficient and accurate method for chemical property estimation that scales
well to these large systems would prove significantly useful in practical applications (Gomes et al.,
2008). Moreover, several simulations are often necessary to identify stable configurations of systems
away from local minima. Thus, fast approximation methods are desirable in such scenarios.

Machine learning (ML) has been proposed as an efficient method for classification of (stable)
molecules and estimation of chemical properties by learning to reproduce the results of DFT, with
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recent advancements through a Message Passing Neural Network (MPNN) (Gilmer et al., 2017).
However, unstable molecular and crystal structures are often not considered, although this would
allow discovering new stable configurations.

In this article we demonstrate the applicability of ML for the energy prediction of unstable molecular
and crystal systems. We propose a new DNN framework – the VIMPNN (Valence Interaction Message
Passing Neural Network) that considers the different interatomic interactions driven by different
valences. It produces comparable accuracy to that of DFT while also improving the computation
time by 5 orders of magnitude. We demonstrate that our method also produces more accurate energy
estimations than that of MPNN.

ML in quantum chemistry is made possible in part by the availability of large datasets of chemical
structures and their (measured or computed) energies in addition to other chemical properties. Online
repositories such as Quantum Machine1 store a collection of datasets resulting from various QM
simulation methods for the intention of training predictive models. QM9 (Blum & Reymond, 2009;
Montavon et al., 2013) is one such dataset containing 134K molecules using Carbon, Hydrogen,
Oxygen, Nitrogen, and Fluorine atoms. However, as all molecules in this dataset are at their stable
configuration, it is not suitable for designing and testing accurate energy prediction methods for
unstable configurations. We address this shortcoming by augmenting the QM9 dataset with out-of-
equilibrium configurations for 10K of its molecules at a [90%, 150%] range of atomic distances.
In addition, we create two datasets composed of infinite- (i.e. periodic) and finite-size crystals of
Aluminium and Copper atoms.

In summary, the contributions of this work are:

• A new VIMPNN model that accounts for the physics of atomic bonds within a molecule
or crystal to improve the accuracy of the chemical properties estimations. This model also
introduces auxiliary chemical property estimations to help learn descriptors that are closer
to the physics of the problem.

• A new use of ML for accurate ground-state energy estimation of out-of-equilibrium molecule
and crystal systems.

• The public release of new infinite- and finite-size crystal datasets, as well as an augmented
QM9 dataset.

The remainder of this article is organised as follows: Section 2 discusses the related work concerning
various ML approaches for molecular properties estimation. We describe the creation of 3 new
datasets through DFT simulations in Section 3. In Section 4 we introduce our new physics informed
DNN for accurate energy estimation. We evaluate the VIMPNN and describe the results in Section 5.
In Section 6 we give our concluding remarks on the method and results and available future work.

2 RELATED WORK

Several ML methods have been used for estimating a variety of chemical properties from different
representations of chemical systems. Li et al. (2015) construct a covariance matrix from Euclidean
distances of different atomic configurations, then use Bayesian regression to estimate interatomic
forces. Wang et al. (2013) use kernel ridge regression on the numbers of seven coarse ‘building
blocks’ (such as CH2) to estimate many chemical properties such as electron affinity and atomization
energy. Recent research by Shi et al. (2019) use strain information and a Fourier transform-based
representation of crystal lattice for a feed-forward neural network (NN) to estimate an electronic
bandgap structure in silicon. The bandgap refers to the energy difference between the valence and
conduction bands in insulators and semiconductors, and therefore the energy required to transition
between stable excitation states. Silicon crystal in a known equilibrium state is strained in the range
of -10% to 10% in each strain component (such as thermal properties) to search the bandgap space
for another stable state, for example transforming silicon from a semiconductor to a metal. Therefore,
this work uses the NN to describe the bandgap as a function of the strain tensors. In contrast, our
method infers the effect of spatial deformations of systems through a different energy estimate.

