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ABSTRACT

Many large text collections exhibit graph structures, either inherent to the content
itself or encoded in the metadata of the individual documents. Example graphs
extracted from document collections are co-author networks, citation networks,
or named-entity-cooccurrence networks. Furthermore, social networks can be ex-
tracted from email corpora, tweets, or social media. When it comes to visualising
these large corpora, either the textual content or the network graph are used.
In this paper, we propose to incorporate both, text and graph, to not only visualise
the semantic information encoded in the documents’ content but also the relation-
ships expressed by the inherent network structure. To this end, we introduce a
novel algorithm based on multi-objective optimisation to jointly position embed-
ded documents and graph nodes in a two-dimensional landscape. We illustrate the
effectiveness of our approach with real-world datasets and show that we can cap-
ture the semantics of large document collections better than other visualisations
based on either the content or the network information.

1 INTRODUCTION

Substantial amounts of data is produced in our modern information society each day. A large portion
of it comes from the communication on social media platforms, within chat applications, or via
emails. This data exhibits dualtiy in the sense that they can be represented as text and graph. The
metadata provides an inherent graph structure given by the social network between correspondents
and the exchanged messages constitute the textual content. In addition, there are many other datasets
that exhibit these two facets. Some of them are found in bibliometrics, for example in collections of
research publications as co-author and citation networks.

When it comes to analyse these types of datasets, usually either the content or the graph structure
is neglected. In data exploration scenarios the goal of getting an overview of the datasets at hand
is insurmountable with current tools. The sheer amount of data prohibits simple visualisations of
networks or meaningful keyword-driven summaries of the textual content. Data-driven journal-
ism (Coddington, 2015) often has to deal with leaked, unstructured, very heterogeneous data, e.g.
in the context of the Panama Papers, where journalists needed to untangle and order huge amounts
of information, search entities, and visualise found patterns (Chabin, 2017). Similar datasets are
of interest in the context of computational forensics (Franke & Srihari, 2007). Auditing firms and
law enforcement need to sift through huge amounts of data to gather evidence of criminal activity,
often involving communication networks and documents (Karthik et al., 2008). Users investigat-
ing such data want to be able to quickly gain an overview of its entirety, since the large amount of
heterogeneous data renders experts’ investigations by hand infeasible. Computer-aided exploration
tools can support their work to identify irregularities, inappropriate content, or suspicious patterns.
Current tools1 lack sufficient semantic support, for example by incorporating document embed-
dings (Mikolov et al., 2013) and the ability to combine text and network information intuitively.

We propose MODiR, a scalable multi-objective dimensionality reduction algorithm, and show how
it can be used to generate an overview of entire text datasets with inherent network information
in a single interactive visualisation. Special graph databases enable the efficient storage of large
relationship networks and provide interfaces to query or analyse the data. However, without prior

1e.g. https://www.nuix.com/ or https://linkurio.us/
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knowledge, it is practically impossible to gain an overview or quick insights into global network
structures. Although traditional node-link visualisations of a graph can provide this overview, all
semantic information from associated textual content is lost completely.

Technically, our goal is to combine network layouts with dimensionality reduction of high-
dimensional semantic embedding spaces. Giving an overview over latent structures and topics in
one visualisation may significantly improve the exploration of a corpus by users unfamiliar with the
domain and terminology. This means, we have to integrate multiple aspects of the data, especially
graph and text, into a single visualisation. The challenge is to provide an intuitive, two-dimensional
representation of both the graph and the text, while balancing potentially contradicting objectives of
these representations.

In contrast to existing dimensionality reduction methods, such as tSNE (Maaten & Hinton, 2008),
MODiR uses a novel approach to transform high-dimensional data into two dimensions while opti-
mising multiple constraints simultaneously to ensure an optimal layout of semantic information ex-
tracted from text and the associated network. To minimise the computational complexity that would
come from a naive combination of network drawing and dimensionality reduction algorithms, we
formally use the notion of a hypergraph. In this way, we are able to move repeated expensive compu-
tations from the iterative document-centred optimisation to a preprocessing step that constructs the
hypergraph. We use real-world datasets from different domains to demonstrate the effectiveness and
flexibility of our approach. MODiR-generated representations are compared to a series of baselines
and state-of-the-art dimensionality reduction methods. We further show that our integrated view
of these datasets exhibiting duality is superior to approaches focusing on text-only or network-only
information when computing the visualisation.

