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ABSTRACT

Program verification offers a framework for ensuring program correctness and
therefore systematically eliminating different classes of bugs. Inferring loop in-
variants is one of the main challenges behind automated verification of real-world
programs which often contain many loops. In this paper, we present Continu-
ous Logic Network (CLN), a novel neural architecture for automatically learning
loop invariants directly from program execution traces. Unlike existing neural net-
works, CLNs can learn precise and explicit representations of formulas in Satisfia-
bility Modulo Theories (SMT) for loop invariants from program execution traces.
We develop a new sound and complete semantic mapping for assigning SMT for-
mulas to continuous truth values that allows CLNss to be trained efficiently. We use
CLNs to implement a new inference system for loop invariants, CLN2INYV, that
significantly outperforms existing approaches on the popular Code2Inv dataset.
CLN2INV is the first tool to solve all 124 theoretically solvable problems in the
Code2lInv dataset. Moreover, CLN2INV takes only 1.1 second on average for each
problem, which is 40x faster than existing approaches. We further demonstrate
that CLN2INV can even learn 12 significantly more complex loop invariants than
the ones required for the Code2Inv dataset.

1 INTRODUCTION

Program verification offers a principled approach for systematically eliminating different classes
of bugs and proving the correctness of programs. However, as programs have become increas-
ingly complex, real-world program verification often requires prohibitively expensive manual ef-
fort (Wilcox et al.l |2015; |Gu et al.l 2016} |Chajed et al., 2019). Recent efforts have focused on
automating the program verification process, but automated verification of general programs with
unbounded loops remains an open problem (Nelson et al., 2017;2019).

Verifying programs with loops requires determining loop invariants, which captures the effect of
the loop on the program state irrespective of the actual number of loop iterations. Automatically
inferring correct loop invariants is a challenging problem that is undecidable in general and difficult
to solve in practice (Blass & Gurevich, [2001; [Furia et al., [2014). Existing approaches use stochas-
tic search (Sharma & Aiken| 2016)), heurstics-based search (Galeotti et al) [2015)), PAC learning
based on counter examples (Padhi & Millstein, 2017), or reinforcement learning (Si et al., [2018]).
However, these approaches often struggle to learn complex, real-world loop invariants.

In this paper, we introduce a new approach to learning loop invariants by modeling the loop behavior
from program execution traces using a new type of neural architecture. We note that inferring loop
invariants can be posed as learning formulas in Satisfiability Modulo Theories (SMT) (Biere et al.,
2009) over program variables collected from program execution traces (Nguyen et al.,2017). In
principle, Neural networks seem well suited to this task because they can act as universal function
approximators and have been successfully applied in various domains that require modeling of ar-
bitrary functions (Hornik et al.| |1989; |Goodfellow et al.| [2016). However, loop invariants must be
represented as explicit SMT formulas to be usable for program verification. Unfortunately, existing
methods for extracting logical rules from general neural architectures lack sufficient precision (Au-
gasta & Kathirvalavakumar, [2012)), while inductive logic learning lacks sufficient expressiveness for
use in verification (Evans & Grefenstette, 2018)).
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We address this issue by developing a novel neural architecture, Continuous Logic Network (CLN),
which is able to efficiently learn explicit and precise representations of SMT formulas by using
continuous truth values. Unlike existing neural architectures, CLNs can represent a learned SMT
formula explicitly in its structure and thus allow us to precisely extract the exact formula from a
trained model.

In order to train CLNs, we introduce a new semantic mapping for SMT formulas to continuous truth
values. Our semantic mapping builds on BL, or basic fuzzy logic (Hajek, [2013), to support general
SMT formulas in a continuous logic setting. We further prove that our semantic model is sound (i.e.,
truth assignments for the formulas are consistent with their discrete counterparts) and complete (i.e.,
all formulas can be represented) with regard to the discrete SMT formula space. These properties
allow CLNs to represent any quantifier-free SMT formula operating on mixed integer-real arithmetic
as an end-to-end differentiable series of operations.

We use CLNs to implement a new inference system for loop invariants, CLN2INYV, that significantly
outperforms state-of-the-art tools on the Code2Inv dataset by solving all 124 theoretically solvable
problems in the dataset. This is 20 problems more than LoopInvGen, the winner of the SyGus 2018
competition loop invariant track (Si et al.l 2018). Moreover, CLN2INV finds invariants for each
program in 1.1 second on average, more than 40 times faster than LoopInvGen. We also demonstrate
CLN2INV is able to learn complex, real-world loop invariants with combinations of conjunctions
and disjunctions of multivariable constraints.

Our main contributions are:

e We introduce a new semantic mapping for assigning continuous truth values to SMT formu-
las that is theoretically grounded and enables learning formulas through backpropagation.
We further prove that our semantic model is sound and complete.

e We develop a novel neural architecture, Continuous Logic Networks (CLNs), that to the
best of our knowledge is the first to efficiently learn precise and explicit SMT formulas by
construction.

e We use CLNs to implement a new loop invariant inference system, CLN2INYV, that is the
first to solve all 124 theoretically solvable problems in the Code2Inv dataset, 20 more than
the existing methods. CLN2INV is able to find invariants for each problem in 1.1 second
on average, 40 faster than existing systems.

o We further show CLN2INYV is able to learn 12 more complex loop invariants than the ones
present in the Code2Inv dataset with combinations of multivariable constraints.

Related Work. Traditionally, loop invariant learning has relied on stochastic or heuristics-guided
search (Sharma & Aiken, 2016} Galeotti et al., 2015)). Other approaches like NumlInv analyze traces
and discover simple conjunctions of equalities by solving a system of linear equations (Nguyen et al.,
2017). LoopInvGen uses PAC learning of CNF using counter-examples (Padhi & Millstein, [2017)).
By contrast, Code2lInv learns to guess loop invariants using reinforcement learning with recurrent
and graph neural networks (Si et al} [2018). However, these approaches struggle to learn complex
invariants. Unlike these works, CLN2INV can efficiently learn complex invariants directly from
execution traces.