1http://quantum-machine.org/
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Some approaches focus on the prediction of stable geometries for chemical systems. Timoshenko et al.
(2018) use experimental spectra data as input for an NN to estimate the probability distribution of the
stable bonding distance between pairs of atoms. In their work, they consider different combinations
of Pd and Au atoms (i.e. an NN for Au-Au bonding, another for Pd-Au bonds). When considering
crystals made of two different atom types, Takahashi & Takahashi (2019) use 8 quantities associated
with each atom type (such as atomic radii, electronegativity, and number of atoms) to perform a
random forest classification on how the resulting stable crystal structure would form among a set of
492 different possible structures. The predicted lattice type then requires further optimisation using
DFT to find its exact size (i.e. scaling factor). However, their method may also predict metastable
configurations (i.e. local minima) rather than stable ones (i.e. global minimum). Whereas the
aforementioned methods attempt to directly obtain the stable distance between atoms, we adopt
the approach of estimating energies for various geometries with the aim to minimise these energies
into stable configurations. While this approach may require more training data and more complex
modelling to handle arbitrary configurations, we argue that it has a stronger generalisation potential.
It also has the added benefit of allowing the (future) observation of progressive crystal growth.

Previous works on estimating the potential energy of chemical systems include that of Rupp et al.
(2012) who used a a feed-forward NN to predict the energies of molecules from the Coulomb matrix
(a pairwise matrix that describes the low-level electrostatic interaction between atoms). However,
predictions on this matrix are sensitive to permutations of atoms which can result in different
molecular property values being estimated for a same crystal. Montavon et al. (2012) provides an
invariant solution by training the NN on a set of randomly permuted matrices. To show the benefit of
their method, they train different ML models on the QM7 dataset and improve on the accuracy of
previous approaches by a factor of 3. A recent advancement by Gilmer et al. (2017) provides a more
flexible and accurate representation for molecules as a chemical graph where nodes describe atoms
and edges encode the distances and bond type between them. Their Message Passing Neural Network
(MPNN) simulates the atomic interactions through the passing of messages between the nodes, and
synthesises them within additional hidden nodes. So far, this work has only been evaluated on stable
configurations of molecules from the QM9 dataset. We further evaluate it on unstable molecules and
crystals. Furthermore, we extend on their approach to allow for more accurate predictions better
accounting for the physics of interatomic interactions.

3 DATASETS

Many previous ML approaches and associated datasets only consider the case when molecules
and crystals are at their stable configuration, therefore learning the interaction of atoms only at an
equilibrium state. In performing experimentation on materials, the stable configuration may not be
known prior to simulation. Therefore predicting accurately for out-of-equilibrium configurations is
necessary, and has to be supported by a dataset of unstable systems. We create 3 datasets to train
and benchmark VIMPNN. The first is an augmented QM9 dataset (Section 3.1) to investigate the
complexity of atomic interactions from a variety of atom types in small but diverse molecular systems.
In the second dataset, we create infinite-size crystals (Section 3.2) for learning regular bonding
patterns that arise in periodic structures. Thirdly, a dataset containing finite crystals of an increasing
size and complexity to test performance in large scale interactions (Section 3.3).

3.1 AUGMENTED QM9 DATASET

An augmented QM9 dataset is created by taking the first 10,000 molecules of QM9 and modifying the
interatomic distances at 10 regular intervals between 90 and 150% of the original stable configuration.
This dataset therefore contains 100K different systems. At each interval, the ground-state energy is
calculated using DFT2 to serve as the target energy for our supervised learning task

3.2 INFINITE CRYSTAL

Learning to estimate the potential energy for an infinitely sized crystal might benefit from the regular
pattern in the lattice structure, possibly reducing the complexity of the internal data model the ML
algorithm must build. A dataset of infinite-sized crystals, although not necessarily relevant from a

2We use CP2K (https://www.cp2k.org/) to calculate the ground-state energies with DFT.
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(a) Unit-cell of Aluminium
atoms for an infinite fcc crystal.

(b) Basic fcc pattern in a finite
system.

(c) Configuration for random
atom positions.