2 RELATED WORK

With MODiR we bridge the gap between text and network visualisation by jointly reducing the
dimensionality of the input data. Therefore we subdivided this part into three sections to highlight
related work in the areas of text visualisation, representation learning, as well as dimensionality
reduction. Other work that tries to jointly model text and networks but without dimensionality
reduction and without a focus on visualisation is LINE (Tang et al., 2015). They generate information
networks consisting of different types of nodes, e.g. words from document content and authors from
document metadata. Another tool that investigates combining graph structure with textual elements
is VOSviewer (Van Eck & Waltman, 2014). They construct and visualise bibliographic networks that
provide a multi-view interface to explore and filter keywords and network aspects of such datasets.
In our work we go beyond building a network from textual data but instead project the textual data
into a latent space.

Document visualisation aims to visualise the textual content, such that users gain quick insights into
topics, latent phrases, or trends. Tiara (Wei et al., 2010) extracts topics and derives time-sensitive
keywords to depict evolving subjects over time as stacked plots. Another line of work projects
documents into a latent space, for example by using topic models or embeddings: Creating scatter-
plots of embedded documents of a large corpus may result in a very dense and unclear layout, so
Chen et al. (Chen et al., 2009) developed an algorithm to reduce over-full visualisations by picking
representative documents. A different approach is taken by Fortuna et al. (Fortuna et al., 2005),
who do not show documents directly, but generate a heatmap of the populated canvas and overlay it
with salient phrases at more densely populated areas from the underlying documents in that region.
Friedl et al. (Fried & Kobourov, 2014) extend that concept by drawing clear lines between regions
and colouring them. They also add edges between salient phrases based on co-occurrences in the
texts. A map analogy can be used to visualise the contents of documents by embedding them into
a high dimensional semantic space (Le & Mikolov, 2014) and projecting it on a two-dimensional
canvas as a document landscape. Most recently Cartograph (Sen et al., 2017) was proposed, which
is visually very similar to previous approaches, but pre-renders information at different resolution
and uses a tiling server with (geographic) map technology to deliver responsive interactions with the
document landscape. Regions are coloured based on underlying ontologies from a knowledge-base.
Networks are traditionally visualised using so-called node-link graphs. This way, any additional
information related to nodes and edges are lost. The layout of nodes usually follows a force-based
analogy first proposed by Fruchterman & Reingold (1991). Newer approaches optimise the compu-
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tational complexity and include local metrics to better represent inherent structures as for example
ForceAtlas2 (Jacomy et al., 2014), which is the default network algorithm for the network visualisa-
tion tool Gephi.

The text and network visualisation methods discussed above primarily use structural properties of
the data to generate their layout. Although we focus on the visualisation of text data with inherent
graph information, MODiR can work with arbitrary kinds of data. Our model only requires a way
to project the data into a high-dimensional Euclidean vector space so that the distance between two
points can be interpreted as their (semantic) similarity. Traditionally, text can be represented as bag-
of-words vector that optionally is weighted by respective tf-idf scores. In recent years, embeddings
became more popular as they conserve semantic meaning in their vector representation. Mikolov
et al. (2013) introduced neural architectures to learn high-dimensional vector representations for
words and paragraphs (Le & Mikolov, 2014). Similar methods are used to learn representations for
nodes in a network based on either the structural neighbourhood (Faerman et al., 2018) or additional
heterogeneous information (Chang et al., 2015).Schlötterer et al. (2017) attempted to learn joint rep-
resentations of network structure and document contents but saw no improvement over conventional
models in a series of classification tasks. We only use the structural information of the network for
better control over fine-grained adjustments in our layout algorithm.

The goal of dimensionality reduction is to represent high-dimensional data in a low-dimensional
space while preserving the characteristics of the original data as sound as possible. A very common
application of dimensionality reduction is to project high-dimensional data into two dimensions
for the purpose of visual interpretation. Generally, these methods follow one of three mathemat-
ical models. Linear models, such as Principle Component Analysis (PCA) (Pearson, 1901) can
be calculated very efficiently and have proven to reduce input spaces to improve the performance
of downstream tasks. Thus, they are often indirectly used for feature extraction. Although reduc-
tions to two dimensions for visualisations are appropriate for quick initial data exploration, other
approaches are able to better preserve data characteristics in two dimensions. For example, the non-
linear Sammon mapping (Sammon, 1969) tries to preserve the structure of inter-point distances in
high-dimensional space in low-dimensional space. The resulting visualisations are generally better
then PCA to show relatedness of individual data points. Lastly, there are probabilistic models like
Stochastic Neighbour Embeddings (SNE) (Hinton & Roweis, 2003). They are similar to a Sammon
mapping in that they use inter-point distances but model these distances as probability distributions.
The t-distributed SNE has proven to produce competitive results for visualising datasets while pre-
serving characteristics (Maaten & Hinton, 2008), however its nondeterministic nature may produce
greatly varying results. Recently, FltSNE was proposed, an optimisation of tSNE that significantly
reduces the computational complexity (Linderman et al., 2019). Other newer dimensionality reduc-
tion algorithms like LargeVis (Tang et al., 2016) and UMAP (McInnes et al., 2018) scale almost
linearly by using efficient nearest neighbourhood approximations in the high-dimensional space and
spectral embeddings to initialise positions of points in the low-dimensional space to reduce the num-
ber of fine-tuning iterations.

