
Under review as a conference paper at ICLR 2020

UNSUPERVISED DISTILLATION OF SYNTACTIC INFOR-
MATION FROM CONTEXTUALIZED WORD REPRESEN-
TATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Contextualized word representations, such as ELMo and BERT, were shown to
perform well on a various of semantic and structural (syntactic) task. In this work,
we tackle the task of unsupervised disentanglement between semantics and struc-
ture in neural language representations: we aim to learn a transformation of the
contextualized vectors, that discards the lexical semantics, but keeps the structural
information. To this end, we automatically generate groups of sentences which are
structurally similar but semantically different, and use metric-learning approach to
learn a transformation that emphasizes the structural component that is encoded in
the vectors. We demonstrate that our transformation clusters vectors in space by
structural properties, rather than by lexical semantics. Finally, we demonstrate the
utility of our distilled representations by showing that they outperform the original
contextualized representations in few-shot parsing setting.

1 INTRODUCTION

Human language1 is a complex system, involving an intricate interplay between meaning (seman-
tics) and structural rules between words and phrases (syntax). Self-supervised neural sequence mod-
els for text trained with a language modeling objective, such as ELMo (Peters et al., 2018), BERT
(Devlin et al., 2019), and RoBERTA (Liu et al., 2019), were shown to produce representations
that excel in recovering both structure-related information (Gulordava et al., 2018; van Schijndel &
Linzen; Wilcox et al.; Goldberg, 2019) as well as in semantic information (Yang et al., 2019; Joshi
et al., 2019).

In this work, we study the problem of disentangling structure from semantics in neural language
representations: we aim to extract representations that capture the structural function of words and
sentences, but which are not sensitive to their content. For example, consider the sentences:

1. Neural networks are interesting. 3. I study neural networks.
2. Maple syrup is delicious. 4. John loves maple syrup.

While (1) and (2) are different in content, they share a similar structure, the corresponding words
in them, while unrelated in meaning, serve the same function. Similarly for sentences (3) and (4).
In contrast, sentence (1) shares the phrase neural networks with sentence (3) and maple syrup is
shared between (2) and (4). While the two occurrences of each phrase share the meaning, they
are used in different structural (syntactic) configurations, serving different roles within the sentence
(appearing in subject vs object position).2 We seek a representation that will expose the similarity
between “networks” in (1) and “syrup” in (2) while ignoring the similarity between “syrup” in (2)
and “syrup” in (4).

We aim to learn a function from contextualized word representations to a space that exposes these
similarities. Crucially, we aim to do this in an unsupervised manner: we do not want to inform the
process of the kind of structural information we want to obtain.

1In this work we focus on English.
2These differences in syntactic position are also of relevance to language modeling, as different positions

may pose different restrictions on the words that can appear in them.

1



Under review as a conference paper at ICLR 2020

The problem of disentangling different sources of variation has long been studied in computer vision,
and was recently applied to neural models (Bengio et al., 2013; Mathieu et al., 2016; Hadad et al.,
2018). Such disentanglement can assist in learning representations that are invariant to specific
factors, such as pose-invariant face-recognition (Peng et al., 2017) or style-invariant digit recognition
(Narayanaswamy et al., 2017). From a generative point of view, disentanglement can be used to
modify one aspect of the input (e.g., “style”), while keeping the other factors (e.g., “content”) intact,
as done in neural image style-transfer (Gatys, 2017).

In the field of NLP, disentanglement is much less researched. Several works examine the way seman-
tic and syntactic information is distributed across the layers of neural models of text (Blevins et al.,
2018; Tenney et al., 2019). Beyond the descriptive level, recent works have focused on supervised
extraction of syntax-related representations from neural sequence models. Hewitt & Manning (2019)
demonstrated that it is possible to train a linear transformation, under which squared euclidean dis-
tance between transformed contextualized word vectors correspond to the distances between the
respective words in the syntax tree that represents the hierarchical structure of the sentence. Con-
current to this work, Li & Eisner (2019) have used a variational estimation method (Alemi et al.,
2016) of the information-bottleneck principle (Tishby et al., 1999) to extract word embeddings that
are useful to the end task of parsing. While impressive, those works presuppose a specific syntactic
structure (e.g. annotated parse trees following a specific linguistic scheme) and use this signal to
learn structural information in a supervised manner.