Figure 1: Crystal structures for infinite and finite crystal of varying sizes.

physical point of view, is therefore an interesting case study for the design and training of ML based
methods. To create the infinite crystal we use the simple Face-Centred Cubic (fcc) Bravais lattice
illustrated in Fig. 1a. This lattice structure is created for both Aluminium and Copper atom types.
We iteratively compress/dilate the cell size from 90 to 150% of the stable configuration and compute
the corresponding ground-state energies using DFT. The change of atomic distances are performed
isomorphically (the same change in all spatial axes).

3.3 FINITE CRYSTAL

In contrast to the regular lattice pattern created by an infinite crystal, finite crystals allow for learning
over more complex atomic interactions by placing atoms at a random location within the lattice
pattern. Such a dataset would enable evaluation of an ML-based method’s ability to learn how each
atom contributes to the final ground-state energy, rather than learning the general fcc lattice pattern
with respect to the interatomic distances.

To generate our dataset, we start with a basic configuration of 14 atoms following the fcc crystal
pattern (Fig. 1b). We then iteratively introduce a new atom at a random lattice position into the
system (Fig. 1c). Every time a new atom has been added, the distance between all atoms in the system
are compressed/dilated at 10 regular intervals from 90 to 150% of the stable distance. Atoms are
randomly added until the system reaches a size of 114 atoms, before the process is repeated to create
more different crystal structures. We use 20 pseudo-random seeds for the placements of new atoms,
therefore creating 20 different variations crystals at each different size (i.e. number of atoms), and
2280 total number of crystal structures. The ground-state energy is again computed at every interval
using DFT, which took up to 12 hours per structure in the 114 atom cases.

4 METHODOLOGY

VIMPNN estimates the ground-state energies for molecular or crystal systems through learning the
energy as a function of the geometry of bonded atoms. By querying the VIMPNN at various atomic
distances, we may find a stable configuration for bonding (see Fig. 2). VIMPNN extends MPNN
(Gilmer et al., 2017) that simulates atomic interactions through the passing of messages between
pairs of atoms (Section 4.1). However, VIMPNN further accounts for the physics of the system by
learning how the different forms of bonding between atoms incur different changes in the nodes’
states (Section 4.2), and also reinforces the physical relevance of the analysis and learnt features
through estimating auxiliary physical properties of the system (Section 4.3). A representation of the
VIMPNN model is depicted in Fig. 2.

4.1 PREREQUISITE: MPNN

MPNN learns to predict ground-state energy from an undirected graph G, where atoms are nodes
and edges evw are feature descriptors such as atomic distance between two nodes v and w. MPNN
learns by iterating through three functions for a fixed number of iterations (recommended between 3
and 8): 1) the Message function (Mt in Eq. 1) creates a message packet symbolising the action of a
neighbouring atom on node v. A final message vector mt

v for node v is created in Eq. 1 to combine
the actions of all neighbours. 2) An update function (Ut in Eq. 2) updates the hidden state htv of node
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Figure 2: The proposed VIMPNN model to estimate the ground-state energy as a function of the
interatomic distance and valence through message passing. Messages exchanged by atoms account
for their bond types, and parallel readout functions further pushes the NN towards more physically
relevant reasoning through the estimation of low-level physical properties.

v using its previous hidden state ht−1v and calculated message mt
v. It is implemented by a Gated

Recurrent Unit (GRU). 3) The Readout function (R in Eq. 3) takes the set of hidden state of all nodes
at all timesteps and estimates ground-state energy.

mt+1
v =

∑
w∈N(v)

Mt

(
htv, h

t
w, evw

)
(1)

ht+1
v = Ut

(
htv,m

t+1
v

)
(2)

yenergy = R
({
hTv |v ∈ G

})
(3)

Full details on the implementation of these three functions can be found in the original paper (see
Gilmer et al. (2017)). Next, we detail how VIMPNN adapts these functions to incorporate physics
properties in order to better handle out-of-equilibrium systems.

4.2 ACCOUNTING FOR BOND TYPES

The type of bonds between different atoms are an important factor when considering their interaction
and its contribution to the energy of the system. Chemical bonds between atoms can be characterised
by the number of valence electrons exchanged in the process of bonding. For example, ionic bonding
requires one donor electron and one acceptor, while in situations where the bonding atoms have
similar electronegativity, some electrons would be shared between the bonding atoms resulting in a
covalent bond. Moreover, most atomic systems have minimum potential energy (stable bond) at an
optimal atom separation (Feinberg & Ruedenberg, 1971).

