Under review as a conference paper at ICLR 2020

WHICH TASKS SHOULD BE LEARNED TOGETHER IN
MULTI-TASK LEARNING?

Anonymous authors
Paper under double-blind review

ABSTRACT

Many computer vision applications require solving multiple tasks in real-time. A
neural network can be trained to solve multiple tasks simultaneously using multi-
task learning. This saves computation at inference time as only a single network
needs to be evaluated. Unfortunately, this often leads to inferior overall perfor-
mance as task objectives can compete, which consequently poses the question:
which tasks should and should not be learned together in one network when
employing multi-task learning? We systematically study task cooperation and
competition and propose a framework for assigning tasks to a few neural networks
such that cooperating tasks are computed by the same neural network, while com-
peting tasks are computed by different networks. Our framework offers a time-
accuracy trade-off and can produce better accuracy using less inference time than
not only a single large multi-task neural network but also many single-task net-
works.

1 INTRODUCTION

Many applications, especially robotics and autonomous vehicles, are chiefly interested in using
multi-task learning to reduce the inference time required to estimate many characteristics of vi-
sual input. These estimates must be produced quickly because the reaction time of such a robot is of
utmost importance. For example, an autonomous vehicle may need to detect the location of pedes-
trians, determine a per-pixel depth, and predict objects’ trajectories, all within tens of milliseconds.
In multi-task learning, multiple learning tasks are solved at the same time, typically with a single
neural network. In addition to reduced inference time, solving a set of tasks jointly rather than inde-
pendently can, in theory, have other benefits such as improved prediction accuracy, increased data
efficiency, and reduced training time.

Unfortunately, the quality of predictions are often observed to suffer when a network is tasked with
making multiple predictions. This is because learning objectives can have complex and unknown
dynamics and may compete. In fact, multi-task performance can suffer so much that smaller inde-
pendent networks are often superior (as we will see in the experiments section). We refer to any
situation in which the competing priorities of the network cause poor task performance as crosstalk.

On the other hand, when task objectives do not interfere much with each other, performance on
both tasks can be maintained or even improved when jointly trained. Intuitively, this loss or gain of
quality seems to depend on the relationship between the jointly trained tasks.

Prior work has studied the relationship between tasks for transfer learning (Zamir et al.| (2018)).
However, we find that multi-task relationships are not closely related to transfer relationships (i.e. a
good transfers between two tasks does not indicate a good multi-task learning compatibility and vide
versa). In addition to studying multi-task relationships, we attempt to determine how to produce
good prediction accuracy under a limited inference time budget by assigning competing tasks to
separate networks and cooperating tasks to the same network.

This leads to the following problem: Given a set of tasks, 7, and a computational budget b (e.g.,
maximum allowable inference time), what is the optimal way to assign tasks to networks with com-
bined cost < b such that a combined measure of task performance is maximized?

To this end, we develop a computational framework for choosing the best tasks to group together
in order to have a small number of separate deep neural networks that completely cover the task set

Under review as a conference paper at ICLR 2020

Semantic Depth Keypoint Edge Surface Normal
Segmentation Estimation Detection Detection Prediction

Decoder,

Shared
Representation

Shared
Representation

Encoder

B

Encoder

A

1 I
Input Image

Figure 1: Given five tasks to solve, there are many ways that they can be split into task groups for multi-
task learning. How do we find the best one? We propose a computational framework that, for instance,
suggests the following grouping to achieve the lowest total loss, using a computational budget of 2.5 units:
train network A to solve Semantic Segmentation, Depth Estimation, and Surface Normal Prediction; train
network B to solve Keypoint Detection, Edge Detection, and Surface Normal Prediction; train network C with
a less computationally expensive encoder to solve Surface Normal Prediction alone; including Surface Normals
as an output in the first two networks were found advantageous for improving the other outputs, while the best
Normals were predicted by the third network. This task grouping outperforms all other feasible ones, including
learning all five tasks in one large network or using five dedicated smaller networks.

and that maximize task performance under a given computational budget. We make the intriguing
observation that the inclusion of an additional task in a network can potentially improve the accuracy
of the other tasks, even though the performance of the added task might be poor. This can be viewed
as regularizing or guiding the loss of one task by adding an additional loss, as often employed in
curriculum learning or network regularization |Bengio et al.| (2009). Our system can take advantage
of this phenomenon, as schematically shown in Figure I}

This paper has two main contributions. In Section [3] we outline a framework for systematically
assigning tasks to networks in order to achieve the best total prediction accuracy with a limited
inference-time budget. We then analyze the resulting prediction accuracy and show that selecting
the best assignment of tasks to groups is critical for good performance. Secondly, in Section[6] we
analyze situations in which multi-task learning helps and when it doesn’t, quantify the compatibili-
ties of various task combinations for multi-task learning, and compare them to the transfer learning
task affinities and provide a discussion on the implications. Moreover, we analyze the factors that
influence multi-task affinities.

2 PRIOR WORK

2.1 MULTI-TASK LEARNING

See [Ruder (2017) for a good overview of multi-task learning. The authors identify two clusters
of contemporary techniques that we believe cover the space well, hard parameter sharing and soft
parameter sharing. In briefly, the primary difference between the majority of the existing works
and our study is that we wish to understand the relationships between tasks and find compatible
groupings of tasks for any given set of tasks, rather than designing a neural network architecture to
solve a particular fixed set of tasks well. We further elaborate the differences in the remainder of
this section.

2.1.1 HARD PARAMETER SHARING

A known contemporary example of hard parameter sharing in computer vision is UberNet (Kokki-
nos| (2017)). The authors tackle 7 computer vision problems using hard parameter sharing. The
authors focus on reducing the computational cost of training for hard parameter sharing, but expe-
rience a rapid degradation in performance as more tasks are added to the network. Hard parameter
sharing is also used in many other works such as (Thrun| (1996); |Caruanal (1997); Nekrasov et al.
(2018)); IDvornik et al.| (2017); Kendall et al.| (2018); |[Bilen & Vedaldi| (2016); [Pentina & Lampert
(2017); |Doersch & Zisserman| (2017); Zamir et al.| (2016); Long et al.|(2017); Mercier et al.| (2018));
d. Miranda et al.|(2012)); [Zhou et al.| (2018); Rudd et al.| (2016)).

Other works, such as (Sener & Koltun| (2018))) and (Chen et al.| (2018b)), aim to dynamically re-
weight each task’s loss during training. The former work finds weights that provably lead to a
Pareto-optimal solution, while the latter attempts to find weights that balance the influence of each

Under review as a conference paper at ICLR 2020

task on network weights. Finally, (Bingel & Sggaard (2017)) studies task interaction for natural
language processing.