In other words, these methods learn to map the neural representation to a pre-defined structure.
Instead, we aim to extract the structural information encoded in the network in an unsupervised
manner, without pre-supposing an existing syntactic annotation scheme. We do this by learning a
transformation that attempts to remove the lexical-semantic information in a sentence, while trying
to preserve structural properties.

Concretely, we begin with the intuition that the structural component in the representation (cap-
turing the form) should remain the same regardless of the lexical semantics of the sentence (the
meaning). Rather than beginning with a parsed corpus, we automatically generate a large number
of structurally-similar sentences, without presupposing their structure (§2.1). This allows us to pose
the disentanglement problem as a metric-learning problem: we aim to learn a transformation of the
contextualized representation, which is invariant to changes in the lexical semantics within each
group of structurally-similar sentences (§2.3). We demonstrate the structural properties captured by
the resulting representations in several experiments (§3), among them automatic identification of
structurally-similar words and few-shots parsing.

2 METHOD

Our goal is to learn a function f : Rn 7→ Rm, which operates on contextualized word representations
x and extract vectors f(x) which make the structural information encoded in x more salient, while
discarding as much lexical information as possible. In the sentences “Maple syrup is delicious” and
“Neural networks are interesting”, we want to learn a f such that f(v2syrup) ≈ f(v1networks), where
viword is the contextualized vector representation of the word in sentence i. We also want f(v4syrup) ≈
f(v3networks), while keeping f(v1networks) 6≈ f(v3networks).

Moreover, we would like the relation between the words “maple” and “delicious” in the sec-
ond sentence, to be similar to the relation between “neural” and “interesting” in the first sen-
tence: pair(v2maple, v

2
delicious) ≈ pair(v1neural, v

1
interesting). Operativly, we represent pairs of words (x, y)

by the difference between their transformation f(x) − f(y), and aim to learn f that preserves:
f(v2maple)− f(v2delicious) ≈ f(v1neural)− f(v1interesting).

To learn f , we start with groups of sentences that the sentences within each group are known to share
their structure but differ in their lexical semantics. We call the sentences in each group structurally
equivalent. Figure 1 shows an example of two structurally equivalent sets. Acquiring such sets
is challenging, especially if we do not assume a known syntactic formalism and cannot mine for
sentences based on their observed tree structures. To this end, we automatically generate the sets
starting with known sentences and sampling variants from a language model (§2.1). Our sentence-
set generation procedure ensures that words from the same set that share an index also share their
structural function. We call such words corresponding.

2



Under review as a conference paper at ICLR 2020

Figure 1: Two groups of structurally-equivalent sentences. In each group, the first sentence is origi-
nal sentence from Wikipedia, and the sentences below it were generated by the process of repeated
BERT substitution. Some sets of corresponding words–that is, words that share the same structural
function–are highlighted in the same color.

We now proceed to learn a function f to map contextualized vectors of corresponding words (and
the relations between them, as described above) to neigbouring points in the space.

We train f such that the representation assigned to positive pairs — pairs that share indices and
come from the same equivalent set — is distinguished from the representations of negative pairs
— challenging pairs that come from different sentences, and thus do not share the structure of the
original pair, but can, potentially, share their lexical meaning. We do so using Triplet loss, which
pushes the representations of pairs coming from the same group closer together (§2.3). Figure 2
sketches the network.

Figure 2: An illustration of triplet-loss calculation. Pairs of words are represented by the difference
between their transformation f , which is identical for all words. The pairs of words in the anchor and
positive sentences are lexically different, but structurally similar. The negative example presented
here is especially challenging, as it is lexically similar, but structurally different.

2.1 GENERATING STRUCTURALLY-SIMILAR SENTENCES

To generate equivalent sets that share the same structure but differ in semantics, we rely on a BERT
masked LM model. We start each group with a Wikipedia sentence, for which we generate k = 6
equivalent sentences by iterating over the sentence from left to right sequentially, masking the ith
word, and replacing it with one of BERT’s top-30 predictions.3. Crucially, to increase semantic
variability, we perform the replacement in place (online), that is, after randomly choosing a guess
w, we insert w to the sentence at index i, and continue guessing the i + 1 word based on the
modified sentence.4 We exclude a closed set of a few dozens of words (mostly function words) and
keep them unchanged in all k variations of a sentence. To the extent that BERT learns to recover
corrupted sentences by suggesting replacements that respect the probability distribution of actual
natural language, the suggestions would be both semantically and structurally correct. We further
maintain structural correctness by maintaining the POS, and encourage semantic diversity by the
auto-regressive replacement process. The sets in Figure 1 were generated using this method.

