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ABSTRACT

Recent trends of incorporating attention mechanisms in vision have led re-
searchers to reconsider the supremacy of convolutional layers as a primary build-
ing block. Beyond helping CNNs to handle long-range dependencies, Ramachan-
dran et al. (2019) showed that attention can completely replace convolution and
achieve state-of-the-art performance on vision tasks. This raises the question: do
learned attention layers operate similarly to convolutional layers? This work pro-
vides evidence that attention layers can perform convolution and, indeed, they of-
ten learn to do so in practice. Specifically, we prove that a multi-head self-attention
layer with sufficient number of heads is at least as powerful as any convolutional
layer. Our numerical experiments then show that the phenomenon also occurs in
practice, corroborating our analysis. Our code is publicly available1.

1 INTRODUCTION

Recent advances in Natural Language Processing (NLP) are largely attributed to the raise of the
transformer (Vaswani et al., 2017). Pre-trained to solve an unsupervised task on large corpora of
text, transformer-based architectures, such as GPT-2 (Radford et al., 2018), BERT (Devlin et al.,
2018) and Transformer-XL (Dai et al., 2019), seem to possess the capacity to learn the underly-
ing structure of text and, as a consequence, to learn representations that generalize across tasks.
The key difference between transformers and previous methods, such as recurrent neural networks
(Hochreiter & Schmidhuber, 1997) and convolutional neural networks (CNN), is that the former can
simultaneously attend to every word of their input sequence. This is made possible thanks to the
attention mechanism—originally introduced in Neural Machine Translation to better handle long-
range dependencies (Bahdanau et al., 2015). With self-attention in particular, the similarity of two
words in a sequence is captured by an attention score measuring the distance of their representa-
tions. The representation of each word is then updated based on those words whose attention score
is highest.

Inspired by its capacity to learn meaningful inter-dependencies between words, researchers have
recently considered utilizing self-attention in vision tasks. Self-attention was first added to CNN
by either using channel-based attention (Hu et al., 2018) or non-local relationships across the image
(Wang et al., 2018). More recently, Bello et al. (2019) augmented CNNs by replacing some convolu-
tional layers with self-attention layers, leading to improvements on image classification and object
detection tasks. Interestingly, Ramachandran et al. (2019) noticed that, even though state-of-the
art results are reached when attention and convolutional features are combined, under same com-
putation and model size constraints, self-attention-only architectures also reach competitive image
classification accuracy.

These findings raise the question, do self-attention layers process images in a similar manner to
convolutional layers? From a theoretical perspective, one could argue that transfomers have the
capacity to simulate any function—including a CNN. Indeed, Pérez et al. (2019) showed that a multi-
layer attention-based architecture with additive positional encodings is Turing complete under some
strong theoretical assumptions, such as unbounded precision arithmetic. Unfortunately, universality
results do not reveal how a machine solves a task, only that it has the capacity to do so. Thus, the
question of how self-attention layers actually process images remains open.

1URL available after deanonymization.
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Contributions. In this work, we put forth theoretical and empirical evidence that self-attention
layers can (and do) learn to behave similar to convolutional layers:

I. From a theoretical perspective, we provide a constructive proof showing that self-attention
layers are at least as powerful as convolutional layers.

Specifically, we show that a single multi-head self-attention layer using relative positional encoding
can be re-parametrized to express any convolutional layer. Our insights lead to a relative positional
encoding, that we refer to as quadratic encoding, that is very efficient in terms of size.

II. Our experiments show that the first few layers of attention-only architectures (Ramachan-
dran et al., 2019) do learn to attend on grid-like pattern around each query pixel, similar to
our theoretical construction.

Strikingly, this behavior is confirmed both for our quadratic encoding, but also for relative encoding
that is learned during training. Our results seem to suggest that localized convolution is the right
inductive bias for the first few layers of an image classifying network. For deeper layers, on the
other hand, long-range as well as horizontally-symmetric inter-dependencies become more relevant.