2.1.2 PARTIAL OR SOFT PARAMETER SHARING

In soft or partial parameter sharing, either there is a separate set of parameters per task, or a signif-
icant fraction of the parameters are unshared. The models are tied together either by information
sharing or by requiring parameters to be similar. Examples include (Dai et al.| (2016); |Duong et al.
(2015)); Misra et al.[(2016); [Tessler et al.| (2017); Yang & Hospedales| (2017)); |Lu et al.| (2017)).

The canonical example of soft parameter sharing can be seen in (Duong et al.| (2015)). The authors
are interested in designing a deep dependency parser for languages such as Irish that do not have
much treebank data available. They tie the weights of two networsk together by adding an L2
distance penalty between corresponding weights and show substantial improvement.

Another example of soft parameter sharing is Cross-stitch Networks (Misra et al.| (2016)). Starting
with separate networks for Semantic Segmentation and Surface Normal Prediction, the authors add
‘cross-stitch units’ between them, which allow each network to peek at the other network’s hiddden
layers. This approach reduces but does not eliminate crosstalk, and the overall performance is less
sensitive to the relative loss weights.

Unlike our method, none of the aforementioned works attempt to discover good groups of tasks to
train together. Also, soft parameter sharing does not reduce inference time, a major goal of ours.

2.2 TRANSFER LEARNING AND TASK RELATIONSHIPS

Transfer learning, (Pratt| (1993); |[Helleputte & Dupont (2009); Silver & Bennett| (2008)); [Finn et al.
(2016); Mihalkova et al.| (2007); Niculescu-Mizil & Caruanal (2007); |[Luo et al.| (2017); Razavian
et al.| (2014); ?); [Fernando et al.| (2017); |[Rusu et al.| (2016)), is similar to multi-task learning in
that solutions are learned for multiple tasks. Unlike multi-task learning, however, transfer learning
methods often assume a model for a source task is given and then adapt that model to a target task.
Transfer learning methods generally do not seek any benefit for source tasks or reduction in compute
complexity or inference time as their main objective.

This study is most related to Taskonomy (Zamir et al.[(2018)), where the authors studied the relation-
ships between visual tasks for transfer learning and introduced a dataset with over 4 million images
and corresponding labels for 26 tasks. This was followed by a number of recent works, which fur-
ther analyzed task relationships (Pal & Balasubramanian| (2019); [Dwivedi & Roig.| (2019); |Achille
et al.| (2019)) for transfer learning. While they extract relationships between these tasks for transfer
learning, we are interested in the multi-task learning setting. Interestingly, we find notable differ-
ences between transfer task affinity and multi-task affinity. Their method also differs in that they
are interested in labeled-data efficiency and not inference-time efficiency. Finally, we believe that
the transfer learning approach taken by Taskonomy is only capable of finding relationships between
the high-level bottleneck representations developed for each task, whereas structural similarities
between tasks at all levels are potentially relevant for multi-task learning.

3 TASK GROUPING FRAMEWORK

In this section, our goal is to find an assignment of tasks to networks that results in the best overall
loss. Our strategy is to select from a large set of candidate networks to include in our final solution.

We define the problem as follows: We want to minimize the overall loss on a set of tasks 7 =
{t1,ta,...,tx} given a limited inference time budget, b, which is the total amount of time we have
to complete all tasks. Each neural network that solves some subset of 7 and that could potentially
be a part of the final solution is denoted by n. It has an associated inference time cost, ¢,, and a
loss for each task, £(n,t;) (which is oo for each task the network does not attempt to solve). A
solution S is a set of networks that together solve all tasks. The computational cost of a solution
is cost(S) = >, cgcn- The loss of a solution on a task, £(S,t;), is the lowest loss on that

Under review as a conference paper at ICLR 2020

task among the solution’s networksﬂ L(S,t;) = minpeg L(n,t;). The overall performance for a
solutionis L(S) = >, 7 L(S,t:).

We want to find the solution with the lowest overall loss and a cost that is under our budget, S, =
a'rgmins:cost(S)Sb £(S)

3.1 WHICH CANDIDATE NETWORKS TO CONSIDER?

For a given task set 7, we wish to determine not just how well each pair of tasks performs when
trained together, but also how well each combination of tasks performs together so that we can
capture higher-order task relationships. To that end, our candidate set of networks contains all

271 — 1 possible groupings: ('7!) networks with one task, (!7!) networks with two tasks,(!7!)
networks with three tasks, etc. For the five tasks we use in our experiments, this is 31 networks, of

which five are single-task networks.

The size of the networks is another factor in the design choices, and to somewhat explore its ef-
fects we also include 5 single task networks each with half of the computational cost of a standard
network. This brings our total up to 36 networks.

3.2 NETWORK SELECTION

Consider the situation in which we have an initial candidate set Cy = {n1,na, ..., n,, } of fully-
trained networks that each solve some subset of our task set 7. Our goal is to choose a subset of Cj
that solve all the tasks with total inference time under budget b and the lowest overall loss. More
formally, we want to find a solution Sy, = argmingc c.cost(s)<t £(5)-

It can be shown that solving this problem is NP-hard in general (reduction from SET-COVER). How-
ever, many techniques exist that can optimally solve most reasonably-sized instances of problems
like these in acceptable amounts of time. All of these techniques produce the same solutions. We
chose to use a branch-and-bound-like algorithm for finding our optimal solutions (shown as Al-
gorithm [T in the Appendix), but in principle the exact same solutions could be achieved by other
optimization methods, such as encoding the problem as a binary integer program (BIP) and solving
it in a way similar to Taskonomy (Zamir et al.| (2018))).

Most contemporary MTL works use fewer than 4 unique task types, but in principal, the NP-hard
nature of the optimization problem does limit the number of candidate solutions that can be consid-
ered. However, using synthetic inputs, we found that our branch-and-bound like approach requires
less time than network training for all 2!71 — 1 + |77 candidates for fewer than ten tasks. Scaling
beyond that would require approximations or stronger optimization techniques.

3.3 APPROXIMATIONS FOR REDUCING TRAINING TIME COMPLEXITY

As described in Sec our framework involved training 2!71 —1 network which could be expensive
if the number of tasks is large. This section describes two techniques for reducing the training time
required to obtain a collection of networks as input to the network selection algorithm. Our goal is
to produce task groupings with results similar to the ones produced by the complete search, but with
less training time burden. Both techniques involve predicting the performance of a network without
actually training it to convergence. The first technique involves training each of the networks for
a short amount of time, and the second involves inferring how networks trained on more than two
tasks will perform based on how networks trained on two tasks perform.