Therefore, the potential energy of a system may be better estimated by accounting for the contribution
of different bond types. Gilmer et al. (2017) acknowledged this fact and introduced bond type
information in the edges evw of the undirected graph representing the chemical system. This
information was used together with interatomic distance by the message function Mt in Eq. 1 to
estimate the influence of neighbouring atoms on a node. Thus, the NN nodes may exchange different
messages depending on their bond type. Gilmer et al. (2017) demonstrated that this approach results
in better energy estimates than when using interatomic distance alone.

These encouraging results inspired us to take this physics integration principle further and to explore
complementary ways of introducing bond type information into the simulation of atomic interactions.
In the present work, we propose to implement different messaging channels based on bond type, with
a direct effect on the update of nodes (Eq. 2). Bond type is quickly predetermined based on the atoms’
valency and electronegativity using the RDKit software3. In practice, the idea of having different
messaging channels based on bond type may be expressed in different ways. We experimented with
a) having separate messages mv|BT for each bond type, computed as in Eq. 1 to combine all message
packets of a same bond type. The messages mv|BT would then be simply combined as a weighted
sum, where the weights are learnt by the NN to control the influence of each mv|BT . This final

3https://www.rdkit.org/
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combined message is provided to the GRU of Eq. 2 to compute a node update where different bond
types contribute differently. Another possibility is b) concatenating the messages mv|BT before
providing them to the GRU of Eq. 2. Finally, we also experimented with c) having one GRU for each
bond type, handling its corresponding message mv|BT , with the updates of all GRUs being summed
to compute the final nodes’ update. In addition, in the case a), we tried weighting the summed
mv|BT by: i) a vector of coefficients of same size as the message (i.e. element-wise weighting), and
ii) a simple scalar. Similarly, in case b), we also experimented with i) letting the GRU handle the
concatenated mv|BT freely, and with ii) imposing a similar handling of the different mv|BT through
using the same GRU parameters, duplicated for each mv|BT with a simple (learnt) scaling to allow
different weightings of the mv|BT messages in the obtained node update. We found that the best
results were obtained in the case a.ii) with combining all messages mv|BT in a simple way while
letting the NN weight the influence of each message mv|BT . It provides a new formulation for the
message vector of MPNN:

mt+1
v =

∑
w∈N(v)

Mt(h
t
v, h

t
w, evw) · λ(v, w) (4)

where λ(v, w) is the appropriate bond type weight for the pair of nodes v, w.

4.3 ESTIMATING AUXILIARY PHYSICAL PROPERTIES

We hypothesise that, by encouraging the VIMPNN’s hidden states to relate more to basic physical
properties, we may obtain a more accurate energy estimator that generalises better to new systems. In
addition, as the bond type is characterised by the valence property of atoms involved in the bonding
process, a more physically relevant hidden state may better support the differentiation of messages
and node updates per bond type introduced in Section 4.2. In practice, we encourage this greater
relationship with physical parameters through the estimation of auxiliary properties through parallel
readout functions. We experimented with: 1) the number of atoms of each type present in the system
(Eq. 5), 2) the number of orbitals associated with each atom type (Eq. 6) – a property that is directly
relevant to the determination of bond type –, 3) a probability distribution for the scaling to the stable
interatomic distance for each bond type, estimated as a Gaussian function (Eq. 7).

yatoms = R({hTv |v ∈ G}) (5)

yorbitals = R({hTv |v ∈ G}) (6)

ypdf = R({hTv |v ∈ G}) (7)

For each of these auxiliary estimations, a mean-squared error loss term (weighted with an α = 0.3
hyper-parameter) is minimised during training.