3 MULTI-OBJECTIVE DIMENSIONALITY REDUCTION

Visualisations of complex datasets are restricted to two or three dimensions for users to grasp the
structure and patterns of the data. We integrate multiple entities (i.e., documents and persons) into
a joint visualisation, which we call landscape. This landscape consists of a base-layer containing
all documents depicted as dots forming the document landscape; nodes and their connections are
placed on top of this base-layer as circles connected by lines forming the graph layer. In this section,
we propose the MODiR algorithm which integrates multiple objectives during the layout process to
find an overall good fit of the data within the different layers. Our approach is derived from state-of-
the-art methods for drawing either the network layer or the document landscape.

We assume that documents are given as high-dimensional vectors and entities are linked among one
another and to the documents. These links are used as restrictions during the multi-objective dimen-
sionality reduction of document vectors. Let x(i) ∈ X ⊂ Rd be the set of n documents in their
d-dimensional representation and y(i) ∈ Y ⊂ R2 the respective positions on the document land-
scape. Let H(V, E) be a hypergraph based on the network information inferred from the document
corpus, with vertices V = X

⋃
P, where X are the documents and pi ∈ P are the entities in the
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network and hyperedges ek ∈ E describing the relation between documents and entities. For each
pair of entities pm, pn ∈ P that are connected in the context of documents x(i), . . . ∈ X, there is a
hyperedge ek = {pm, pn,x(i), . . .}. Analogously, the same definition applies to Y. Further, HY or
HX is used to explicitly state the respective document representation used. The position in the graph
layer π : P→ R2 of an entity pm is defined as

π(pm;HY) =
1

Npm

∑
ek∈Epm

∑
y(i)∈ek\P

y(i), (1)

where Epm ⊂ HY is the set of hyperedges containing pm and Npm is the number of documents
pm is associated with.2 This effectively places an entity at the centre of its respective documents.
More elaborate methods like a density-based weighted average are also applicable to mitigate the
influence of outliers. For simplicity we will abbreviate π(pm;HY) as πm.

Let ψ : X → Y be the projection ψ(x(i);W ) = Wi,: = y(i), where W ∈ R2×n is the projection
matrix leant by MODiR based on multiple objectives ϕ{1,2,3} using gradient descend, as defined
later in this section. The objectives are weighted by manually set parameters θ{1,2,3} to balance the
effects that favour principles focused on either the graph layer or the document landscape, as they
may contradict one another. Given a high-dimensional hypergraph HX, the matrix W , and a entity
projection π, we define the resulting multi-objective dimensionality reduction function as

Ψ(HX,W , π) = HY.

In the following paragraphs, we will formally introduce MODiR’s objectives. Objectives (1) and
(2) are inspired by tSNE and use the neighbourhood context of documents in X to position similar
documents near one another and unrelated ones further apart in Y. Objective (3) attracts documents
based on co-occurrence in hyperedges so that the resulting πm will be closer if they are well con-
nected in the graph. This third objective also implicitly brings documents closer to their respective
entities.

Objective (1): Similar documents are near one another. Semantically similar documents should
be closer on the document landscape and dissimilar ones further apart. To measure the semantic sim-
ilarity of documents, Maaten & Hinton (2008) used a naı̈ve bag-of-words representation. Although
tSNE preserves the inherent semantic structure in two-dimensional representations from these sparse
vectors (Pezzotti et al., 2017), we opted to use document embeddings. This has the advantage that,
when only part of the data is visualised, the embedding model can still be trained on a larger set
of documents and thus retain the additional information. Objective (1) is inspired by the efficient
usage of context words in word2vec (Mikolov et al., 2013). Corresponding to the skip-gram model,
we define the context Xk,x(i) ⊂ X of a document x(i) by its k nearest neighbours in the embedding
space. The first objective is defined as

ϕ1(x(i)) = σ
( ∑

x(j)∈Xk,x(i)

‖x(i) − x(j)‖−‖y(i) − y(j)‖
)

(2)

with σ being the sigmoid function. Distances are normalised based on the context to make them
comparable between the high-dimensional and two-dimensional space and rescaled by the sigmoid.