3We filter BERT predictions to have the same POS tag as the word in the original sentence. An alternative
to this method is randomly replacing words with words of the same POS, as done in Gulordava et al. (2018).
However, the POS-based method generates many ungrammatical sentences, as POS tags do not take into ac-
count various distinctions such as transitive vs intransitive verbs, whether or not a verb accepts a complement,
etc.

4We note that this process bears some similarity to Gibbs sampling from BERT conditioned LM.

3



Under review as a conference paper at ICLR 2020

2.2 WORD REPRESENTATION

We use the method to generate N = 150, 000 equivalent sets Ei of structurally equivalent sentences,
and collect the contextualized vector representations of words in these sets, resulting in 1,500,000
training pairs and 200,000 evaluation pairs. We experiment with both ELMo and BERT-based con-
textualized representations. For ELMo, we represent each word in context as a concatenation of
the last two ELMo layers (excluding the word embedding layer, which is not contextualized and
therefore irrelevant for structure), resulting in representations of dimension 2048. For BERT, we
concatenate the mean of the words’ representation across all 23 layers of BERT-Large, with the
representation of layer 16, which was found by Hewitt & Manning (2019) most indicative of syntax.

2.3 TRIPLET LOSS

We learn the mapping function f using triplet loss (Figure 2).

Concretely, given a group of equivalent sentences Ei, we randomly choose two sentences to be the
anchor sentence SA, and the positive sentence SP , and sample two different word indices {i1, i2}.
Let SA[i1] be the contextualized representation of the i1th word in sentence SA. The words SA[i1]
and SA[i2] from the anchor sentence would form a representation of a pair of words, which should
be close to the pair SP [i1],SP [i2] from the positive sentence.

We represent pairs as their differences after transformation, resulting in the anchor pair V A and
positive pair V P :

V A = f(SA[i1])− f(SA[i2]) SA ∈ Ei (1)

V P = f(SP [i1])− f(SP [i2]) SP ∈ Ei (2)

where f is the parameterized syntactic transformation we aim to learn. We also consider a negative
pair:

V N = f(SN [j1])− f(SN [j2]) SN 6∈ Ei (3)

coming from sentence SN which is not in the equivalent set.

As f has shared parameters for both words in the pair, it can thus be considered a part of a Siamese
network, making our learning procedure an instance of a triplet Siamese network Schroff et al.
(2015). We choose f to be a simple model: a single linear layer that maps from dimensionality 2048
to 75.

We use triplet loss (Schroff et al., 2015) to move the representation of the anchor vector V A closer to
the representation of the positive vector V P and farther apart from the representation of the negative
vector V N . Following Hoffer & Ailon (2015), we calculate the softmax version of the triplet loss:

Ltriplet(V A, V P , V N ) =
edist(V

A,V P )

edist(V A,V P ) + edist(V A,V N )
(4)

where dist(x, y) = 1 − x>y
‖x‖‖y‖ is the cosine-distance between the vectors x and y. Note that

Ltriplet → 0 as dist(V A,V P )
dist(V A,V N )

→ 0, as expected. The triplet objective is optimized end-to-end
using the Adam optimizer (Kingma & Ba, 2015), with mini-batches of size 500. We train for 5
epochs with a mini-batch of size 500 A large enough mini-batch is necessary to find challenging
negative examples., and take the last model as the final syntactic extractor. During training, the
gradient backpropagates through the pair vectors to the parameters f of the Siamese model, to get
representations of individual words that are similar for corresponding words in equivalent sentences.

Hard negative sampling We obtain the negative vectors V N using hard negative sampling. For
each mini-batch B, we collect 500 {VA

i , VP
i } pairs, each pair taken from an equivalent set Ei. The

negative instances VN
i are obtained by searching the batch for a vector that is closest to the anchor

4



Under review as a conference paper at ICLR 2020

and comes from a different set:

V N
i = argmin

V A
j 6=i∈B

dist(V A
i , V A

j ) (5)

where dist is again the cosine distance. In addition, we enforce a symmetry between the anchor and
positive vectors, by adding a pair (positive, anchor) for each pair (anchor, positive) in B.

That is, V N
i is the is “most misleading” word-pair vector: it comes from a sentence that has a

different structure than the structure of VA
i sentence, but is the closest to VA

i in the mini-batch 5.