3.3.1 EARLY STOPPING PRIOR TO CONVERGENCE

We found a moderately high correlation (Pearson’s » = 0.49) between the validation loss of our
neural networks after a pass through just 20% of our data and the final test loss of the fully trained
networks. This implies that the task relationship trends stabilize early. We fine that we can get decent
results by running network selection on the lightly trained networks, and then simply training the
chosen networks to convergence.

'In principle, it may be possible to create an even better-performing ensemble when multiple networks solve
the same task, though we do not explore this.

Under review as a conference paper at ICLR 2020

For our setup, this technique reduces the training time burden by about 20x over fully training all
candiate networks and would require fewer than 150 GPU hours to execute. This is only 35%
training-time overhead. Obviously, this technique does come with a prediction accuracy penalty.
Because the correlation between early network performance and final network performance is not
perfect, the decisions made by network selection are no longer guaranteed to be optimal once net-
works are trained to convergence. We call this approximation the Early Stopping Approximation
(ESA) and present the results of using this technique in Section 5]

3.3.2 PREDICT HIGHER-ORDER FROM LOWER-ORDER

Do the performances of a network trained with tasks A and B, another trained with tasks A and C,
and a third trained with tasks B and C' tell us anything about the performance of a network trained
ontasks A, B,and C? i.e. {AC, BC} — {ABC}? As it turns out, the answer is yes. Although this
ignores complex task interactions and nonlinearities, a simple average of the first-order networks’
accuracies was a good indicator of the accuracy of a higher-order network. Experimentally, this
prediction strategy has an average max ratio error of only 5.2% on our candidate networks.

Using this strategy, we can predict the performance of all networks with three or more tasks using
the performance of all of the fully trained two task networks. First, simply train all networks with
two or fewer tasks to convergence. Then predict the performance of higher-order networks. Finally,
run network selection on both groups.

With our setup (see Section [)), this strategy saves training time by only about 50%, compared
with 95% for the early stopping approximation, and it still comes with a prediction quality penalty.
However, this technique requires only a quadratic number of networks to be trained rather than an
exponential number, and would therefore win out when the number of tasks is large.

We call this strategy the Higher Order Approximaiton (HOA), and present its results in Section[3}

4 EXPERIMENTAL SETUP

4.1 DATA AND INCLUDED TASKS

We perform our evaluation using Taskonomy dataset (Zamir et al| (2018)) which is currenlty the
largest multi-task dataset in vision with diverse tasks. The data was obtained from 3D scans of about
600 buildings. There are 4,076,375 examples, which we divided into 3,974,199 training instances,
52,000 validation instances, and 50,176 test instances. There was no overlap in the buildings that
appeared in the training and test sets. All data labels were normalized to have zero mean and unit
standard deviation.

Our framework is agnostic to the particular task dictionary. We have chosen to perform the study us-
ing five tasks in Taskonomy: Semantic Segmentation, Depth Estimation, Surface Normal Prediction,
Keypoint Detection, and Edge Detection. These include one semantic task, two 3D tasks, and two 2D
tasks. These tasks were chosen to be representative of major task categories, but also to have enough
overlap in order to test the hypothesis that similar tasks will train well together. Cross-entropy loss
was used for Semantic Segmentation, while an L1 loss was used for all other tasks.

4.2 TRAINING DETAILS

Network Architecture: All networks used a standard encoder-decoder architecture with a modified
Xception (Chollet (2017)) encoder. Our choice of architecture is not critical and was chosen for
reasonably fast inference time performance. The Xception network encoder was simplified to have
17 layers and the middle flow layers were reduced to having 512 rather than 728 channels. Further-
more, all max-pooling layers were replaced by 2 x 2 convolution layers with a stride of 2 (similar
to (Chen et al.|(2018a))). The full-size encoder had about 4 million parameters. All networks had an
input image size of 256x256. For simplicity, we measure inference time in units of the time taken
to do inference for one of our full-size encoders. We call this a standard network time (SNT). This
corresponds to 2.28 billion multiply-adds and about 4 ms/image on a single Nvidia RTX 2080 Ti.

Our decoders were designed to be lightweight and have four transposed convolutional layers (Noh
et al.| (2015))) and four separable convolutional layers (Chollet (2017)). Every decoder has about

Under review as a conference paper at ICLR 2020

116,000 parameters. All training was done using PyTorch (Paszke et al.|(2017)) with Apex for fp16
acceleration (Micikevicius et al.| (2017).

Trained Networks: As described in Section[3.1} we trained 31 networks with full sized encoders
and standard decoders. 26 were multi-task networks and 5 were single task networks. Another five
single-task networks were trained, each having a half-size encoder and a standard decoder. These 36
networks were included in network optimization as Cj. 20 smaller, single-task networks of various
sizes were also trained to be used in the baselines and the analysis of Section [6] but not used for
network selection. In order to produce our smaller models, we shrunk the number of channels in
every layer of the encoder such that it had the appropriate number of parameters and flops.

The training loss we used was the unweighted mean of the losses for the included tasks. Networks
were trained with an initial learning rate of 0.2, which was reduced by half every time the training
loss stopped decreasing. Networks were trained until their validation loss stopped improving, typ-
ically requiring only 4-8 passes through the dataset. The network with the highest validation loss
(checked after each epoch of 20% of our data) was saved.

The performance scores used for network selection were calculated on the validation set. We com-
puted solutions for inference time budgets from 1 to 5 at increments of 0.5. Each solution chosen
was evaluated on the test set.

4.3 BASELINES

We compare our results with conventional methods, such as five single-task networks and a single
network with all tasks trained jointly.

We also compare with two multi-task methods in the literature. The first one is [Sener & Koltun
(2018). We found that their algorithm under-weighted the Semantic Segmentation task too aggres-
sively, leading to poor performance on the task and poor performance overall compared to a simple
sum of task losses. We speculate that this is because semantic segmentation’s loss behaves differ-
ently from the other losses. Next we compared to GradNorm (Chen et al.| (2018b)). The results
here were also slightly worse than classical MTL with uniform task weights. In any event, these
techniques are orthogonal to ours and can be used in conjunction for situations in which they lead to
better solutions than simply summing losses.

Finally, we compare our results to two control baselines illustrative of the importance of making
good choices about which tasks to train together, ‘Random’ and ‘Pessimal.” ‘Random’ is a solution
consisting of valid random task groupings that solve our five tasks. The reported values are the
average of a thousand random trials. ‘Pessimal’ is a solution in which we choose the networks that
lead to the worst overall performance, though the solution’s performance on each task is still the
best among its networks.