Objective (2): Dissimilar documents are apart from one another. The optimal solution to the
previously defined objective would be to project all documents onto the same point on the two-
dimensional canvas. In order to counteract that, we introduce negative examples for each pair of
context documents. We do so by sampling a set of l documents that are not in the k neighbourhood
of x(i). Let X̄l,x(i) ⊂ X \ Xk,x(i)

be the set of negative samples for x(i), then the second objective
is defined as

ϕ2(x(i)) = σ
( ∑

x(j)∈X̄l,x(i)

‖x(i) − x(j)‖−‖y(i) − y(j)‖
)
. (3)

2Npm :=
∣∣∣{x(i) ∈ X|∃ek ∈ E : x(i) ∈ ek ∧ pm ∈ ek}

∣∣∣
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Objective (3): Connected entities are near one another and their documents. This object
serves two purposes: All documents y(i) associated with a person pm are placed near its πm position
in the graph layer and two people πm and πn are forced near one another if they are connected.

Let Ey(i) ⊂ E be the set of hyperedges in the hypergraph H containing the document y(i) and
EY
y(i) =

⋃
ek∈Ey(i)

ek \ P all documents that are linked to y(i) through an entity, then the third
objective is defined as

ϕ3(y(i)) = σ
( ∑

y(j)∈EY
y(i)

‖y(i) − y(j)‖
)
, (4)

which, when minimised, attracts documents that are related through entities. This has two implicit
effects: An entity pm gets closer to its documents as they are attracted to πm without having to
explicitly compute this position using Equation 1. Also, related entities pm, pn are attracted to one
another since they appear in the same hyperedges. The computational complexity of this objective
is strongly related to the connectedness of entities in the graph. For dense graphs, we propose
a heuristic by only using a subset of s documents from the context EY

y(i) of y(i). An objective
modelling a repulsive force as in force-directed graph layouts is not needed as the first two objectives
ϕ{1,2} provide enough counteracting force.

Algorithm. The positions of entities and documents on the landscape are calculated using the
previously defined objectives as follows. First, we construct the hypergraph HX with document
contexts including the set of k-neighbourhoods Xk,x(i)

. Relevant pairwise distances can be stored
in an adjacency matrix so reduce computational overhead in Equations 2 and 3. For more efficient
training, the randomly sampled l negative neighbourhoods X̄l,x(i)

can be prepared ahead of time and
then only masked during later. The s-neighbourhoods for entities in Equation 4 EY

y(i) can only be
prepared with references, as Yy(i) updates with each iteration. We designed the algorithm to move
as much repetitive computations to pre-processing ahead of time or each epoch. Creating these
sets is very efficient using Hierarchical Navigable Small World graphs (HNSW) (Baranchuk et al.,
2018) for approximate nearest neighbour search. Overall we are able to reduce the pre-processing
complexity to O(n log n) and for each iteration O(kln), with k, l� n near linear. After generating
the context sets, we use gradient descend to update the projection matrix W with learning rate η
reducing the overall error Φ as defined by

Φ(xi) = θ1ϕ1(xi) + θ2ϕ2(xi) + θ3ϕ3(xi). (5)
Selecting appropriate values for the hyperparameters k, l, s, and θ{1,2,3} is critical to produce mean-
ingful results. We found l = k in all experiments to produce the best results as this way for every
similar document the model has one dissimilar document to compare. Inspired by tSNE (Maaten &
Hinton, 2008), we limit hyperparameters by setting k and s dynamically for each document based
on a user-defined perplexity. With these adaptations, the only parameters to be set are the perplexity
β that roughly determines the context size, the learning rate η, and the objective weights, which can
often stay at a default setting. A reference implementation including a modular processing pipeline
for different datasets, approaches, and experiments is available on GitHub3.

4 EXPERIMENTS

Our approach is mainly motivated to explore business communication data (namely emails), such as
the Enron corpus (Klimt & Yang, 2004). However, due to the lack of ground truth, we will focus
our evaluation on research publications and their co-authorship network. Results of dimensionality
reduction can be subjective, so as in prior work on dimensionality reduction (McInnes et al., 2018;
Sen et al., 2017; Maaten & Hinton, 2008), we will qualitatively compare our approach to a variety
of baselines and provide some quantitative experiments.

Experimental Setup. Here, we are using the Semantic Scholar4 Open Corpus (S2) (Ammar et al.,
2018) with over 45 million articles covering a range of scientific fields and the AMiner5 network

3https://github.com/redacted/redacted (link will be published in camera ready version)
4https://api.semanticscholar.org/corpus/
5https://aminer.org/billboard/aminernetwork
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Table 1: Quantitative evaluation of different landscapes (AM / S2 [/ ENR])

CLUSTER DOC2VEC T-SNE PCA MODiR

Data Mining 0.49 / 0.39 0.30 / 0.55 0.52 / 0.55 0.39 / 0.42
Database 0.49 / 0.82 0.64 / 0.34 0.47 / 0.34 0.69 / 0.32
ML 0.51 / 0.35 0.21 / 0.23 0.38 / 0.23 0.35 / 0.23
NLP 0.58 / 0.76 0.73 / 0.34 0.81 / 0.34 0.73 / 0.68
Comp Vision 0.51 / 0.67 0.56 / 0.39 0.49 / 0.39 0.54 / 0.29
HCI 0.64 / 0.68 0.47 / 0.41 0.61 / 0.41 0.39 / 0.38