3 EXPERIMENTS AND ANALYSIS

We have trained the syntactic transformation f in a way that should encourages it to retain the struc-
tural information encoded in contextualized vectors, but discard other information. We assess the
representations our model acquired in an unsupervised manner, by evaluating the extant to which the
local neighbors of each transformed contextualized vector f(x) share known structural properties,
such as grammatical function within the sentence. For the baseline, we expect the neighbors of each
vector to share a mix of semantic and syntactic properties. For the transformed vectors, we expect
the neighbors to share mainly syntactic properties. Finally, we demonstrate that in a few-shots set-
tings, our representations outperform the original ELMO representation, indicating they are indeed
distilled from syntax, and discard other information that is encoded in ELMO vectors but is irrele-
vant for the extraction of the structure of a sentence.

Corpus For training the transformation f , we rely on 150,000 sentences from Wikipedia, tokenized
and POS-tagged by spaCy 6. The POS tags are used in the equivalent set generation to filter replace-
ment words. Apart from POS tagging, we do not rely on any syntactic annotation during training.
The evaluation is done on 1,000,000 other original and unmodified Wikipedia sentences.

3.1 QUALITATIVE ANALYSIS

t-SNE Visualization Figure 3 shows a 2-dimensional t-SNE projection (Maaten & Hinton, 2008)
of 15,000 random content words. The left panel projects the original ELMo states, while the right
panel is the syntactically transformed ones. The points are colored according to the dependency
label (relation to parent) of the corresponding word, assigned by the spacy parser.

As can be seen, in the original ELMo representation most states – apart from those characterized by a
specific part-of-speech, such as amod (adjectives, in orange) or nummod (numbers, in light green) –
do not fit well into a single cluster. In contrast, the syntactically transformed vectors are more neatly
clustered, with some clusters, such as direct objects (pink) and prepositional-objects (blue), that are
relatively separated after, but not before, the transformation. Interestingly, some functions that used
to be a single group in ELMo (like the adjectives in orange, or the noun-compounds in green) are
now split into several clusters, corresponding to their use in different sentence positions, separating
for examples adjectives that are used in subject positions from those in object position or within
prepositional phrases. Additionally, as noun compounds (“maple” in “maple syrup”) and adjectival
modifiers (“tasty” in “tasty syrup”) are relatively structurally similar (they appear between deter-
miners and nouns within noun phrases, and can move with the noun phrase to different positions),
they are split and grouped together in the representation (the green and orange clouds).

Examples Below are a few query words (Q) and their closest neighbours (N). Note the high struc-
tural similarity of the entire sentence, as well as the function of the word within it (Q1: last word
of subject NP in a middle clause, Q2: possessed noun in sentence initial subject NP, Q3: head of
relative clause of a direct object):

Q:in this way of thinking, an impacting projectile goes into an ice-rich layer – but no further .
N:to achieve a large explosive yield, a linear implosion weapon needs more material, about 13 kgs.

5We implicitly assume that any pair coming from a different group of equivalent sentences is a valid negative
example – that is, does not share the structural relation that exists between the anchor pair’s words. This is a
relatively mild assumption, as due to sparsity, in high probability two different sentences do not share the very
same structure

6https://spacy.io/

5

https://spacy.io/


Under review as a conference paper at ICLR 2020

ELMo Transformed

Figure 3: t-SNE projection of ELMO states, colored by syntactic function, before (left) and after
(right) the syntactic transformation.

Q:the mint ’s director at the time , nicolas peinado , was also an architect and made the initial plans.
N:jetley ’s mother , kaushaliya rani , was the daughter of high court advocate shivram jhingan .

Q:their first project is software that lets players connect the company ’s controller to their device
N:the city offers a route-finding website that allows users to map personalized bike routes

3.2 QUANTITATIVE EVALUATION

We expect our transformed vectors to capture more structural and less lexical similarities than the
source vectors. We expect each vectors’ neighbors in space to share the structural function of the
word over which the vector was collected, but not necessarily share its lexical meaning. We focus
on the following structural properties:

• Dependency-tree edge of a given word (dep-edge), that represents its function (subject,
object etc.)

• The dependency edge of the word parent’s (head’s dep-edge) in the tree – to represent
higher level structure, such as a subject that resides within a relative clause, as in the word
‘man” in the phrase “the child that the man saw”.