There is a long line of work on PAC learning of boolean formulas, but learning precise formulas
require a prohibitively large number of samples (Kearns et al., [1994). Several recent works use
different forms of differentiable logic to learn boolean logic formulas from noisy data (Kimmig
et al.} 2012;|Evans & Grefenstette, 2018} Payani & Fekri, |2019) or improving adversarial robustness
by applying logical rules to training (Fischer et al., 2019). By contrast, our work learns precise SMT
formulas directly by construction, allowing us to learn richer predicates with compact representation
in a noiseless setting.

2 BACKGROUND

In this section, we introduce the problem of inferring loop invariants and provide a brief overview of
Satisfiability Modulo Theories (SMT), which are used to represent loop invariants. We then provide
an introduction to basic fuzzy logic, which we later extend to formulate our new continuous semantic
mapping for SMT.
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2.1 LOOP INVARIANTS

Loop invariants capture loop behavior irrespective of number of iterations, which is crucial for
verifying programs with loops. Given a loop, while (LC') {C'}, a precondition P, and a post-
condition @, the verification task involves finding a loop invariant I that can be concluded from the
pre-condition and implies the post-condition (Hoare, [1969). Formally, it must satisfy the following
three conditions, in which the second is a Hoare triple describing the loop:

P =1 {INLC} C{I} -LCN] = @Q
Example of Loop Invariant. Consider the example loop in Fig[I] For a loop invariant to be usable,
it must be valid for the precondition (¢ = 10 A u = 0), the recursion step when ¢ # 0, and the

post condition (v = 20) when the loop condition is no longer satisfied, i.e., ¢ = 0. The correct and
precise invariant I for the program is (2t + u = 20).

The desired loop invariant I for the left program is a boolean

//pre: t=10 /\ u=0 : : .

while (t 1= 0){ function over program variables ¢, u such that:
tftlé' t=10Au=0 = I(t,u) (pre)

y oo R Viu,{ Tt u)A(E#£0) = I(t—1,u+2) (inv)

//post: u=20 It,uyA(t=0) = u=20 (post)

(a) Example loop (b) The desired and precise loop invariant I is (2t + u = 20).

Figure 1: Example Loop Invariant inference problem.

2.2 SATISFIABILITY MODULO THEORIES

Satisfiability Modulo Theories (SMT) are an extension of Boolean Satisfiability that allow solvers
to reason about complex problems efficiently. Loop invariants and other formulas in program veri-
fication are usually encoded with quantifier-free SMT. A formula F' in quantifier-free SMT can be
inductively defined as below:

F:=E1D<IE2|_\F|F1/\F2|F1\/F2 l>4€{=,75,<,>,§,2}

where E; and E5 are expressions of terms. The loop invariant (2¢ + « = 20) in Fig. is an SMT
formula. Nonlinear arithmetic theories admit higher-order terms such as ¢ and ¢ * u, allowing them
to express more complex constraints. For example, (=(2 > ¢?)) is an SMT formula that is true when
the value of the high-order term ¢2 is larger than 2.

2.3 BaAsic Fuzzy Logic (BL)

Basic fuzzy logic (BL) is a class of logic that uses continuous truth values in the range [0, 1] and
is differentiable almost everywher (H4jekl [2013). BL defines logical conjunction with functions
called #-norms, which must satisfy specific conditions to ensure that the behavior of the logic is
consistent with boolean First Order Logic. Formally, a t-norm (denoted ®) in BL is a binary operator
over truth values in the interval [0, 1] satisfying the following conditions:

1) commutativity and associativity: the order in which a set of t-norms on continuous truth
values are evaluated should not change the result: zQy = yQz 2®(yRz) = (zQY)R 2.

2) monotonicity: increasing any input value to a t-norm operation should not cause the
result to decrease: 1 < 23 =— 1 QY <22 XY

3) consistency: the result of any t-norm applied to a truth value and 1 should be 1, and the
result of any truth value and O shouldbe 0: 1 @z =2. 0@ x =0

Besides these conditions, BL also requires that t-norms be continuous.

! Almost everywhere indicates the function is differentiable everywhere except for a set of measure 0. For
example, a Rectified Linear Unit is differentiable almost everywhere except at zero.
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3 CONTINUOUS SATISFIABILITY MODULO THEORIES

We introduce a continuous semantic mapping, S, for SMT on BL that is end-to-end differentiable.
The mapping S associates SMT formulas with continuous truth values while preserving each for-
mula’s semantics. In this paper, we only consider quantifier-free formulas. This process is analogous
to constructing t-norms for BL, where a t-norm operates on continuous logical inputs.

We define three desirable properties for continuous semantic mapping S that will preserve formula
semantics while facilitating parameter training with gradient descent:

1. S(F) should be consistent with BL. For any two formulas F' and F’, where F(x) is sat-
isfied and F’(x) is unsatisfied with an assignment x of formula terms, we should have
S(F")(z) < S(F)(z). This will ensure the semantics of SMT formulas are preserved.

2. S(F) should be differentiable almost everywhere. This will facilitate training with gradient
descent through backpropogation.

3. S(F) should be increasing everywhere as the terms in the formula approach constraint
satisfaction, and decreasing everywhere as the terms in the formula approach constraint
violation. This ensures there is always a nonzero gradient for training.