Avg. 0.54 / 0.61 0.49 / 0.37 0.54 / 0.38 0.53 / 0.39

AtEdge – 5.32/4.09/3.89 5/3.91/3.6 4.79/2.94/2.59

(AM) (Tang et al., 2008) published in 2008 with over two million papers by 1.7 million authors.
Unlike DBLP however, they not only contain bibliographic metadata, such as authors, date, venue,
citations, but also abstracts to most articles, that we use to train document embeddings using the
Doc2Vec model in Gensim 6. Similar to Carvallari et al. (Cavallari et al., 2017), we remove arti-
cles with missing information and limit to the six communities Data Mining, Databases, Machine
Learning, NLP, Computer Vision, and HCI. This way we discard clearly unrelated computer science
articles and biomedical studies for a more fine grained analysis. For in-depth comparisons we use
an even smaller subset from S2 of 24 hand-picked authors, their co-authors, and their papers (S2b).

To our knowledge, there are no algorithms that use multiple objectives for dimensionality reduction
of high-dimensional data. Popular approaches for traditional dimensionality reduction are tSNE and
PCA. As baselines, we use the original optimised implementation of tSNE7 written in C as provided
by the authors. The quantitative evaluation is two-fold: MODiR can simulate their behaviour by
setting θ3 = 0 and thus ignoring the objective that incorporates network information.

In our experiments we use the following parameter settings. For tSNE we set the perplexity to
Perp(Pi) = 5, θ = 0.5 and run it for 1,000 iterations. In MODiR we set the neighbourhood size
to k = s = 10, the negative context size to l = 20, and all objective weights θ{1,2,3} = 1.0. For
a discussion on the influence of hyperparameters, we refer to the supplemental material. The speed
of convergence depends on the learning rate η and thus dictates the number of maximum iterations.
Early stopping with a threshold on the update rate could be implemented. Depending on the size
of the dataset and a fixed learning rate of η = 0.01, MODiR generally converges after 10 to 200
iterations, for larger and more connected data it is advisable to use a higher learning rate in the first
epoch for initialisation and then reducing it to very small updates. For better comparability, we use
a constant number of iterations of T = 100.

Quantitative Evaluation. As Maaten & Hinton (2008) state, it is by definition impossible to fully
represent the structure of intrinsically high-dimensional data, such as a set of document embed-
dings, in two dimensions. However, stochastic neighbour embeddings are able to capture intrinsic
structures well in two dimensional representations (Kobak et al., 2019). To measure this capability,
we compare the ability of k-means++ (Arthur & Vassilvitskii, 2007) to cluster the high- and two-
dimensional space. We set the number of clusters to the number or research communities (k = 6)
and calculate the percentage of of papers for each community per cluster. Therefore we assign each
community to the cluster with most respective papers and make sure to use a clustering with an even
distribution. Results are listed in Table 1 for tSNE, PCA, MODiR, and the original high dimensional
embedding averaged over five runs. We see, that as expected due to topical overlap of communities,
even original embeddings can’t be accurately clustered. Interestingly though, there seems to be a
significant difference between AM and S2 although the sets of papers intersect, which we assume
is due to the fact, that S2 is larger and additionally contains more recent papers. Although PCA

6https://radimrehurek.com/gensim/; embedding size: 64 dimensions, vocabulary size: 20k
tokens, trained for 500 epochs

7https://lvdmaaten.github.io/tsne/
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ML
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(a) Baseline network-first, edges

ML

DB

NLP

(b) Baseline network-first, nodes

ML

DB

NLP
DB

(c) Baseline documents as nodes

ML

DB

NLP

(d) Baseline documents-first

ML

DB

NLP

(e) Baseline node+document tSNE

ML

DB

NLP

(f) MODiR

Figure 1: Semantic Scholar co-authorship network (S2b), subsampled for readability; (a) the net-
work is laid out first, documents are randomly placed along edges; (b) the network is laid out first,
documents are randomly placed around nodes; (c) documents are part of the network layout as nodes
in the graph that replace author-author edges; (d) the document landscape is laid out first, nodes are
positioned at the centre of their associated documents; (e) tSNE is applied on papers and authors
together, where documents are aggregated to represent authors

often does not generate visualisations in which classes can be clearly distinguished, the clustering
algorithm is still able to separate them with competitive results compared to tSNE and MODiR.