5 RESULTS AND DISCUSSION

In this section, the performance impact for each of the physics integration strategies introduced in
Section 4 are first measured in turn on the augmented QM9 dataset introduced in Section 3.1 (Section
5.1). The best performing VIMPNN model is then further evaluated on all three datasets (see Section
3), using MPNN as a baseline for comparison (Section 5.2). In particular, we include a test on the
generalisation ability of VIMPNN by training it on crystals of up to 25 atoms to predict the energies
of up to 75 atom crystals (Section 5.3). We finally explore the physics relevance and interpretability
of the learnt model by visualising its internal states (Section 5.4).

5.1 PHYSICS INTEGRATION PERFORMANCES

For this experiment, all models are trained on the augmented QM9 dataset for 360 epochs, while using
validation data to track any signs of overfitting, and to save the model with the best generalisation loss
during training. After training is complete, the best performing model is re-loaded and used to create
predictions for the test dataset. We report the mean-absolute error (MAE) on energy estimation, the
mean-squared error (MSE), and the relative error (RE = |ŷ−y|

|y| ) between the true y and predicted ŷ
energy values. The average and standard deviation of these metrics are provided in Table 1.
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Table 1: Evaluation of the impact of different physics integration strategies on the accuracy of energy
estimation. Results are presented in the format: mean (std). ’BT’ denotes ’bond type’.

STRATEGY MAE MSE RE

No BT information 0.2195 (1.169) 1.4155 (17.913) 0.0027 (0.013)
MPNN (BT specialised messages) 0.0909 (0.476) 0.2348 (6.679) 0.0012 (0.005)

BT specialised node updates (case a.ii) 0.0670 (0.141) 0.0243 (0.406) 0.0009 (0.002)

Auxiliary estimates of
# atoms 0.1713 (0.986) 1.0023 (13.940) 0.0021 (0.011)

# orbitals 0.1946 (0.545) 0.3352 (7.223) 0.0025 (0.006)
BT distance scaling 0.1194 (0.698) 0.5012 (9.548) 0.0015 (0.008)

Table 2: Evaluation of the MPNN and VIMPNN on the augmented QM9, infinite-, and finite-size
crystal datasets.

MODEL DATASET MAE MSE RE

MPNN

Augmented QM9 0.0909 (0.476) 0.2348 (6.679) 0.0012 (0.005)
Infinite Crystals 0.0335 (0.032) 0.0022 (0.005) 0.0012 (0.002)

Stable Finite Crystals 2.9060 (4.200) 26.0691 (71.750 0.0047 (0.005)
Finite Crystals 3.4466 (4.401) 31.2310 (71.743) 0.0058 (0.006)

VIMPNN

Augmented QM9 0.0646 (0.197) 0.0430 (1.093) 0.0008 (0.002)
Infinite Crystals 0.0335 (0.044) 0.0030 (0.009) 0.0015 (0.002)

Stable Finite Crystals 0.5131 (0.537) 0.5519 (1.162) 0.0016 (0.002)
Finite Crystals 2.3868 (3.557) 18.3361 (56.050) 0.0042 (0.004)

We compare all physics integration strategies listed in Section 4 against the baseline of MPNN with
no bond type information used. We can see in Table 1 that all proposed methods have a positive
effect on the energy estimation, with the introduction of bond type information having a particularly
positive impact. This confirms Gilmer et al. (2017)’s observation that the bond type is a good feature
descriptor for the estimation of energy. The use of bond type information in the update of nodes (case
a.ii) in Section 4.2) has the strongest positive impact, with MAE decreasing from 0.2195 (baseline)
to 0.067. In comparison with MPNN, this suggests that having specialised messaging channels and
node updates based on bond type is more effective than having specialised messages in capturing the
physics of atomic interactions. However, MPNN does improve significantly on the baseline, therefore
in future works it may be interesting to combine these two approaches.

The auxiliary estimation of physical properties are also improved on the baseline models, but less so
than the integration of bond type information. We interpret this as a result of the model having to
implicitly discover and encode the useful physics representations required for accurate predictions.
This more modest effect on performance may still be beneficial in combination to the bond type
information strategy, thus we continue to use these auxiliary estimations in the rest of the experiments.