Continuous semantic mapping. We first define the mapping for “> (greater-than) and “>”
(greater-than-or-equal-to) as well as adopting definitions for “=", “A”, and “V” from BL. All other
operators can be derived from these. For example, “<” (less-than-or-equal-to) is derived using “>”
and “—”, while “=" (equality) is then defined as the conjunction of formulas using “<” and “>.”
Given constants B > 0 and € > 0, we first define the the mapping S on “>" and “>” using shifted
and scaled sigmoid functions:

1
1+ e—B(t—u—e)

1

4L
S(t > U) = 1 + e~ B(t—u+te)

S(t>u) =

Ilustrations of these functions are given in Appendix [A] The validity of our semantic mapping lie
in the following facts, which can be proven with basic algebra.

lim 1 1 t>u lim 1 _J1 t>u
ot 14+eBlt—u—e) | 0 t<u ot 14+eBlt—ute | 0 t<u
B-e—+4o0 B-e—+o0

When € goes to zero and B € goes to infinity, our continuous mapping of “>"" and “>" will preserve
their original semantics. Under these conditions, our mapping satisfies all three desirable properties.
In practice, for small € and large B, the properties are also satisfied if [t — u| > €.

Next we define the mapping S for boolean operators “A”, “V” and “—” using BL. Recall that in
BL, a t-norm is a continuous function that behaves like logical conjunction. In we outlined
requirements for a valid t-norm. Three widely used t-norms that satisfy the requirements are the
Lukaseiwicz t-norm (Lukasiewicz, [1930), the Godel t-norm (Baaz et al.| [1996), and the product t-
norm (Hajek et al.l|1996). Each t-norm has a t-conorm associated with it (denoted &), which can be
considered as logical disjunction. Given a t-norm ®, the t-conorm can be derived with DeMorgan’s
law: t © u 2 =(—t @ —u).

Lukasiewicz : Godel: Product:
t-norm(®) max(0,t +u— 1) min(t, u) txu
t-conorm(®) min(t + u, 1) maz(t,u) t+u—t*xu

Given a specific t-norm & and its corresponding t-conorm @, it is straightforward to define mappings
Of ‘6/\’7’ 6‘\/’7 and 6‘_‘7’:
S(FiAF) 2 S(F)@S(Fy)  S(FiVF)£8(F)®S(F)  S(HF)£1-8(F)
Based on the above definitions, the mapping for other operators can be derived as follows:
1 1

= Tt Stsw=8C(>u)=

S(t <u) =8(=(t > u)) = 13 eBl—u—a

1 1
St=u)=58((t=w) At <w) = T—Frmurg © T o50=w=9
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The mapping S on “=" is valid since the following limit holds (see Appendix [B]for the proof).
. . 1 1 1 t=u
ngél+5(t =u) = eljéﬂ 1 e—Bl—ure © 11 Blimu—a { 0 t+4u
B-e—+4oc0 B-e—+4oc0

The mapping for other operators shares similar behavior in the limit, and also fulfill our desired
properties under the same conditions.

Using our semantic mapping S, most of the standard operations of integer and real arithmetic,
including addition, subtraction, multiplication, division, and exponentiation, can be used normally
and mapped to continuous truth values while keeping the entire formula differentiable. Moreover,
any expression in SMT that has an integer or real-valued result can be mapped to continuous logical
values via these formulas, although end-to-end differentiability may not be maintained in cases
where specific operations are nondifferentiable.

4 CONTINUOUS LOoGIC NETWORKS

In this section, we describe the construction of Continuous Logic Networks (CLNs) based on our
continuous semantic mapping for SMT on BL.

CLN Construction. CLNs use our continuous semantic mapping to represent SMT formulas as an
end-to-end differentiable model that can learn selected constants in the formula. When constructing
a CLN, we work from an SMT Formula Template, in which every value is marked as either an
input term, a constant, or a learnable parameter. Given an SMT Formula Template, we dynamically
construct a CLN as a computational graph, where input terms are marked as model inputs. The
operations in each SMT clause are recursively added to the graph, followed by logical operations
on clauses. Figure 2] shows an example formula template and the constructed CLN. We denote the
CLN model constructed from the formula template S(F') as Mp.

CLN Training. Once the CLN has been constructed based on a formula template, it is trained
with the following optimization. Given a CLN model M constructed from an SMT template with
learnable parameters W, and a set X of valid assignments for the terms in the SMT template, the
expected value of the CLN is maximized by minimizing a loss function £ that penalizes model
outputs that are less than one. A minimum scaling factor f3 is selected, and a hinge loss is applied to
the scaling factors (B) to force the differentiable predicates to approach sharp cutoffs. The offset ¢
is also regularized to ensure precision. The overall optimization is formulated as:

E[M(X:W.B.¢)] = mi M(z:W. B - B
(nax E[M(X; W, B, ) {Vrvr}gfé}mexﬂ( (z; W, ,e))+ABZ€]:3£hmge(ﬂ, ) + 7€l

where A\ and v are hyperparameters respectively governing the weight assigned to the scaling factor
and offset regularization. Lpinge(3, B) is defined as maz (0,8 — B), and £ is any loss function
strictly decreasing in domain [0, 1].

Given a CLN that has been trained to a loss approaching 0 on a given set of valid assignments,
we now show that the resulting continuous SMT formula learned by the CLN is consistent with
an equivalent boolean SMT formula. In particular, we prove that continuous SMT formulas learned
with CLNs are sound and complete with regard to SMT formulas on discrete logic. We further prove
that a subset of SMT formulas are guaranteed to converge to a globally optimal solution.

Soundness. Given the SMT formula F, the CLN model Mg constructed from S(F') always
preserves the truth value of F'. It indicates that given a valid assignment to the terms « in F,
F(z)=True <= Mp(x) =1and F(x) = False < Mp(z)=0.