MODiR not only aims to produce a good document landscape, but also a good layout of the network
layer. Graph layouts are well studied, thus we refer to related work on aesthetics (Purchase, 2002)
and readability (Nguyen et al., 2017). While these are very elaborate and consider many aspects, we
decided to use Noack’s normalised AtEdge-length (Noack, 2007):

AtEdge =

∑
i

∑
j‖πi − πj‖
|E|

/

∑
i

∑
j‖πi − πj‖
|P|2

.

It describes how well the space utilisation is by measuring whether edges are as short as possible
with respect to the size and density of the graph. Table 1 contains the results. Although the AtEdge
metric is comparable for layouts of the same graph, it is not comparable between datasets as can be
seen by the fact, that a larger number of edges causes an overall lower score. The AtEdge length
produced by PCA is generally better than that of tSNE while MODiR outperforms both as our
approach specifically includes an optimised network layout. The better performance of PCA over
tSNE can be explained by the resulting layouts being more densely clustered in one spot. Although
the AtEdge length aims to give a lower score for too close positioning, it is not able to balance that
to the many very long edges in the layout produced by tSNE.

Qualitative Evaluation. Apart from a purely quantitative evaluation, we use the hand-selected
Semantic Scholar dataset (S2b) to visually compare compare network-centric baselines (a-c),
document-focused baselines (d-e) and MODiR (f) in Figure 1. Papers are depicted as circles where
the stroke colour corresponds to the communities, black lines and dots are authors and their co-
authorships, size corresponds to the number of publications. For better readability and comparabil-
ity, the number of drawn points is reduced and three communities are marked.

In Figure 1a we use the weighted co-authorship network drawn using (Fruchterman & Reingold,
1991) and scatter the papers along their respective edges after the graph is laid out. We see, that
active collaboration is easy to identify as densely populated edges and research communities of se-
lected areas are mostly coherent and unconnected researchers are spatially separated from others.
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Although it is possible to distinguish the different communities in the graph layer,the document
landscape isn’t as clear. The ML researchers are split apart from the rest of the NLP community,
which in turn is overcrowded. Figure 1b uses the same network layout but places articles randomly
around their first author, which makes it easy to spot the scientific communities by colour. Lastly,
we include papers as nodes and co-authorship edges are connected through them during the network
layout in Figure 1c. This produces a very clean looking layout compared with the other baselines,
however papers lump together and are not evenly distributed. Furthermore, semantic nuances be-
tween papers are mostly lost which becomes most apparent in the now separated database clusters.
Also, the semantic overlap between the ML and NLP communities is not noticeable.

Figure 1d positions documents using tSNE and places researchers using Equation 1. We see that
articles are positioned on the landscape so that research areas are distinctly recognisable by colour.
Papers that could not be assigned to a specific area are scattered across the entire landscape. The
collaboration network is laid out surprisingly good. The research interests of the authors are coherent
between the network and the document landscape, it even shows the close relation between NLP and
ML, while showing a clear separation to database related topics. Nonetheless, the network should
be loosened for better readability, for example members of the same research group who frequently
co-author papers tend to collide. Unconnected authors are almost not visible as they drift toward
densely populated areas in the middle. In Figure 1e, we included authors as virtual documents as the
sum of their papers during the tSNE reduction. This shows some improvement, as the network layout
is more loose and fewer edges overlap and the issue with collapsing research groups is also mostly
mitigated. The semantic overlap of ML and NLP is niceley captured along with the difference to the
database papers. However, the network is not clearly readable.

With MODiR the three research communities become clearly distinguishable, both in the graph layer
and in the document landscape. Nodes of well connected communities are close together, yet are not
too close locally, and separate spatially from other communities. The document landscape is laid
out more clearly, as papers from different fields are grouped to mostly distinct clusters. Obviously
there is still a slight overlap as a result of semantic similarities. As previously pointed out, this
visualisation also correctly reveals, that the ML and NLP communities are more closely related to
each other (both use machine learning) than to DB. The authorship of documents however can only
be conveyed through interaction, so this information is not present in the static visualisations shown
here. Based on these results we argue, that the network information improves the (visual) community
detection. The document embeddings of articles can only reflect the semantic similarities, which
may overlap. In conjunction with information from the co-authorship network, the embeddings are
put into their context and thus are more meaningful in a joint visualisation.