5.2 EVALUATION OF VIMPNN ON OUT-OF-EQUILIBRIUM MOLECULAR AND CRYSTAL DATA

In this experiment, we combine our proposed physics integration strategies, namely bond type-
specialised node updates (case a.ii) of Section 4.2) and auxiliary estimations of physical properties,
into the VIMPNN model. The energy estimation performance is measured on the 3 datasets using
the same metrics as in Section 5.1. On the finite crystal dataset, two tests are performed on different
subsets of the data. The first seeks to demonstrates a the model’s ability to handle larger chemical
systems by considering system sizes ranging from 15-75 atoms (see Section 3.3), but without the
added complexity of compressing and dilating the interatomic distances. These changes of distances
are included into the second test that considers all 6,710 crystal structures of up to 75 atoms due to
memory constraints. The performance of MPNN and VIMPNN on the datasets are shown in Table 2.
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(a) Example of accurate energy estimations made by
both MPNN and VIMPNN.

(b) Example case of non-informative potential energy
curve created with MPNN where no stable configura-
tion at minimum energy may be found.

Figure 3: Comparison of Curve Predictions for Both MPNN and VIMPNN.

VIMPNN generally obtains better scores than MPNN on all datasets. Improvements are particularly
strong on the Stable Finite Crystals dataset. In addition, the potential energy curves produced by
several runs of VIMPNN at different interatomic distances prove to be more accurate and informative
than those of MPNN for finding the minimum energy configuration (see an example in Fig. 3 for
a molecular system). Indeed, we find that MPNN’s estimations are more likely to produce curves
that are close to the actual energy values but do not contain a minimum at the stable configuration
(Fig. 3b). In these cases, MPNN estimates that the energy should always decrease with the reduction
in interatomic distance, and is therefore probably not learning the repulsive effect happening when
atoms get too close. For these difficult cases, VIMPNN is still able to create informative curves with
a reasonable location for the stable configuration, although slightly worsened energy estimation. With
exception of the infinite crystals case where there is no significant improvement with both MPNN’s
and VIMPNN’s MAE being 0.335. As there are two types of configurations of infinite crystals, there
perhaps is not enough varied information for the proposed methods (such as different bond types) to
be of much benefit. By expanding this dataset to include a higher number of structures outside of the
fcc lattice and a wider variety of atom types, we may see the usual improvement over MPNN.

When trained on the Finite Crystals dataset, we find MPNN is unable to learn both Copper and
Aluminium crystals at the same time. There is a noticeable divergence in the absolute error on the
different crystal types that contributes to the lower overall test scores made by MPNN (see Fig. 4a).
The MPNN’s absolute error for Copper crystals reaches a maximum of 23.96, and mean of 6.25,
where as for Aluminium crystals the maximum and mean absolute error is 2.51 and 0.64, respectively.
VIMPNN’s 3.63 maximum and 0.8 mean absolute error for Copper demonstrates that it has a greater
ability to handle both types of crystals during training. While VIMPNN’s absolute error is still higher
for Copper crystals than Aluminium, the difference is less pronounced and has lower absolute error
values overall (Fig. 4b).

As discussed, DFT scales with respect to the number of orbitals in the system, meaning, with heavier
and an increasing number of atoms, simulations become costly in terms of compute power and
time. Therefore it would be advantageous for VIMPNN to estimate well for large chemical systems.
While the VIMPNN has shown a performance improvement over the MPNN for both molecules
and crystals, larger systems must still be considered as complex problems. This is clear when we
visualise the potential energy curves for both small and large systems. For a system of 15 atoms,
the model estimates the stable distance correctly (Fig. 5a) even if the minimum estimated energy is
exaggerated. But as the number of atoms increase, the estimations begin to fluctuate, such as with
the energy curves for a system containing 75 atoms, and in extreme cases the predicted energies no
longer represent a usual curve (Fig. 5b). This indicates a need for accommodating message passing
in large scale graph structures where many atomic interactions must be considered simultaneously.

5.3 GENERALISATION TO LARGER CRYSTAL SYSTEMS

We investigate the VIMPNN’s the ability to learn basic principle properties of atomic interactions in
small chemical systems that are also transferable to arbitrary system sizes – in particular systems
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(a) Error in estimating energy values of different atom
types.