Completeness. For any SMT formula F', a CLN model M can be constructed representing that
formula. In other words, CLNs can express all SMT formulas on integers and reals.

We formally state these properties in Theorem [I]and provide a proof by induction on the constructor
in the Appendix[C| Before that we need to define a property for t-norms.

Property 1. Vt u, (¢t > 0) and (v > 0) implies (t ® u > 0).

The product t-norm and Godel t-norm have this property, while the Lukasiewicz t-norm does not.
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Figure 2: System architecture and CLN construction from SMT templates.

Theorem 1. For any SMT formula F, there exists a CLN model M, such that
Ve Be, 0 < M(x;B,e) <1

F(x) =True < lim M(x;B,e) =1 F(x) = False <= lim M(x;B,¢) =0
e—0T e—07T
B-e—o0 B-e—o0

as long as the t-norm used in building M satisfies Property 1.

Optimality. For a subset of SMT formulas (conjunctions of multiple linear equalities), CLNs are
guaranteed to converge at the global minumum. We formally state this in Theorem 2] and the proof
can be found in Appendix [D] We first define another property similar to strict monotonicity.

Property 2. Vit tg t3, (tl < t2) and (tg > 0) 1mphes (tl Rtz <ty ®t3).
Theorem 2. For any CLN model My constructed from a formula, F, by the procedure shown in the

proof of Theorem 1, if F' is the conjunction of multiple linear equalities then any local minimum of
M is the global minimum, as long as the t-norm used in building M satisfies Property 2.

5 LooOP INVARIANT LEARNING

We use CLNs to implement a new inference system for loop invariants, CLN2INV, which learns
invariants directly from execution traces. Figure 2] provides an overview of the architecture.

Training Data Generation. We generate training data by running the program repeatedly on a set
of randomly initialized inputs that satisfy the preconditions. Unconstrained variables are initialized
from a uniform distribution, and variables with precondition constraints are initialized from a uni-
form distribution within their constraints. All program variables are recorded before each execution
of the loop and after the loop terminates.

Template Generation. We encode the template using information gathered through static analysis.
We collect useful information such as constants found in the program code along with the termi-
nation condition. Our analysis also strengthens the precondition and weakens the post-condition
to constrain the problem as tightly as possible. For instance, unconstrained variables can be con-
strained to ensure the loop executes. In Appendix[E] we prove this approach maintains soundness as
solutions to the constrained problem can be used to reconstruct full solutions.

We generate bounds for individual variables (e.g., ¢ > b) as well as multivariable polynomial con-
straints (e.g., wyt; + wote = b). Constants are optionally placed in constraints based on the static
analysis and execution data (i.e. if a variable is initialized to a constant and never changes). We then
compose template formulas from the collection of constraints by selecting a subset and joining them
with conjunctions or disjunctions.

CLN Construction and Training. Once a template formula has been generated, a CLN is con-
structed from the template using the formulation in As an optimization, we represent equality
constraints as Gaussian-like functions that retain a global maximum when the constraint is satisfied
as discussed in Appendix [F] We then train the model using the collected execution traces.

Invariant Checking. Invariant checking is performed using SMT solvers such as Z3 (De Moura &
Bjgrner, [2008). After the CLN for a formula template has been trained, the SMT formula for the
loop invariant is recovered by normalizing the learned parameters. The invariant is checked against
the pre, post, and recursion conditions as described in



Under review as a conference paper at ICLR 2020

6 EXPERIMENTS

We compare the performance of CLN2INV with two existing methods and demonstrate the efficacy
of the method on several more difficult problems. Finally, we conduct two ablation studies to justify
our design choices.

Test Environment. All experiments are performed on an Ubuntu 18.04 server with an Intel Xeon
E5-2623 v4 2.60GHz CPU, 256Gb of memory, and an Nvidia GTX 1080Ti GPU.

System Configuration. We implement CLNs in PyTorch and use the Adam optimizer for training
with learning rate 0.01 (Paszke et al.,2017; |Kingma & Bal[2014). Because the performance of CLN
is dependent on weight initialization, the CLN training randomly restart if the model does not reach
termination within 2, 000 epochs. Learnable parameters are initialized from a uniform distribution
in the range [-1, 1], which we found works well in practice.

Test Dataset. We use the same benchmark used in the evaluation of Code2Inv. We have removed
nine invalid programs from Code2Inv’s benchmark and test on the remaining 124. The removed
programs are invalid because there are inputs which satisfy the precondition but result in a violation
of the post-condition after the loop execution. The benchmark consists of loops expressed as C code
and corresponding SMT files. Each loop can have nested if-then-else blocks (without nested loops).
Programs in the benchmark may also have uninterpreted functions (emulating external function
calls) in branches or loop termination conditions.

6.1 COMPARISON TO EXISTING SOLVERS

—— CLN2INV 104 { — CLN2INV .

s Code2Inv " Code2InV o e e -

10°4 ——~ LoopinvGen h " —— LoopinvGen T
2 I

© 103
% I - !
210 ] N |
£ 1 S 102 1

c
E | é |
10* ] =] 100 |
’/ = S haguly |
- — -
10° = 100
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Number of Instances Solved Number of Instances Solved
(a) Runtime performance. (b) SMT solver calls.

Figure 3: Performance evaluation.

Performance Evaluation. We compare CLN2INV to two state-of-the-art methods: Code2Inv
(based on neural code representation and reinforcement learning) and LoopInvGen (PAC learning
over synthesized CNF formulas) (Si et al., [2018; [Padhi et al.l [2016). We limit each method to one
hour per problem in the same format as the SyGuS Competition (Alur et al., 2019). Table [T] sum-
marizes the results of the evaluation. CLN2INV is able to solve all 124 problems in the benchmark.
LoopInvGen solves 104 problems while Code2inv solves 90

Runtime Comparison. Figure shows the measured runtime on each evaluated system.
CLN2INV solves problems in 1.1 second on average, which is over 40x faster than LoopInvGen,
the second fastest system in the evaluation. In general, CLN2INV has similar performance to Loop-
InvGen on simple problems but is able to scale efficiently to complex problems.