Each baseline was evaluated with multiple encoder sizes so that all models’ results could be com-
pared at many inference time budgets.

5 TASK GROUPING EVALUATION

Figure [2| shows the task groups that were chosen for each technique, and Figure [3| shows the per-
formance of these groups along with those of our baselines. We can see that each of our methods
outperforms our traditional baselines for every computational budget.

When the computational budget is only 1 SNT, all of our methods must select the same model—a
traditional multi-task network with a single unit-size encoder and five decoders. At 1 SNT, this
strategy outperforms GradNorm, |Sener & Koltun| (2018), and individual training. However, when
compared to solutions that utilize multiple networks, the performance of the traditional network is
the worst for every budget ; 1.5—better performance can always be achieved by grouping tasks
according to their compatibility.

When the computational budget is effectively unlimited (5 SNT), our optimal method picks five
networks, each of which is used to make predictions for a separate task. However, three of the
networks are trained with three tasks each, while only two are trained with one task each. This

Under review as a conference paper at ICLR 2020

shows that the representations learned through multi-task learning were found to be best for three of
our tasks (s, d, and e), whereas two of our tasks (n and k) are best solved individually.

We also see that our optimal tech-
nique using 2.5 SNT can perform bet-
ter than five individual networks us-
ing 5 SNT total. Using only 3.5 SNT,
our Higher-Order Approximation can
do better than 5 individual full-size net-
works.

In order to determine how these task
groupings generalize to other architec-
tures, we retrained our best solution
for 3 SNT using resnetl8 (He et al.
(2016)). The results in Table |1{suggest
that good task groupings for one archi-
tecture are likely to be good in another,

Total Loss (lower is better)

Performance vs Compute

0.55

0.525

o
3]

0.475

0.45

0.425

\
\

1T 15 2

25 3 35

4 45 5

Inference Time Cost

== Sener et al.
== GradNorm

Worst Network
Choice

= Single Traditional
Multi-task

= Random Task
Grouping

Five Independent
Networks

== Prediction with
ESA (ours) 3.3.1

Prediction with
HOA (ours) 3.3.2

= Optimal Network

Figure 3: The performance/inference time trade-off for various

though to a lesser extent. Task affinities TSHR% BAABHisHiR tﬁP&’ﬁf@ééﬂng@H]&mndent, so for the

very best results, task selection must be run for each architecture choice.

Figure[d|allows qualitative comparison between
We can see
clear visual issues with each of our baselines
that are not present in our methods. Both of our

our methods and our baselines.

resnetl8 Total Loss
All-in-one (triple-size resnet18) 0.50925
Five Individual (resnetl8s .6-size each) 0.53484
nKE, SDn, N (3 standard resnet18’s) 0.50658

approximate methods produce predictions sim-

ilar to the optimal task grouping.

Table 1: The performance of our best 3 SNT solution
found using Xception but evaluated on ResNet18.

Relative Performance On

SemSeg Depth Normals Keypoints Edges [Average

] SemSeg - -5.41% -11.29% -4.32% -34.64% -13.92%
S Depth 4.17% - -3.55% 3.49% 3.76% 1.97%
32 Normals 8.50% 2.48% - 1.37% 12.33% 6.17%
= Keypoints 4.82% 1.38% -0.02% - -5.26% 0.23%
= Edges 3.07% -0.92% -4.42% 1.37% - -0.23%
Average 5.14% -0.62% -4.82% 0.48% -5.95% -1.15%

Table 2: The first-order multi-task learning relationships between tasks. The table lists the performance
of every task when trained as a pair with every other task. For instance, when Depth is trained with SemSeg
(semantic segmentation), SemSeg performs 4.17% better than when SemSeg is trained alone on a half-size

network.

Figure 2: The task groups picked by each
of our techniques for integer budgets be-
tween 1 and 5. Networks are shown as O
(full-size) or o (half-size). Networks are con-
nected to the tasks for which they compute
predictions. s: Semantic Segmentation, d:
Depth Estimation, n: Surface Normal Pre-
diction, k: Keypoint Detection, e: Edge De-
tection. Dotted edges represent unused de-
coders. For example, the highlighted solution
consists of two half-size networks and a full-
size network. The full-size network solves
Depth Estimation, Surface Normal Prediction,
and Keypoint Detection. One half-size net-
work solves Semantic Segmentation and the
other solves Edge Detection. The total loss
for all five tasks is 0.455. The groupings for
fractional budgets are shown in the appendix.

Inference Time Budget

SNT

[72]
z N
35

Optimal
Grouping

Early Stopping
Approximation

Higher Order
Approximation

Pessimal
Grouping

N\

Total Loss = 0.503

V%

Total Loss = 0.503

V%

Total Loss = 0.503

V%

Total Loss = 0.503

Total Loss = 0.452

Total Loss = 0.467

[}]

Total Loss = 0.455

Total Loss = 0.503

VI

Total Loss = 0.442

Total Loss = 0.457

12

Total Loss = 0.449

X
Total Loss = 0.503

AN

Total Loss = 0.436

k

ol
Total Loss = 0.451

Total Loss = 0.444

Total Loss = 0.435

n k

O
Total Loss = 0.447

WLl

Total Loss = 0.442

Total Loss = 0.495

Under review as a conference paper at ICLR 2020

Semantic Surface Normal

Semantic Surfacg Normal N N " "
Segmantauon Depth Estimation Prediction "~ Keypoint Detection _Edge Detection Input Image ; Segm:nlal\on Prediction " Keypoint Detection _Edge Detection

Ground Truth

£
2|
=
o
2]
5
<
O

®
K
g
2
g
@

All Multi-Task

Error
Error

Ours Optimal

Individual Networks

Error
.
A,
Error

Figure 4: Qualitative results for our baselines (left) and our techniques (right). All solutions have an inference
time cost of 2.5 SNT.

6 TASK RELATIONSHIPS
The data generated by the above evaluation

presents an opportunity to analyze how tasks interact in a high-data multi-task setting, and allows us
to compare with some of the vast body of research in transfer learning, such as Taskonomy

etal] 2018).