• Depth in the dependency tree (distance from the root of the sentence tree).

• Constituency-parse paths: Consider, for example, the sentence “They saw the moon with
the telescope”. The word “Telescope” is a part of a noun-phrase “The telescope”, which
resides inside a prepositional phrase “with the telescope”, which is part of the Verbal phrase
“”Saw with the telescope”. The complete constituency path for this word is therefore “NP-
PP-VP”. We calculate the complete tree path to the root (Tree-path-complete), as well as
paths limited to lengths 2 and 3.

For this evaluation, we parse 400,000 random sentences taken from Wikipedia, run ELMo and BERT
to collect the contextualized representations of the sentences’ words, and randomly choose 400,000
query word vectors (excluding function words). We then retrieve, for each query vector x, the value
vector y that is closest to x in cosine-distance, and record the percentage of closest-vector pairs (x, y)
that share each of the structural properties listed above. For the tree depth property, we calculate the
Pearson correlation between the depths of the queries and the retrieved values. We use Spacy parser
for dependency-parsing, and the Berkeley Neural Parser (Kitaev & Klein, 2018) for constituency
parsing. We exclude function words from the evaluation.

Easier and Harder cases The baseline models tend to retrieve words that are lexically similar.
Since certain words tend to appear at above-chance probability in certain structural functions, this
can make the baseline be “right for the wrong reason”, as the success in the closest-word test reflects
lexical similarity, rather than grammatical generalization of the model. To control for this confound-
ing, we sort the different POS tags according to the entropy of their dependency-labels distribution,
and repeat the evaluation only for words belonging to those POS tags having the highest entropy

6



Under review as a conference paper at ICLR 2020

Dep. edge Head’s dep. edge Tree path Tree path Tree path Depth Lexical Match
(complete) (L=3) (L=2) (correlation)

Baseline (all) 0.580 0.473 0.166 0.353 0.566 0.448 0.736
Transformed (all) 0.699 0.603 0.253 0.523 0.735 0.561 0.284
Transformed-untrained (all) 0.461 0.430 0.142 0.319 0.528 0.407 0.680
Baseline (difficult) 0.509 0.460 0.160 0.347 0.564 0.430 0.776
Transformed (difficult) 0.671 0.591 0.260 0.534 0.751 0.576 0.274

Table 1: Results in the closest-word queries, before and after the application of the syntactic trans-
formation. ”Basline” refers to unmodified ELMo vectors, ”Transformed” refers to ELMo vectors
after the learned syntactic transformation f , and “Transformed-untrained” refers to ElMo vectors,
after a transformation that was trained on a randomely-initialized ELMo. ”Difficult” refers to eval-
uation on the subset of POS tags which are most structurally diverse.

(those POS tags are the most structurally variant, and tend to appear in different structural func-
tions). We find that the performance of the baselines (ELMo, BERT models) on those words drops
significantly, while the performance of our model are only mildly influenced, further indicating the
superiority of our model in capturing structural rather than lexical information.

Results The results for ELMo are presented in Table 1. For BERT, we witnessed similar, but some-
what lower, accuracy: for example, 68.1% dependency-edge accuracy, 56.5% head’s dependency-
edge accuracy, and 22.1% complete constituency-path accuracy. For the reminder of the paper, we
focus in ELMo. We observe significant improvement over the baseline for all tests. The correla-
tion between the depth in tree of the query and the value words, for examples, rises from 44.8% to
56.1%, indicating that our model encourages the structural property of the depth of the word to be
more saliently encoded in its representation compared with the baseline. The most notable relative
improvement is recorded with regard to full constituency-path to the root: from 16.6% before the
structural transformation, to 25.3% after it – an improvement of 52%. In addition to the increase
in syntax-related properties, we observe a sharp drop – from 73.6% to 28.4% – – in the proportion
of query-value pairs that are lexically identical (lexical match, Table 1). This indicates our trans-
formation f removes much of the lexical information, which is irrelevant for structure. To assess
to what extent the improvements stems from the information encoded in ELMo, rather than being
an artifact of the triplet-loss training, we also evaluate on a transformation f that was trained on
a randomly-initialized ELMo, a surprisingly strong baseline (Conneau et al., 2018). We find this
model performs substantially worse than the baseline (Table 1, “Transformed-untrained (all)”).