Z3 Solver Utilization. Figure [3b|shows the number of Z3 calls made by each method. For almost
all problems, CLN2INV requires fewer Z3 calls than the other systems, although for some difficult
problems it uses more Z3 calls than Code2Inv. While CLN2INV makes roughly twice as many Z3
solver calls as Code2Inv on average, it is able to generate and test candidate loop invariants over
250 faster on average.

Performance Summary Table [I| summarizes results of the performance evaluation. CLN2INV
has the lowest time spent per problem making it the most practical approach. Code2Inv require

>The Code2Inv authors originally reported solving 92 problems with the same one hour timeout. We believe
that the difference might be caused by changes in the testing environment or randomized model initialization.
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Table 1: Results and summary statistics for performance evaluation.

Method Number Solved Avg Time (s) Avg Z3 Calls Time/Z3 Call (s)
Code2lnv 90 266.71 16.62 50.89
LoopInvGen 104 45.11 3,605.43 0.08
CLN2INV 124 1.07 31.77 0.17

more time on average per problem, but minimizes the number of calls made to an SMT solver.
LooplnvGen is efficient at generating a large volume of guesses for the SMT solver. CLN2INV
achieves a balance by producing quality guesses quickly allowing it to solve problems efficiently.

6.2 MORE DIFFICULT LOOP INVARIANTS

We construct 12 additional problems to demonstrate CLN2INV’s ability to infer complex loop in-
variants. We design these problems to have two key characteristics, which are absent in the Code2Inv
dataset: (i) they require invariants involving conjunctions and disjunctions of multivariable con-
straints, and (ii) the invariant cannot easily be identified by inspecting the precondition, termination
condition, or post-condition. CLN2INYV is able to find correct invariants for all 12 problems in less
than 20 seconds, while Code2Inv and LoopInvGen time out after an hour (see Appendix [G).

6.3 ABLATION STUDIES

Comparing T-norms. We compare t-norms (Godel, Lukasiewicz, and product) and conclude that
product t-norm has the best performance. See Appendix [H] for more details.

Effect of CLN Training on Performance. CLN2INV relies on a combination of heuristics using
static analysis and learning formulas from execution traces to correctly infer loop invariants. In this
ablation we disable model training and limit CLN2INV to static models with no learnable param-
eters. The static CLN2INV solves 91 problems in the dataset. Figure 4] shows a comparison of
full CLN2INV with one limited to static models. CLN2INV’s performance with training disabled
shows that a large number of problems in the dataset are relatively simple and invariants can be
inferred from basic heuristics. However, for more difficult problems, the ability of CLNs to learn
SMT formulas is key to successfully finding correct invariants.

= Full CLN2INV e Full CLN2INV

102 Static CLN2INV " Static CLN2INV
— 8102
5 g
£ 5
= >
5 10t 2
= £l

310
100 L g frm— - ’ . . .
0 20 40 60 80 100 120 0 200 40 60 80 100 120
Number of Instances Solved Number of Instances Solved
(a) Runtime performance. (b) SMT solver calls.

Figure 4: Ablation study comparing static vs trained models.

7 CONCLUSION

We develop a novel neural architecture that explicitly and precisely learns SMT formulas by con-
struction. We achieve this by introducing a new sound and complete semantic mapping for SMT
that enables learning formulas through backpropagation. We use CLNs to implement a loop invari-
ant inference system, CLN2INYV, that is the first to solve all theoretically solvable problems in the
Code2Inv benchmark and takes only 1.1 second on average. We believe that the CLN architecture
will also be beneficial for other domains that require learning SMT formulas.
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A CONTINUOUS PREDICATES

Figure [5|shows examples of shifted sigmoids for S(>), S(>), and S(=).

1.0 — 1.0
o — S (X >0) ‘ / g —_— S(x=0)
= m— S (Xx=0) I © 0.8
£ 081 uynshifted [} >0
Si id

So6 ome! I 50.61
F S | =
3 I 204
_é 0.4 I § 0
202 1 502
S / 3

0.0 ©0.01

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X x
(a) Plot of S(z > 0), S(z > 0) with sigmoid (b) Plot of S(x = 0) with product t-norm

Figure 5: Illustration of the mapping § on >, >, = when B = 20 and € = 0.2

B PROOF OF LIMIT OF S(t = u)

. . 1 1 1 t=u
ngél+5(t =u) = eljéﬂ 1 e—Bl—ure) © 11 Blimu—a { 0 t+4u
B-e—+oc0 B-e—+o00

Proof. Let f(t,u; B,e) =
prove becomes

s and g(t,u; B,e) =

1
Tfe—DBli—ute Then what we want to

1
1+EB(t—u—e) .

e—0 0 t#u

B-e—+o0

i (76 3.9 © gt B) ={ § )70

Because all f, g, ® are continuous in their domain, we have

lim (f(t,u;B,e) ® g(t,u;B,¢€)) = lim f(t,u;B,e) | ® lim g(t,u; B,€)
e—0t e—0t e—0t
B-e—+oc0 B-e—+oc0 B-e—+oc0

Using basic algebra, we get

. 1 t>u . . 1 t<u
61_1>I(I)1+ f(t7u7B7€){ 0 t<u 61_1>I(I)1+ g(t,u,B,e){ 0 t>u
B-e—+o0 B-e—+400
Combing these results, we have
0®1l t<u
lim f(t,u;B,e) | ® lim g(t,u;B,e) | =9 1®1 t=u
B~€Z>0—:oo Bfeio_:oo 100 t>u