6.1 MULTI-TASK VS TRANSFER RELATIONSHIPS

Depth Normals Keypoints Edges Depth Normals Keypoints Edges
SemSeg -0.62% -139% 0.25% | -15.78% SemSeg ~ 1.740 1.828 0.723 0.700
Depth -0.54% 2.43% 1.42% Depth 1915 0406 0.468
Normals 0.67% 3.95% Normals 0.089 0.118
Keypoints -1.95% Keypoints 0.232

Table 3: The multi-task learning affinity between
pairs of tasks. This is the mean of Table [2] and its
transpose. These values show the average change
in the performance of two tasks when trained as a

Table 4: The transfer learning affinities between
pairs of tasks according to the authors of Taskonomy

(2018)). Forward and backward transfer

affinities are averaged.

pair, relative to when they are trained separately (both
cases use equal number of parameters)

In order to determine the multi-task affinity between tasks, we took the average of our first-order
relationships matrix (Table [2) and its transpose. The result is shown in Table [3] The tasks with
the highest affinity by this metric are Surface Normal Prediction and 2D Edge Detection. Our two
3D tasks, Depth Estimation and Surface Normal Prediction, do not score highly on this similarity
metric. This contrasts with the findings for transfer learning in Taskonomy (Table[d), in which they
have the highest affinity. Our two 2D tasks also do not score highly. We speculate that the Normals
task naturally preserves edges, while Depth and Normals (for example) don’t add much training
signal to each other. See Section [A3]in the appendix for more on factors that influence multi-task
affinity.

Under review as a conference paper at ICLR 2020

Figure [5|depicts the relationship between trans-
fer learning affinities and multi-task affinities,

Multi-Task Affinity vs Transfer Affinity
4.00% w

which surprisingly seem to be largely uncorre-
lated correlated in our high-data scenario. This
suggests that it is better to train dissimilar tasks
together. This could be because dissimilar tasks
are able to provide stronger and more meaning-
ful regularization. More research is necessary
to discover when and if this correlation and ex-
planation hold.

2.00%

0.00%

Multi-Task Affinity

-2.00% -

0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175

i T fer Affinit
We see in Table P] that the performance of ranster Affinity

multi-task networks is on average 1.15% worse
than the performance of independent training
with half-size individual networks. This sug-
gests that practitioners need to be careful about
which tasks they combine if they hope to see any benefit. On the other hand, some tasks, such as
semantic segmentation (SemSeg), tend to improve when co-trained. Other tasks, such as Normals,
tend to improve the tasks trained with them.

Figure 5: Task affinities for multi-task learning vs.
transfer learning. The correlation (Pearson’s r) is
—0.54, p = 0.13. One outlier is removed.

Figure E] pits multi-task 1eaming against indi- Multi-task Performance Relative to Independent Networks (Same SNT)
6.00%

vidual network training on a fixed inference

4.86%
4.23%
4.00%

time budget. If we have only two tasks to
solve, individual training is superior on aver-
age. When more tasks must be solved and
therefore there are fewer resources per task,
multi-task learning effectively shares these re-
sources. However, Figure E] showed that this

2.00%

0.00%

15%

7

Relative Performance

-2.00
% Two Tasks Three Tasks Four Tasks Five Tasks

Number of Tasks in a Multi-Task Network

resource sharing is only beneficial when re-
sources are scarce. As more resources are al-
lowed, single-task networks increasingly out-
perform multi-task networks that solve all five
tasks.

Figure 6: The average performance of multi-task net-
works relative to the performance of 2, 3, 4, or 5 single-
task networks. Single-task networks are 3,3, or i-
sized so that comparisons are between solutions with a
total evaluation time of 1 SNT.

7 CONCLUSION

We describe the problem of task compatibility as it pertains to multi-task learning. We provide an
algorithm and framework for determining which tasks should be trained jointly and which tasks
should be trained separately. Our solution can take advantage of situations in which joint training
is beneficial to some tasks but not others in the same group. For many use cases, this framework is
sufficient, but it can be costly at training time. Hence, we offer two strategies for coping with this
issue and evaluate their performance. Our methods outperform single-task networks, a multi-task
network with all tasks trained jointly, as well as other baselines. Finally, we use this opportunity to
analyze how particular tasks interact in a multi-task setting and compare that with previous results
on transfer learning task interactions.

REFERENCES

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless
Fowlkes, Stefano Soatto, and Pietro Perona. Task2Vec: Task Embedding for Meta-Learning.
arXiv e-prints, art. arXiv:1902.03545, February 2019.

Yoshua Bengio, Jerome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41-48. ACM,
2009.

Hakan Bilen and Andrea Vedaldi. Integrated perception with recurrent multi-task
neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp. 235-
243, Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/

http://papers.nips.cc/paper/6393-integrated-perception-with-recurrent-multi-task-neural-networks.pdf
http://papers.nips.cc/paper/6393-integrated-perception-with-recurrent-multi-task-neural-networks.pdf
http://papers.nips.cc/paper/6393-integrated-perception-with-recurrent-multi-task-neural-networks.pdf

Under review as a conference paper at ICLR 2020

6393-integrated-perception-with-recurrent-multi-task-neural-networks.
pdf.

Joachim Bingel and Anders Sggaard. Identifying beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Volume 2, Short Papers, pp. 164—169, Valencia,
Spain, April 2017. Association for Computational Linguistics. URL https://www.aclweb.
org/anthology/E17-2026.

Rich Caruana. Multitask learning. Machine Learning, 28(1):41-75, Jul 1997. ISSN 1573-0565. doi:
10.1023/A:1007379606734. URL https://doi.org/10.1023/A:1007379606734.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. In Computer Vision -
ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings,
Part VII, pp. 833-851, 2018a. doi: 10.1007/978-3-030-01234-2_49. URL https://doi.
org/10.1007/978-3-030-01234-2_409.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmdssan, Stockholm,
Sweden, July 10-15, 2018, pp. 793-802, 2018b. URL http://proceedings.mlr.press/
v80/chenl8a.htmll

Francois Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEFE conference on computer vision and pattern recognition, pp. 1251-1258, 2017.

P. B. C. d. Miranda, R. B. C. Prudincio, A. C. P. L. F. d. Carvalho, and C. Soares. Combining a
multi-objective optimization approach with meta-learning for svm parameter selection. In 2012
IEEFE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2909-2914, Oct
2012. doi: 10.1109/ICSMC.2012.6378235.

Jifeng Dai, Kaiming He, and Jian Sun. Instance-aware semantic segmentation via multi-task network
cascades. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3150-
3158, 2016.

Carl Doersch and Andrew Zisserman. Multi-task self-supervised visual learning. In International
Conference on Computer Vision, 2017.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Low resource dependency parsing: Cross-
lingual parameter sharing in a neural network parser. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 2: Short Papers), pp. 845-850, July 2015.

Nikita Dvornik, Konstantin Shmelkov, Julien Mairal, and Cordelia Schmid. BlitzNet: A real-time
deep network for scene understanding. In IEEE International Conference on Computer Vision
(ICCV), 2017.

K. Dwivedi and G. Roig. Representation similarity analysis for efficient task taxonomy and transfer
learning. In CVPR. IEEE Computer Society, 2019.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A. Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. CoRR, abs/1701.08734, 2017. URL http://arxiv.org/abs/1701.
08734.

Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel. Deep
spatial autoencoders for visuomotor learning. In Robotics and Automation (ICRA), 2016 IEEE
International Conference on, pp. 512-519. IEEE, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, June 2016. doi:
10.1109/CVPR.2016.90.

10

http://papers.nips.cc/paper/6393-integrated-perception-with-recurrent-multi-task-neural-networks.pdf
http://papers.nips.cc/paper/6393-integrated-perception-with-recurrent-multi-task-neural-networks.pdf
http://papers.nips.cc/paper/6393-integrated-perception-with-recurrent-multi-task-neural-networks.pdf
http://papers.nips.cc/paper/6393-integrated-perception-with-recurrent-multi-task-neural-networks.pdf
https://www.aclweb.org/anthology/E17-2026
https://www.aclweb.org/anthology/E17-2026
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.1007/978-3-030-01234-2_49
http://proceedings.mlr.press/v80/chen18a.html
http://proceedings.mlr.press/v80/chen18a.html
http://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1701.08734

Under review as a conference paper at ICLR 2020

Thibault Helleputte and Pierre Dupont. Feature selection by transfer learning with linear regularized
models. In Wray Buntine, Marko Grobelnik, Dunja Mladenié, and John Shawe-Taylor (eds.),
Machine Learning and Knowledge Discovery in Databases, pp. 533-547, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg. ISBN 978-3-642-04180-8.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

Tasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-,
and high-level vision using diverse datasets and limited memory. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pp. 5454-5463, 2017. doi: 10.1109/CVPR.2017.579. URL https://doi.org/10.1109/
CVPR.2017.579.

Mingsheng Long, ZHANGIJIE CAO, Jianmin Wang, and Philip S Yu. Learning multiple tasks with
multilinear relationship networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30,
pp. 1594-1603. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
6757-1learning-multiple-tasks-with-multilinear—-relationship—-networks.
pdf.

Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogério Schmidt Feris.
Fully-adaptive feature sharing in multi-task networks with applications in person attribute classi-
fication. In CVPR, pp. 1131-1140. IEEE Computer Society, 2017.

Zelun Luo, Yuliang Zou, Judy Hoffman, and Li F Fei-Fei. Label efficient learning of transferable
representations acrosss domains and tasks. In Advances in Neural Information Processing Sys-
tems, pp. 164-176, 2017.

Quentin Mercier, Fabrice Poirion, and Jean-Antoine Dsidri. A stochastic multiple gradi-
ent descent algorithm. European Journal of Operational Research, 271(3):808-817, 2018.
doi: 10.1016/j.ejor.2018.05.06. URL https://ideas.repec.org/a/eee/ejores/
v271y201813p808-817.htmll

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Lilyana Mihalkova, Tuyen Huynh, and Raymond J Mooney. Mapping and revising markov logic
networks for transfer learning. In AAAI, volume 7, pp. 608-614, 2007.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for
multi-task learning. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp- 3994-4003, 2016.

Vladimir Nekrasov, Thanuja Dharmasiri, Andrew Spek, Tom Drummond, Chunhua Shen, and Ian D.
Reid. Real-time joint semantic segmentation and depth estimation using asymmetric annotations.
CoRR, abs/1809.04766, 2018. URL http://arxiv.org/abs/1809.04766.

Alexandru Niculescu-Mizil and Rich Caruana. Inductive transfer for bayesian network structure
learning. In Artificial Intelligence and Statistics, pp. 339-346, 2007.

H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In 2015
IEEE International Conference on Computer Vision (ICCV), pp. 1520-1528, Dec 2015. doi:
10.1109/ICCV.2015.178.

Arghya Pal and Vineeth N Balasubramanian. Zero-shot task transfer, 2019.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

11

https://doi.org/10.1109/CVPR.2017.579
https://doi.org/10.1109/CVPR.2017.579
http://papers.nips.cc/paper/6757-learning-multiple-tasks-with-multilinear-relationship-networks.pdf
http://papers.nips.cc/paper/6757-learning-multiple-tasks-with-multilinear-relationship-networks.pdf
http://papers.nips.cc/paper/6757-learning-multiple-tasks-with-multilinear-relationship-networks.pdf
https://ideas.repec.org/a/eee/ejores/v271y2018i3p808-817.html
https://ideas.repec.org/a/eee/ejores/v271y2018i3p808-817.html
http://arxiv.org/abs/1809.04766

Under review as a conference paper at ICLR 2020

Anastasia Pentina and Christoph H. Lampert. Multi-task learning with labeled and unlabeled tasks.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 2807-2816,
International Convention Centre, Sydney, Australia, 06—11 Aug 2017. PMLR. URL http://
proceedings.mlr.press/v70/pentinal7a.html.

L. Y. Pratt. Discriminability-based transfer between neural networks. In S. J. Hanson,
J. D. Cowan, and C. L. Giles (eds.), Advances in Neural Information Processing Systems
5, pp- 204-211. Morgan-Kaufmann, 1993. URL http://papers.nips.cc/paper/
64l-discriminability-based-transfer-between—-neural-networks.pdf.

Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, Raquel Urtasun, and Jiaya Jia. Geonet: Geometric neural
network for joint depth and surface normal estimation. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn fea-
tures off-the-shelf: An astounding baseline for recognition. In Proceedings of the 2014 IEEE
Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 14, pp. 512—
519, Washington, DC, USA, 2014. IEEE Computer Society. ISBN 978-1-4799-4308-1. doi:
10.1109/CVPRW.2014.131. URL http://dx.doi.org.stanford.idm.oclc.org/
10.1109/CVPRW.2014.131.

Ethan M. Rudd, Manuel Giinther, and Terrance E. Boult. MOON: A mixed objective optimization
network for the recognition of facial attributes. In ECCV (5), volume 9909 of Lecture Notes in
Computer Science, pp. 19-35. Springer, 2016.

Sebastian Ruder. ~ An overview of multi-task learning in deep neural networks. CoRR,
abs/1706.05098, 2017. URL http://arxiv.org/abs/1706.05098.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. CoRR,
abs/1606.04671, 2016. URL http://arxiv.org/abs/1606.04671.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimiza-
tion. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp.
525-536. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7334-multi-task-learning—as-multi-objective-optimization.pdf.

Daniel L Silver and Kristin P Bennett. Guest editors introduction: special issue on inductive transfer
learning. Machine Learning, 73(3):215-220, 2008.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J. Mankowitz, and Shie Mannor. A deep hierar-
chical approach to lifelong learning in minecraft. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, AAAT’17, pp. 1553-1561. AAAI Press, 2017. URL http://
dl.acm.org.stanford.idm.oclc.org/citation.cfm?1d=3298239.3298465.