3.3 MINIMAL SUPERVISION FOR STRUCTURE DISTILLATION: FEW-SHOT PARSING

The absolute nearest-neighbour accuracy values may appear to be relatively low: for example, only
67.6% of the (query, value) pairs share the same dependency edge.

As the model acquires its representation without being exposed to human-mandated syntactic con-
vention, some of the apparent discrepancies in nearest neighbours may be due to the fact the model
acquires different kind of generalization, or learned a representation that emphasizes different kinds
of similarities. Still, we expect the resulting (75 dimensional) representations to contain distilled
structure information that is mappable to human notions of syntax. To test this, we compare
dependency-parsers trained on our representation and on the source representation. If our repre-
sentation indeed captures structural information, we expect it to excel on a low data regime. To
this end, we test our hypothesis with few-shot dependency parsing setup, where we train a model to
predict syntactic trees representation with only a few hundred labeled examples.

We use an off-the-shelf dependency parser (Dozat & Manning, 2016) and first swap the pre-trained
Glove embeddings (Pennington et al., 2014) with ELMo contextualized embeddings (Peters et al.,
2018). In order to have a fair comparison with our method, we use the concatenation of the two
last layers of Elmo; we refer to this experiment as elmo. As our representation is much smaller than
ELMo’s (75 as opposed to 2048), a potential issue for a low data regime is the high parameter number
to optimize in the later case, therefore a lower dimension can achieve better results. We design two
additional baseline experiments to remedy this potential issue: (1) Using PCA in order to reduce
the representation dimensionality. We randomly chose 1M words from Wikipedia, calculated their
representation with ELMo embeddings and performed PCA. This transformation is applied during

7



Under review as a conference paper at ICLR 2020

Figure 4: Results of the few shot parsing setup

training on top of ELMo representation while keeping the 75 first components. This experiment
is referred to as elmo-pca. This representation should perform well if the most salient information
in the ELMo representations are structural. We exepct it to not be the case. (2) Automatically
learning a matrix that reduce the embedding dimension. This matrix is learned during training and
can potentially extract the relevant structural information from the representations. We refer to this
experiment as elmo-reduced.

Lastly, we examine the performance of our representation, where we apply our structural extraction
method on top of ELMo representation. We refer to this experiment as syntax.
We run the few-shot setup with multiple training size values: 50, 100, 200, 500. The results—for
both labeled (LAS) and unlabeled (UAS) attachment scores—are presented in Figure 4.

We notice that in the lower training size regime, we obtain the best performances compared to all
baselines. The more training data is used, the gap between our representation and the baselines
reduced, but the syntax representation still outperforms elmo. Reducing the dimensions with PCA
(elmo-pca) works considerably worse than ELMo, indicating that the most salient information is
indeed not structural, and the PCA loses important information. Reducing the dimensions with a
learned matrix (elmo-reduced) works substantially better than ELMo, and achieve the same UAS as
our representation from 200 training sentences onward. However, our transformation was learned in
an unsupervised fashion, without access to the syntactic trees. Finally, when considering the labeled
attachment score, where the model is tasked at predicting not only the child-parent relation but also
its label, our syntax representation outperforms elmo-reduced.

4 CONCLUSION

In this work, we propose an unsupervised method for the distillation of structural information from
neural contextualized word representations. We used a process of sequential BERT-based substitu-
tion to create a large number of sentences which are structurally similar, but semantically different.
By controlling for one aspect – structure – while changing the other – lexical choice, we learn a
metric (via triplet loss) under which pairs of words that come from structurally-similar sentences are
close in space. We demonstrated that the representations acquired by this method share structural
properties with their neighbors in space, and show that with a minimal supervision, those represen-
tations outperform ELMo in the task of few-shots parsing. The method presented here is a first step
towards a better disentanglement between various kinds of information that is represented in neural
sequence models.

The method used to create the structurally equivalent sentences can be useful by its own for other
goals, such as augmenting parse-tree banks (which are often scarce and require large resources to
annotate). In a future work, we aim to extend this method to allow for a more soft alignment between
structurally-equivalent sentences.

8



Under review as a conference paper at ICLR 2020

REFERENCES

Alexander Alemi, Ian Fischer, Joshua V. Dillon, and Murphy Murphy. Deep variational information
bottleneck. In Proceedings of the International Conference on Learning Representations (ICLR),
2016.

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828, 2013.

Terra Blevins, Omer Levy, and Luke Zettlemoyer. Deep RNNs encode soft hierarchical syntax. In
Proceedings of the Annual Meeting of the Association for Computational Linguistics, ACL, pp.
14–19, 2018.