For any t-norm, wehave 0 ® 1 = 0,1 ® 1 = 1, and 1 ® 0 = 0. Put it altogether, we have

e—0T 0 t#u

B-e—+oc0

lim (f(t,u; B,e) ® g(t,u;B,e)):{ L i=u

which concludes the proof. O
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C PROOF OF THEOREM 1

Theorem 1. For any quantifier-free linear SMT formula F, there exists CLN model M, such that
Ve Be, 0 < M(x;B,e) <1 (D)

Ve, F(x) =True < lim+ M(z;B,e) =1 ()
e—0
B-e—00

Va, F(x) = False <= lim+ M(x;B,e) =0 3)
e—0
B-e—00

as long as the t-norm used in building M satisfies Property 1.

Proof. For convenience of the proof, we first remove all <, <, = and # in F, by transforming
t < winto (¢t > w), t < winto =(¢ > w), t = winto (¢t > u) A =(t > w), and ¢ # wu into
(t > uw) V —(t > u). Now the only operators that F' may contain are >, >, A,V, ~. We prove
Theorem 1 by induction on the constructor of formula F'. In the following proof, we construct
model M given F' and show it satisfied Eq.(1)(2). We leave the proof for why M also satisfied
Eq.(3) to readers.

Atomic Case. When F' is an atomic clause, then F' will be in the form of & * W +b > 0 or
x + W + b > 0. For the first case, we construct a linear layer with weight W and bias b followed by
a sigmoid function scaled with factor B and right-shifted with distance e. For the second case, we
construct the same linear layer followed by a sigmoid function scaled with factor B and left-shifted
with distance e. Simply evaluating the limits for each we arrive at

Vo, F(x) =True <= lim M(x;B,¢e) =1

e—0T
B-e—o0

And from the definition of sigmoid function we know 0 < M (x; B,¢) < 1.

Negation Case. If ' = —F”, from the induction hypothesis, F’ can be represented by models M’
satisfying Eq.(1)(2)(3). Let p’ output node of M’. We add a final output node p = 1 — p’. So
M (x; B,e) =1 — M’(x; B, €). Using the induction hypothesis 0 < M’(x; B, €) < 1, we conclude
Eq.(1) 0 < M(z; B,¢) < 1.

Now we prove the “ = ” side of Eq.(2). If F(x) = True, then F'(x) = False. From the
induction hypothesis, we know lim __, ,+ M'(x; B,€) = 0. So

B-e—oo
lim M(z;B,e)= lim 1— M (z;B,e)=1-0=1
e—0t e—0Tt
B-e—00 B-e—oo

Next we prove the “ <= " side. If lim __,,+ M(x; B, €) = 1, we have
B-e—00
lim M'(z;B,e)= lim 1— M(xz;B,e)=1-1=0

e—07T e—0T
B-e—o0 B-e—o0

From the induction hypothesis we know that F'(x) = False. So F(x) = —~F'(x) = True.

Conjunction Case. If ' = F; A Fy, from the induction hypothesis, F; and F5 can be represented
by models M7 and My, such that both (Fy, My) and (Fy, M>) satisfy Eq.(1)(2)(3). Let p; and po
be the output nodes of My and M;. We add a final output node p = p; ® pa. So M (x; B,e) =
M (x; B,e) ® Ma(x; B, €). Since (®) is continuous and so are M (z; B, €) and Ma(x; B, €), we
know their composition M (x; B, €) is also continuous. (Readers may wonder why M 1(x; B, ¢€)
is continuous. Actually the continuity of M (x; B, €) should be proved inductively like this proof
itself, and we omit it for brevity.) From the definition of (®), we have Eq.(1) 0 < M(x; B,¢) < 1.

Now we prove the = side of Eq.(2). For any «, if F'(x) = True which means both F} (x)
True and F5(x) = True, from the induction hypothesis we know that lim __ o+ M;(x; B, €) =

B-e—o0
+ Msy(x; B,e) = 1. Then

1

and lim

550
lim M(x;B,e)= lim M;(x;B,e) @ Ma(x;Be) =1®@1=1
e—0T e—07t
B-e—o0 B-e—oc0
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Then we prove the <= side. From the induction hypothesis we know that M7 (x; B,¢) < 1 and
Ms(x; B, €) < 1. From the non-decreasing property of t-norms (see §2.3), we have

My (x; B, e) @ Ma(x; B,e) < Mi(x;B,e)®1

Then from the consistency property and the commutative property, we have
Mi(x;B,e) @ 1 = My (x; B, ¢)
Put them altogether we get
M(x;Bye) < M(z;B,¢) < 1

Because we know lim __,+ M (x; B, €) = 1, according to the squeeze theorem in calculus, we get
B-e—o0

lim M;(x;B,e) =1
e—0T
B-e—o00
From the induction hypothesis, we know that F; () = True. We can prove Fy(x) = True in the
same manner. Finally we have F'(x) = Fy(x) A Fo(x) = True.

Disjunction Case. For the case F' = F} V F5, we construct M from M; and M5 as we did in the
conjunctive case. This time we let the final output node be p = p; @ p2. From the continuity of (®)
and the definition of (®) t®u =1— (1 —¢t) ® (1 — u)), (P) is also continuous. We conclude
M (z; B, €) is also continuous and 0 < M (x; B, €) < 1 by the same argument as ' = F} A F5.