(b) Histogram of Absolute Errors for the Finite Crystals
dataset.

Figure 4: Absolute Errors for MPNN and VMPNN trained on the Finite Crystals dataset.

(a) Finite Crystal with 15 aluminium atoms. (b) Finite Crystal with 75 aluminium atoms.

Figure 5: Estimated potential energy curves for both small and large finite crystals.

larger than ones that were used for training. Ability to learn such properties would allow for quicker
training times while generalising well irrespective of the graph size. To test whether the VIMPNN is
capable of such task, we train the model on a filtered version of the Finite Crystals dataset, including
only systems containing 25 or less atoms. The validation and testing remains unfiltered and thus the
model estimates energies for systems up to 75 atoms of Copper and Aluminium crystals. Fig. 6 shows
that the absolute error increases with the system size, thus the learnt atomic interaction is not being
transferred directly. At a system of 15 atoms the MAE is 3.29 (perhaps due to the smaller amount of
data used during training), while the MAE for systems of 75 atoms is 13.24.

5.4 INTERPRETATION OF THE NODE’S HIDDEN STATE FOR ENERGY ESTIMATION

When using the VIMPNN in-place of DFT, we are placing trust in the model for computational speed
with minimal impact in accuracy. While DFT includes approximations to make computation more
tractable, it is grounded in fundamental principles of atomic interaction. The VIMPNN however
makes inferences about how atoms interact by searching for a function that generalises well between
the input and output data. Indeed, we’ll want ensure that it’s learning an appropriate representation of
atomic interaction, as well as being accurate in it’s ground-state energy prediction. To investigate the
learnt representations of atomic interactions, we visualise the hidden states during the readout phase.

With a VIMPNN model trained on the infinite crystals dataset, we take a basic 14 Aluminium atom
fcc crystal and add an additional atom at 90% of the original distance. We then change the distance
of the atom to the rest of the system. At 100 regular intervals between 90% and 120% of the original
distance, the estimated energy and the hidden state of the new atom during the readout layer is
returned. We then visualise this hidden state as an interpretation of the atoms contribution of the

’change’ in ground-state energy. At the optimal distance (Fig. 7a), the atom’s hidden state results in a
0.0 contribution to the increase in energy, and is therefore lowest possible ground-state energy for
this crystal (Fig. 7b). As the atom is moved closer, the ground-state energy increases the contribution
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Figure 6: Absolute error when limiting training data to a maximum system size of 25 atoms.

(a) Moving an additional atom an increasing dis-
tance to the rest of the crystal.

(b) Estimated potential energy curve when moving
added atom away from the crystal.

Figure 7: Visualisation of the VIMPNN nodes hidden state during the readout function for the energy
estimation.

value begins to increase to 0.2. Finally, when the atom is pulled away from the rest of the crystal, its
contribution reaches 1.0 until it has minimal interaction with the rest of the crystal until a point where
the energy no longer changes due to the atom no longer interacting with the rest of the crystal.

6 CONCLUSION

We have shown how physics informed integration strategies can be used to learn better representations
of bond types through an implementation of message channels. Our methods are incorporated into a
Valence Interaction Message Passing Neural Network (VIMPNN) that uses specialised node updates
where the messages sent between atoms are updated by bond-type weights, in addition to auxiliary
system property estimations encouraging more useful representations that generalises better to new
systems. The performance of VIMPNN is shown using an augmented QM9 dataset to include
unstable configurations, as well as infinite and finite crystals at varying sizes up to 75 atoms. While
our method has a performance advantage over an MPNN design, for large chemical systems the
estimated energy curves are less representative of the simulated data. Future work should focus on
adapting these methods to better accommodate larger and more complex structural patterns that will
benefit more complex interactions, in addition to enabling estimations for graph sizes outside what
has been included in the training data. Moreover, using basic low-level physical quantities such as
valence electrons in different shells as apposed to providing predetermined bond types would make
VIMPNN more flexible, enabling methods for generating new crystal systems.
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