5 CONCLUSIONS

In this paper we discussed how to jointly visualise text and network data with all its aspects on a
single canvas. Therefore we identified three principles that should be balanced by a visualisation
algorithm. From those we derived formal objectives that are used by a gradient descend algorithm.
We have shown how to use that to generate landscapes which consist of a base-layer, where the
embedded unstructured texts are positioned such that their closeness in the document landscape re-
flects semantic similarity. Secondly, the landscape consists of a graph layer onto which the inherent
network is drawn such that well connected nodes are close to one another. Lastly, both aspects can
be balanced so that nodes are close to the documents they are associated with while preserving the
graph-induced neighbourhood. We proposed MODiR, a novel multi-objective dimensionality reduc-
tion algorithm which iteratively optimises the document and network layout to generate insightful
visualisations using the objectives mentioned above. In comparison with baseline approaches, this
multi-objective approach provided best balanced overall results as measured by various metrics. In
particular, we have shown that MODiR outperforms state-of-the-art algorithms, such as tSNE. We
also implemented an initial prototype for an intuitive and interactive exploration of multiple datasets.
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and Anna Vilanova. Approximated and user steerable tsne for progressive visual analytics. TVCG,
23(7):1739–1752, 2017.

Helen C Purchase. Metrics for graph drawing aesthetics. JVLC, 13(5):501–516, 2002.

Tim Repke and Ralf Krestel. Bringing back structure to free text email conversations with recurrent
neural networks. In ECIR, pp. 114–126. Springer, mar 2018.

John W Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on computers,
100(5):401–409, 1969.

Jörg Schlötterer, Christin Seifers, and Michael Granitzer. On joint representation learning of network
structure and document content. In CD-MAKE, pp. 237–251. Springer, 2017.

Shilad Sen, Anja Beth Swoap, Qisheng Li, Brooke Boatman, Ilse Dippenaar, Rebecca Gold, Monica
Ngo, Sarah Pujol, Bret Jackson, and Brent Hecht. Cartograph: Unlocking spatial visualization
through semantic enhancement. In IUI, pp. 179–190. ACM, 2017.

Dominic Seyler, Tatiana Dembelova, Luciano Del Corro, Johannes Hoffart, and Gerhard Weikum.
A study of the importance of external knowledge in the named entity recognition task. In ACL,
pp. 241–246. ACL, 2018.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In WWW, pp. 1067–1077. ACM, 2015.

Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing large-scale and high-
dimensional data. In WWW, pp. 287–297. ACM, 2016.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction and
mining of academic social networks. In KDD, pp. 990–998. ACM, 2008.

Nees Jan Van Eck and Ludo Waltman. Visualizing bibliometric networks. In Measuring scholarly
impact, pp. 285–320. Springer, 2014.

Furu Wei, Shixia Liu, Yangqiu Song, Shimei Pan, Michelle X Zhou, Weihong Qian, Lei Shi, Li Tan,
and Qiang Zhang. TIARA: a visual exploratory text analytic system. In KDD, pp. 153–162.
ACM, 2010.

10



Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 ALGORITHM

In Algorithm 1, we formalise our approach for MODiR described in Section 3. For the intuition,
descriptions, and definitions, we refer to Section 3.

Algorithm 1: Simplified MODiR Algorithm
Data: HypergraphH = (V, E) with nodes V and hyperedges E as sets of high-dimensional

document representations X and people P; number of iterations T ∈ N; objective
weights θ{1,2,3} ∈ R; context sizes k, l, s ∈ N; update size η

Result: document positionsHY

begin
// initialise landscape (projection matrix W)

Y← {y(i) ∈ R2|x(i) ∈ X};
// pre-processing of contexts

Xk ← {(x(i), {x(j)|x(j) ∈ Xk,x(i)})|x(i) ∈ X};
Xl ← {(x(i), {x(j)|x(j) 6∈ Xk,x(i)})|x(i) ∈ X};
YP ← {(y(i), {y(j)|y(j) ∈ EY

y(i)})|y(i),y(j) ∈ Y};
for t = 1 . . . T do

foreach sampled pairs x(i),x(j) in Xk ∪ Xl ∪ YP do
y(i) ← ψ(x(i));
y(j) ← ψ(x(j));
Φ←

∑
θ{1,2,3}ϕ{1,2,3}(y

(i),y(j),x(i),x(j));
update W by η to reduce Φ with gradient descend;

end
end
calculate all π with Equation 1

end

A.2 DETAILS ON DATASETS

The motivation for this paper is to visualise social networks along with their respective text docu-
ments, especially email corpora, for exploring and understanding large datasets. We argue, that our
approach is applicable to any given dataset with inherent graph structures, so we include a variety of
examples for evaluation. We apply MODiR to the Enron corpus (Klimt & Yang, 2004) which orig-
inally consists of around 600,000 messages belonging to 158 users and Quagga (Repke & Krestel,
2018) to extract individual emails from quoted conversations, remove duplicates, extract additional
correspondents from inline metadata, and try to combine the aliases of people. Assessing the quality
of a given layout requires very specific domain knowledge including deep understanding of seman-
tic structure across all documents and a close familiarity with entity relations. Email corpora, such
as the aforementioned one, lack of gold standards and domain knowledge on our side, so we con-
sider additional sources. Thus we use named entities extracted from business news articles. From
the corpus of 448,395 Bloomberg- and 106,519 Reuters news articles (NEW) published by Ding et
al (Ding et al., 2014), we select those that contain the search term ”commerzbank” as a central entity
and consider co-occurrences of organisation entities extracted with AmbiverseNLU (Seyler et al.,
2018). This results in a graph where almost all entities are connected to a single central entity that
appears in all articles.