Alexis Conneau, Germán Kruszewski, Guillaume Lample, Loı̈c Barrault, and Marco Baroni. What
you can cram into a single \$&!#* vector: Probing sentence embeddings for linguistic properties.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL
2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pp. 2126–2136, 2018. doi:
10.18653/v1/P18-1198. URL https://www.aclweb.org/anthology/P18-1198/.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT, pp. 4171–4186, 2019.

Timothy Dozat and Christopher D Manning. Deep biaffine attention for neural dependency parsing.
arXiv preprint arXiv:1611.01734, 2016.

Leon A. Gatys. Texture synthesis and style transfer using perceptual image representations from
convolutional neural networks. PhD thesis, University of Tübingen, Germany, 2017. URL http:
//d-nb.info/1151843520.

Yoav Goldberg. Assessing BERT’s syntactic abilities. CoRR, abs/1901.05287, 2019. URL http:
//arxiv.org/abs/1901.05287.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco Baroni. Colorless
green recurrent networks dream hierarchically. In Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT, pp. 1195–1205, 2018.

Naama Hadad, Lior Wolf, and Moni Shahar. A two-step disentanglement method. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, (CVPR), pp. 772–780, 2018.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word represen-
tations. In Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, NAACL-HLT, pp. 4129–4138, 2019.

Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In Similarity-Based Pattern
Recognition - Third International Workshop, SIMBAD, pp. 84–92, 2015.

Mandar Joshi, Omer Levy, Daniel S Weld, and Luke Zettlemoyer. BERT for coreference resolution:
Baselines and analysis. arXiv preprint arXiv:1908.09091, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, ICLR, 2015.

Nikita Kitaev and Dan Klein. Constituency parsing with a self-attentive encoder. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics (ACL), 2018.

Xiang Lisa Li and Jason Eisner. Specializing word embeddings (for parsing) by information bottle-
neck. In Proceedings of the Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT pre-
training approach. CoRR, abs/1907.11692, 2019.

9

https://www.aclweb.org/anthology/P18-1198/
http://d-nb.info/1151843520
http://d-nb.info/1151843520
http://arxiv.org/abs/1901.05287
http://arxiv.org/abs/1901.05287


Under review as a conference paper at ICLR 2020

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605, 2008.

Michaël Mathieu, Junbo Jake Zhao, Pablo Sprechmann, Aditya Ramesh, and Yann LeCun. Dis-
entangling factors of variation in deep representation using adversarial training. In Advances in
Neural Information Processing Systems, pp. 5041–5049, 2016.

Siddharth Narayanaswamy, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah D.
Goodman, Pushmeet Kohli, Frank D. Wood, and Philip H. S. Torr. Learning disentangled rep-
resentations with semi-supervised deep generative models. In Advances in Neural Information
Processing Systems, pp. 5925–5935, 2017.

Xi Peng, Xiang Yu, Kihyuk Sohn, Dimitris N. Metaxas, and Manmohan Chandraker.
Reconstruction-based disentanglement for pose-invariant face recognition. In IEEE International
Conference on Computer Visionn (ICCV), pp. 1632–1641, 2017.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT, pp. 2227–2237, 2018.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A unified embedding for face
recognition and clustering. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In
Proceedings of the Conference of the Association for Computational Linguistics, ACL, pp. 4593–
4601, 2019.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. In
Proc. of the Allerton Allerton Conference on Communication, Control and Computing, 1999.

Marten van Schijndel and Tal Linzen. In Tim Rogers, Marina Rau, Jerry Zhu, and Chuck Kalish
(eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society, pp. 2600–
2605.

Ethan Wilcox, Roger Levy, Takashi Morita, and Richard Futrell. What do RNN language models
learn about filler–gap dependencies? In Proceedings of the EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP, pp. 211–221. Association for Computational
Linguistics.

Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin.
End-to-end open-domain question answering with BERTserini. In Proceedings of the Conference
of the North American Chapter of the Association for Computational Linguistics NAACL-HLT,
pp. 72–77, 2019.

10


	Introduction
	Method
	Generating Structurally-similar Sentences
	Word Representation
	Triplet Loss

	Experiments and Analysis
	Qualitative Analysis
	Quantitative Evaluation
	Minimal Supervision for Structure Distillation: Few-Shot Parsing

	Conclusion