Now we prove the “ = ” side of Eq.(2). For any assignment x, if F'(x) = True which means
Fi(x) = True or Fy(x) = True. Without loss of generality, we assume F} (x) = True. From the

induction hypothesis, we know lim __ o+ M;(x; B,¢€) = 1.
B-e—o0

For any (&) and any 0 < ¢,¢' < 1,if t < ¢, then
tou=1-1-t)(1l-u) < 1-(1-tHhe(1l—-u)=tdu

Using this property and the induction hypothesis M (x; B, €) > 0, we have
Mi(x;Bye) 0 < M;y(x;B,e) ® Ma(x; B,e) = M(x; B,e)

From the induction hypothesis we also have M; (x; B,¢) < 1. Using the definition of (d) and the
consistency of (®) (0 ® z = 0), we get M, (x; B, e) &0 = M (x; B, €). Put them altogether we get

Ml(w;Bae) S M(-’B,B,E)Sl

Because we know lim __,,+ M;(x; B,€) = 1, according to the squeeze theorem in calculus, we
B-e—o0
getlim __,+ M(x;B,e) = 1.

B-e—o0
Then we prove the ““ <= " side. Here we need to use the existence of limit:
lim M(x; B,e€)
e—0T
B-e—o0
This property can be proved by induction like this proof itself, thus omitted for brevity.

Let
c¢1 = lim M;(x;B,e¢)

e—0T
B-e—o0
and
ca = lim Ms(x; Bye)
e—0T
B-e—o0
Then

lim M(x;B,e)= lim M;(x;B,e)® Ma(x;Be) =c1®ca=1—(1—¢1)® (1 —c2)
5% 520
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Since we have lim __ 4+ M(x; B, ¢) = 1, we get
B-e—o0

(1761)@(1762):0

Using Property 1 of (®) (defined in ), we have ¢; = 1V ¢z = 1. Without loss of generality, we
assume ¢; = 1. From the induction hypothesis, we know that Fi(x) = True. Finally, F(x) =
Fi(x)V Fy(x) = True.

O

Careful readers may have found that if we use the continuous mapping function S in then we
have another perspective of the proof above, which can be viewed as two interwoven parts. The first
part is that we proved the following lemma.

Corollary 1. For any quantifier-free linear SMT formula F,
Ve Be, 0 < S(F;B,e)(x) <1
Ve, F(x) =True <= lim S(F;B,¢)(x) =1

e—0T
B-e—o0

Ve, F(x) = False <= lim+ S(F;B,e)(x) =0
e—0
B-e—00

Corollary 1 indicates the soundness of S. The second part is that we construct a CLN model given
S(F'). In other words, we translate S(F") into vertices in a computational graph composed of differ-
entiable operations on continuous truth values.

D PROOF OF THEOREM 2

Theorem 2. For any CLN model Mg constructed from a formula, F', by the procedure shown in
the proof of Theorem 1, if I’ is the conjunction of multiple linear equalities then any local minima
of M is the global minima, as long as the t-norm used in building M satisfies Property 2.

Proof. Since F' is the conjunction of linear equalities, it has the form

= NQ_ wijti; = 0)
j=1

Here W = {w;; } are the learnable weights, and {¢;;} are terms (variables). We omit the bias b; in
the linear equalities, as the bias can always be transformed into a weight by addmg a constant of 1
as a term. For convenience, we define f(x) = S(x =0) = = B(”e) ® 1+eB(L oF

Given an assignment « of the terms {¢;; }, if we construct our CLN model M following the proce-
dure shown in the proof of Theorem 1, the output of the model will be

n li
M(:U; W, B, 6) = ® f(z wijtij)
=1 Jj=1

When we train our CLN model, we have a collection of m data points {¢;;1}, {tij2}, ..., {tijm},
which satisfy formula F'. If B and € are fixed (unlearnable), then the loss function will be

:Zﬁ( acWBe Z ®f sz] zyk (4)
k=1

k=1

Suppose W* = {w.} is a local minima of L(W). We need to prove W* is also the global minima.
To prove this, we use the definition of a local minima. That is,

36 >0, VW, |[W —W*|| <6 — L(W) > L(W*) (5)

14
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. 1;
For convenience, we denote u;;, = » .

j—1 Wijtiji. Then we rewrite Eq.(4) as

=D L (i)

If we can prove at W*, V1 < i <n, 1 <k <m, uy = 0. Then because (i) f reaches its global
maximum at 0, (ii) the t-norm (®) is monotonically increasing, (iii) £ is monotonically decreasing,
we can conclude that W* is the global minima.

Now we prove V1 <i<n, 1 <k <m, u;r =0. Here we just show the case ¢+ = 1. The proof for
1 > 1 can be directly derived using the associativity of (®).

Let ax = @, f(ui). Since f(x) > 0 for all z € R, using Property 2 of our t-norm (®), we
know that oy, > 0. Now the loss function becomes

Z,C ulk ®C¥k)

From Eq.(5), we have

0 <8 <1, ¥y, W< = D L(fun(l+7) @ar) > > L(f(uin) @ax)  (©6)
k=1 k=1
Because (i) f(x) is an even function decreasing on = > 0 (which can be easily proved), (i) (®) is
monotonically increasing, (iii) £ is monotonically decreasing, for —§’ < v < 0, we have

Zﬁ (uir(1+7)) ® ag) ZE (Juig(L+9)) @ ag) <

Zz (Juixl) ® o) Zc(ﬂuik) ® ay) (7)
Combing Eq.(6) and Eq. (7) we have

Z/j (ui(1+7)) ® ag) Zﬁ (wix) ® ag)

Now we look back on Eq.(7). Since (i) L is strictly decreasmg, (i1) the t-norm we used here has
Property 2 (see gz_f] for definition), (iii) ax, > 0, the only case when (=) holds is that for all 1 <
k < m, we have f(Jue(1 4+ 7)) = f(Juik|). Since f(z) is strictly decreasing for x > 0, we have
|k (1 + )| = |uik|. Finally because —1 < —4¢’ < v < 0, we have u;, = 0. O

E THEOREM 3 AND THE PROOF

Theorem 3. Given a program C': assume(P); while (LC) {C} assert(Q);
If we can find a loop invariant I’ for program C”: assume(P A LC); while (LC) {C} assert(Q);
and PA—-LC = @, then I’V (P A —LC) is a correct loop invariant for program C'.