Academic co-authorship networks including respective publications have well defined labels pro-
vided by venues or communities, so there are no ambiguities or additional annotations. The two
processed and publicly available corpora of research articles, the AMiner8 network (AM) (Tang
et al., 2008) published in 2008 with over two million papers by 1.7 million authors and the recently

8https://aminer.org/billboard/aminernetwork
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Table 2: Number of documents, people, and their connections in filtered datasets used in this paper

DATASET # DOCUMENTS # NODES # EDGES

AMiner (AM) 49,670 56,449 110,146
SemanticScholar (S2) 170,098 183,198 701,442
SmallScholar (S2b) 489 24 39
Enron (ENR) 189,437 32,353 950,100
News (NEW) 3,734 2,944 5,240

Table 3: Number of articles in selected communities from Semantic Scholar (S2) and AMiner (AM)

LABEL VENUES # IN AM / S2

Data Mining KDD, ICDM, CIKM, WSDM 4,728 / 13,699
Database SIGMOD, VLDB, ICDE, EDBT 7,155 / 14,888
ML NeurIPS, AAAI, ICML, IJCAI 10,374 / 41,815
NLP EMNLP, ACL, CoNLL, COLING 41,815 / 22,523
Comp Vision CVPR, ICCV, ICIP, SIGGRAPH 11,898 / 43,558
HCI CHI, IUI, UIST, CSCW 8,608 / 33,615

published Semantic Scholar9 Open Corpus (S2) (Ammar et al., 2018) with over 45 million articles.
Both corpora cover a range of different scientific fields. Semantic Scholar for example integrates
multiple data sources like DBLP and PubMed and mostly covers computer science, neuroscience,
and biomedical research. Unlike DBLP however, S2 and AM not only contain bibliographic meta-
data, such as authors, date, venue, citations, but also abstracts to most articles, that we use to train
document embeddings using the Doc2Vec model in Gensim 10. Similar to Carvallari et al. (Cav-
allari et al., 2017) remove articles with missing information and limit to six communities that are
aggregated by venues as listed in Table 3. This way we reduce the size and also remove clearly
unrelated computer science articles and biomedical studies. For in depth comparisons we reduce the
S2 dataset to 24 hand-picked authors, their co-authors, and their papers (S2b).

Note, that the characteristics of the networks differ greatly as the ratio between documents, nodes,
and edges in Table 2 shows. In an email corpus, a larger number of documents is attributed to
fewer nodes and the distribution has a high variance (some people write few emails, some a lot). In
the academic corpora on the other hand, the number of documents per author is relatively low and
similar throughout. Especially different is the news corpus, that contains one entity that is linked to
all other entities and to all documents.

A.3 HYPERPARAMETER SETTINGS

In Section 4 we gave brief overview of the settings used in the experiments presented above.
Here, we provide additional insights from our experiments on different hyperparameter settings for
MODiR. The context sizes are the most important parameters. The first two objective weights can
be ignored, as the context size has similar effects, so we set θ1 = θ2 = 1.0 in all our experiments.
Generally, small numbers for k, l, s perform better. This is in line with our expectations, as each item
x(i) will also be in the context of its respective neighbours and will therefore amplify its attractive
force. A large number for k for example will force all points towards the centre of the canvas or if
even larger, produce random scatter as the gradients amplify. In our experiments we use k = 10, for
datasets with a few thousand samples, k should usually be below l. We also found, that the negative
context is best with l = 20 for all sizes. Furthermore, we set both θ1 = θ2 = 1.0 for all experiments
because the influence on selecting k, l is much larger. The graph context is also set to s = 10 (in
our dataset the number of entities is close to the number of documents), the objective weight can be

9https://api.semanticscholar.org/corpus/
10https://radimrehurek.com/gensim/; embedding size: 64 dimensions, vocabulary size: 20k

tokens, trained for 500 epochs
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freely adjusted between around 0.8 ≤ θ3 ≤ 1.2 to set the influence of the entity network. Similar to
the semantic neighbourhoods in the first and second objective, the choice of s is significantly more
influential than θ3.

A.4 LANDSCAPE VISUALISATIONS

Figure 2: MODiR visualisation of Semantic Scholar (S2), all six communities become clear.

Figure 3: MODiR visualisation business news about Commerzbank, highlighted on articles about
Volkswagen. All nodes (companies) in the network are connected to the centre node (Commerzbank)
and our algorithm still manages to retain the semantic areas.
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