Sebastian Thrun. Is learning the n-th thing any easier than learning the first? In Advances in Neural
Information Processing Systems, pp. 640—-646. The MIT Press, 1996.

Peng Wang, Xiaohui Shen, Bryan Russell, Scott Cohen, Brian Price, and Alan L Yuille. Surge:
Surface regularized geometry estimation from a single image. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems
29, pp. 172-180. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6502-surge-surface-reqgularized-geometry-estimation-from-a-single-image.
pdf.

Yongxin Yang and Timothy Hospedales. Trace norm regularised deep multi-task learning. In 5th
International Conference on Learning Representations Workshop, 2017.

Amir R. Zamir, Tilman Wekel, Pulkit Agrawal, Colin Wei, Jitendra Malik, and Silvio Savarese.
Generic 3d representation via pose estimation and matching. In Bastian Leibe, Jiri Matas,
Nicu Sebe, and Max Welling (eds.), Computer Vision — ECCV 2016, pp. 535-553, Cham, 2016.
Springer International Publishing. ISBN 978-3-319-46487-9.

12

http://proceedings.mlr.press/v70/pentina17a.html
http://proceedings.mlr.press/v70/pentina17a.html
http://papers.nips.cc/paper/641-discriminability-based-transfer-between-neural-networks.pdf
http://papers.nips.cc/paper/641-discriminability-based-transfer-between-neural-networks.pdf
http://dx.doi.org.stanford.idm.oclc.org/10.1109/CVPRW.2014.131
http://dx.doi.org.stanford.idm.oclc.org/10.1109/CVPRW.2014.131
http://arxiv.org/abs/1706.05098
http://arxiv.org/abs/1606.04671
http://papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-optimization.pdf
http://papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-optimization.pdf
http://dl.acm.org.stanford.idm.oclc.org/citation.cfm?id=3298239.3298465
http://dl.acm.org.stanford.idm.oclc.org/citation.cfm?id=3298239.3298465
http://papers.nips.cc/paper/6502-surge-surface-regularized-geometry-estimation-from-a-single-image.pdf
http://papers.nips.cc/paper/6502-surge-surface-regularized-geometry-estimation-from-a-single-image.pdf
http://papers.nips.cc/paper/6502-surge-surface-regularized-geometry-estimation-from-a-single-image.pdf

Under review as a conference paper at ICLR 2020

Amir R. Zamir, Alexander Sax, William B. Shen, Leonidas J. Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2018.

Zhenyu Zhang, Zhen Cui, Chunyan Xu, Yan Yan, Nicu Sebe, and Jian Yang. Pattern-affinitive
propagation across depth, surface normal and semantic segmentation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

D. Zhou, J. Wang, B. Jiang, H. Guo, and Y. Li. Multi-task multi-view learning based on cooperative
multi-objective optimization. IEEE Access, 6:19465-19477, 2018. ISSN 2169-3536. doi: 10.
1109/ACCESS.2017.2777888.

A APPENDIX

A.1 NETWORK SELECTION ALGORITHM

Algorithm 1 Get Best Networks

Input: C,, a running set of candidate networks, each with an associated cost ¢ € R and a perfor-
mance score for each task the network solves. Initially, C, = Cj

Input: S, C Cy, a running solution, initially @

Input: b, € R, the remaining time budget, initially b

1: function GETBESTNETWORKS(C,., S, b,.)

2: C, + FILTER(C,, S,., b,)

3 C, < SORT(C,) > Most promising networks first
4 Best < S,

5: forn € C, do

6: C,+C,.\n >\ is set subtraction.
7: S; + S, U{n}

8 bi — br — Cp,

9 Child <+ GETBESTNETWORKS(C,., S;, b;)

0 Best «+ BETTER(Best, Child)

1

return Best

10:
11:

12: function FILTER(C,., S,., b,.)

13: Remove networks from C,. with ¢,, > b,..
14: Remove networks from C. that cannot improve S,.’s performance on any task.
15: return C,.

16: function BETTER(S1, S3)
17: if C(Sl) < C(SQ) then

18: return S
19: else
20: return S,

Algorithm [T] chooses the best subset of networks in our collection, subject to the inference time
budget constraint. The algorithm recursively explores the space of solutions and prunes branches
that cannot lead to optimal solutions. The recursion terminates when the budget is exhausted, at
which point C;. becomes empty and the loop body does not execute.

The sorting step on line 3 requires a heuristic upon which to sort. We found that ranking models
based on how much they improve the current solution, S, works well. It should be noted that
this algorithm always produces an optimal solution, regardless of which sorting heuristic is used.
However, better sorting heuristics reduce the running time because subsequent iterations will more
readily detect and prune portions of the search space that cannot contain an optimal solution. In our
setup, we tried variants of problems with 5 tasks and 36 networks, and all of them took less than a
second to solve.

13

Under review as a conference paper at ICLR 2020

The definition of the BETTER() function is application-specific. For our experiments, we prefer
networks that have the lowest total loss across all five tasks. Other applications may have hard
performance requirements for some of the tasks, and performance on one of these tasks cannot be
sacrificed in order to achieve better performance on another task. Such application-specific con-
straints can be encoded in BETTER().

14

Under review as a conference paper at ICLR 2020

A.2 ANALYSIS ON SMALLER TASK SETS

Average of five runs with 4 tasks each

== Single Traditional

g)) 0.4 Multi-task Network
3 0.39 == 4 |ndependent
— Networks

S 0.38

o) Prediction with 20%
[0.37 Data Pass (ours)
8-, == Optimal Network
© 0.36 Choi

© oice (ours)

(]

> 0.35

< 1 2 3 4

Figure 7: Our experiments re-run on all 4-task subsets, then averaged.

In order to determine how well network selection works for different task sets, we re-ran network
selection on all five 4-task subsets of our task set. The performance average of all 5 sets is shown in
Figure[7} We see that our techniques generalize at least to subsets of our studied tasks.

15

Under review as a conference paper at ICLR 2020

A.3 DEPTH AND NORMALS IN A MORE TYPICAL SETTING

The ﬁnding that Depth and Normals donjt 100k training instances|Depth Test Loss|Normals Test Loss
cooperate is counter to much of the multi- Depth Alone 0265 -

task learning literature such as|Wang et al. Normals Alone - 0.1398
(2016), [Q1 et al] (2018), and Zhang et al.| [Joint Depth + Normals| 0.2525 0.1319

(2019). However, the majority of these
works use training sets with fewer than
100k instances, while we use nearly 4 mil-
lion training instances. Table [5] shows the loss obtained on our setup when we limit to only 100k
training instances. The fact that task affinities can change depending on the amount of available
training data demonstrates the necessity of using an empirical approach like ours for finding task
affinities and groupings.