Proof. Since I’ is a loop invariant of C’, we have
(PANLC)NLC = I' (a) {I' \LCYC{I'} (b) I'N-LC = Q (¢
We want to prove I’ V (P A —~LC) is a valid loop invariant of C, which means
PALC = I'V(PA-LO) {(I'V(PA-LC)) NLC}YC{I' v (P A—LC)}
(I'V(PAN-LC)AN-LC = Q

We prove the three propositions separately. To prove P A LC = I' V (P A —LC'), we transform
it into a stronger proposition P A LC' = [I’, which directly comes from (a).

For {(I'V(PA-LC))ANLC}C{I' V(P A—LC)}, after simplification it becomes {I' A LC}C{I' v
(P A —=LC)}, which is a direct corollary of (b).

For (I'V(PA-LC))A-LC = @, after simplification it will become two separate propositions,
I'AN-LC = Qand PA—-LC = (. The former is exactly (c), and the latter is a known
condition in the theorem. O
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F PROPERTIES OF GAUSSIAN FUNCTION

2
We use a Gaussian-like function S(t = u) = exp(— (t_g“) ) to represent equalities in our exper-
iments. It has the following two properties. Flrst it preserves the original semantic of = when
o — 0, similar to the mapping S(t = u) = T e ® 1+63(t -—= we defined in §

(t —u)? 1 t=u
={5 iz

lim ex
o—0Tt p( 202

Second, if we view S(¢ = w) as a function over ¢ — u, then it reaches its only local maximum at
t — u = 0, which means the equality is satisfied.

G MORE DIFFICULT LOOP INVARIANT

//pre: t=-20/\u=-20 207 =,
while (u != 0) { . .
t++; LI
if (u > 0 ) .
t =-u+ 1; 0 o
else . °
t=-u-1; o« *
} .
//post: t=0 201
-20 =15 -10 -5 0
(a) Example Pseudocode (b) Plotted trace of program

Figure 6: Finding the Loop Invariant of Problem 1.

Description of Problems. In this section, we discuss in detail two of the more difficult loop invariant
problems we have created. Consider the first example loop in Fig[6] For a loop invariant to be usable
in verifying this loop, it must be valid for the precondition ¢ = —20,u = —20, the recursion step
representing loop execution when the loop condition is satisfied (v # 0), and the post condition
t = 0 when the loop condition is no longer satisfied (v = 0). The correct and precise invariant for
the program is ((t + u = 0) V (t — u = 0)) A (¢ < 0). The plot of the trace in FigJ6b|shows that
the points lie on one of two lines expressible as linear equality constraints. These constraints along
with the inequality can be learned from the execution trace in under 20 seconds. The invariant that
is inferred is ((t + u = 0) V (¢t — u = 0)) A (¢ < 0), which Z3 verifies is a sufficient loop invariant.

Figure [7] shows the pseudocode for the second program. The correct and precise loop invariant is
(t+u=0)A(v+w=0)A(u+w > 0). Our CLN can learn the this invariant with the t-norm
in under 20 seconds. Both Code2inv and LoopInvGen time out within one hour without finding a
solution.

//pre: t=-10 /\ u=10 /\ v=-10 /\ w=1l0
while (u + w > 0) {

if (unknown ()) {
t++; u-—;
} else {

vtt; w——;
}
}
//post: t=w /\ u=v

Figure 7: Pseudocode for Problem 2, which involves a conjunction of equalities

H T-NORMS AND T-CONORMS

Here we provide more details on the convergence of t-norms and T-conorms on our models. Table[2]
summarizes the results of the comparison.
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Convergence Traces. Figures|[8] [9] and [I0] show plots of the training loss for Godel, Lukasiewicz,
and product t-norms and t-conorms respectively. Variations between individual traces are a result
of random parameter initialization. CLNs with t-norms usually converge rapidly but sometimes
will temporarily plateau when one clause converges before the other. In contrast, t-conorms always
train one clause at a time, resulting in a curved staircase shape in the loss traces. We observe no
significant difference between the t-norms used for conjunctions but observe that the product co-
tnorms converges faster than the other t-conorms.

Table 2: Table with average iterations to convegence (average taken over 5 runs)

Problem Godel (iterations) Lukasiewicz (iterations) Product (iterations)
Conjunction 967 966 966
Disjunction 1,074 1,221 984
2.0 -
0.84
1.5
0.6
0.5 0.24
0.01 0.01
6 260 460 660 860 10‘00 6 260 460 660 860 10b0 12‘00
Iterations Iterations
(a) Godel t-norm (b) Godel t-conorm

Figure 8: Godel t-norm and t-conorm

2.0
0.8

1.5
0.6 1

Loss

0.4 4

0.5 0.2

0.0 0.0

6 260 460 660 860 10b0 6 2(‘)0 460 660 860 10‘00 12‘00 14‘00 16‘00
Iterations Iterations
(a) Lukasiewicz t-norm (b) Lukasiewicz t-conorm

Figure 9: Lukasiewicz t-norm and t-conorm

2.01 L
0.81
154
0.6 1
4 4
S 10 & 0.4
0.5 0.24
0.01 0.01
6 260 460 660 860 10‘00 6 260 460 660 860 10b0 1200
Iterations Iterations
(a) Product t-norm (b) Product t-conorm

Figure 10: Product t-norm and t-conorm
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