Table 5: Positive task affinity between depth and normals in
a low data setting.

A.4 TABULAR DATA

Ours Optimal Single 20% pass[3.3.1] Higher Order[3.3.2]
SDNKE SDNKE SDNKE

1.5 DNKE, S SDNK, E DNKE, S

2 nKE, SDN SDke, NKE DNK,E, S

2.5 nKE, SDn, N SDke, nKE, N DNK, E, Sn

3 nKE, SDn, N SDne, sdke, NKE DNK, E, Sn

3.5 nKE, Snk, Dnk, N SDne, sdke, nKE, N DnK, E, Sn, N

4 nKE, Snk, Dnk, N SDne, sdke, nKE, N Sn, DK, E, N

4.5 nKE, Snk, Dnk, N sDne, sdke, nKE, N, Snk Sn, E, K, Dn, N

5 nkE, Snk, Dnk, N, K sDne, sdke, nKE, N, Snk Sn, E, K, Dn, N

Table 6: The task groups picked by each of our techniques for every budget choice between 1 and
5. Networks are shown as a list of letters corresponding to each task the network contains. S: Semantic
Segmentation, D: Depth Estimation, N: Surface Normal Prediction, K: Keypoint Detection, E: Edge Detection.
Capital letters denote that a solution used that network’s prediction for that task. Half-sized networks are shown
in red.

Time Budget 1 1.5 2 25 3 35 4 45 5

Seneretal. 0.562 0.556 0.551 0.547

GradNorm 0.515 0.500
Pessimal Grouping 0.503 0.503 0.503 0.503 0.503 0.502 0.499 0.496 0.495

Traditional MTL 0.503 0.492 0.487 0.488
Random Groupings 0.503 0.483 0.475 0.471 0.467 0.464 0.462 0.460 0.459
Independent 0.515 0.501 0.477 0.465 0.454 0.448

Ours (ESA)[3.3.1f 0.503 0.487 0.467 0.461 0.457 0.451 0.451 0.447 0.447
Ours (HOA)[3.3.2] 0.503 0.461 0.455 0.451 0.449 0.445 0.444 0.445 0.442
Ours Optimal 0.503 0.461 0.452 0.446 0.442 0.439 0.436 0.436 0.435

Table 7: The total test set loss on all five tasks for each method under each inference time budget. Lower is
better. The data is the same as in FiguresE]andE}

16

Under review as a conference paper at ICLR 2020

| SemSeg Depth Normals Keypoints Edges

SD 0.07858 0.1833 -

SN 0.074 - 0.0997 - -
SK 0.07722 - - 0.09718 -
SE 0.07897 - - - 0.04462
DN - 0.1695 0.09275 - -
DK - 0.1706 - 0.09318 -
DE - 0.1748 - - 0.03192
NK - - 0.08968 0.09181 -
NE - - 0.09358 - 0.02908
KE - - - 0.09185 0.03488
SDN 0.07498 0.1698 0.09575 - -
SDK 0.07699 0.1782 - 0.09704 -
SDE 0.07893 0.1863 - - 0.04559
SNK 0.0722 - 0.09919 0.0961 -
SNE 0.07222 - 0.0982 - 0.03689
SKE 0.0766 - - 0.09342 0.03508
DNK - 0.1654 0.09358 0.09253 -
DNE - 0.1708 0.09396 - 0.03286
DKE - 0.1793 - 0.09073 0.02937
NKE - - 0.09626 0.09024 0.02609
SDNK [0.07762 0.1822 0.09869 0.1015 -
SDNE |0.07576 0.1735 0.09718 - 0.04513
SDKE | 0.0795 0.1797 - 0.09272 0.04141
SNKE |[0.07369 - 0.09944 0.09697 0.03312
DNKE - 0.1708 0.09392 0.09334 0.02803
SDNKE | 0.07854 0.1864 0.1 0.09814 0.04453

Table 8: The validation set performance of our 26 multi-task networks on each task that they
solve. Tasks are named to contain a letter for each task that they solve. S: Semantic Segmentation,
D: Depth Estimation, N: Surface Normal Prediction, K: Keypoint Detection, E: Edge Detection.

17

Under review as a conference paper at ICLR 2020

| SemSeg Depth Normals Keypoints Edges

SD 0.07419 0.1831 -
SN 0.07084 - 0.0994

SK 0.07369 - - 0.09601 -
SE 0.07504 - - - 0.044
DN - 0.1694 0.09249 - -
DK - 0.1713 - 0.08882 -
DE - 0.1753 - - 0.03145
NK - - 0.08934 0.09077 -
NE - - 0.09327 - 0.02865
KE - - - 0.09077 0.0344
SDN 0.07193 0.17 0.09544 - -
SDK 0.07311 0.1785 - 0.09591 -
SDE 0.07617 0.1865 - - 0.04474
SNK 0.06933 - 0.09966 0.09302 -
SNE 0.06859 - 0.09796 - 0.03625
SKE 0.07323 - - 0.09232 0.03463
DNK - 0.1658 0.09318 0.09143 -
DNE - 0.1706 0.09362 - 0.03239
DKE - 0.1795 0.08968 0.02887

NKE - - 0.09596 0.08921 0.02566
SDNK |[0.07338 0.1826 0.09836 0.1003

SDNE |0.07249 0.1739 0.09689
SDKE |0.07634 0.1801 -
SNKE |[0.07111 - 0.09941 0.09464 0.03328
DNKE - 0.1704 0.09356 0.09226 0.02768
SDNKE | 0.07603 0.186 0.09976 0.09704 0.04395

- 0.04441
0.09157 0.04097

Table 9: The test set performance of our 26 multi-task networks on each task that they solve.

18

	Introduction
	Prior Work
	Multi-Task Learning
	Hard Parameter Sharing
	Partial or Soft Parameter Sharing

	Transfer Learning and Task Relationships

	Task Grouping Framework
	Which Candidate Networks to Consider?
	Network Selection
	Approximations for Reducing Training Time Complexity
	Early Stopping Prior to Convergence
	Predict Higher-Order From Lower-Order

	Experimental Setup
	Data and Included Tasks
	Training Details
	Baselines

	Task Grouping Evaluation
	Task Relationships
	Multi-Task vs Transfer Relationships

	Conclusion
	Appendix
	Network Selection Algorithm
	Analysis on smaller task sets
	Depth and Normals in a More Typical Setting
	Tabular Data