For reproducibility purposes, our code is publicly available on GitHub2.

2 BACKGROUND ON ATTENTION MECHANISMS FOR VISION

We here recall the mathematical formulation of self-attention layers and emphasize the role of posi-
tional encodings.

2.1 THE MULTI-HEAD SELF-ATTENTION LAYER

Let X ∈ RT×Din be an input matrix consisting of T tokens in of Din dimensions each. While in
NLP each token corresponds to a word in a sentence, the same formalism can be applied to any
sequence of T discrete objects, e.g. pixels. A self-attention layer maps any query token t ∈ [T ]
from Din to Dout dimensions as follows:

Self-Attention(X)t,: := softmax (At,:)XWval, (1)

where we refer to the elements of the T × T matrix

A := XWqryW
>

keyX
> (2)

as attention scores and the softmax output3 as attention probabilities. The layer is parametrized
by a query matrix Wqry ∈ RDin×Dk , a key matrix Wkey ∈ RDin×Dk and a value matrix Wval ∈
RDin×Dout .For simplicity, we exclude any residual connections, batch normalization and constant
factors.

A key property of the self-attention model described above is that it is equivariant to reordering, that
is, it gives the same output independently of how the T input tokens are shuffled. This is problematic
for cases we expect the order of things to matter. To alleviate the limitation, a positional encoding
is learned for each token in the sequence (or pixel in an image), and added to the representation of
the token itself before applying self-attention

A := (X + P )WqryW
>

key(X + P )>, (3)

where P ∈ RT×Din contains the embedding vectors for each position. More generally, P may be
substituted by any function that returns a vector representation of the position.

It has been found beneficial in practice to replicate this self-attention mechanism into multiple heads,
each being able to focus on different parts of the input by using different query, key and value
matrices. In multi-head self-attention, the output of the Nh heads of output dimension Dh are
concatenated and projected to dimension Dout as follows:

MHSA(X) := concat
h∈[Nh]

[
Self-Attentionh(X)

]
Wout + bout (4)

2Code submission available in open review. Public URL available after the anonymity period.
3softmax (At,:)k = exp(At,k)/

∑
p exp(At,p)
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and two new parameters are introduced: the projection matrix Wout ∈ RNhDh×Dout and a bias term
bout ∈ RDout .

2.2 ATTENTION FOR IMAGES

Convolutional layers are the de facto choice for building neural networks that operate on images.
We recall that, given an image tensor X ∈ RW×H×Din of width W , height H and Din channels, the
output of a convolutional layer for pixel (i, j) is given by

Conv(X)i,j,: :=
∑

(δ1,δ2)∈∆∆K

Wδ1,δ2,:,:Xi+δ1,j+δ2,: + b, (5)

where W is the K ×K ×Dout ×Din weight tensor 4, b ∈ RDout is the bias vector and the set

∆∆K :=

[
−
⌊
K

2

⌋
, · · · ,

⌊
K

2

⌋]
×
[
−
⌊
K

2

⌋
, · · · ,

⌊
K

2

⌋]
contains all possible shifts appearing when convolving the image with a K ×K kernel.

In the following, we review how self-attention can be adapted from 1D sequences to images.

With images, rather than tokens, we have query and key pixels q,k ∈ [W ]× [H]. Accordingly, the
input is a tensor X of dimension W ×H ×Din and each attention score associates a query and a key
pixel.

To keep the formulas consistent with the 1D case, we abuse notation and slice tensors by using a 2D
index vector: if p = (i, j), we write Xp,: and Ap,: to mean Xi,j,: and Ai,j,:,:, respectively. With this
notation in place, the multi-head self attention layer output at pixel q can be expressed as follows:

Self-Attention(X)q,: =
∑
k

softmax (Aq,:)k Xk,:Wval (6)

and accordingly for the multi-head case.

2.3 POSITIONAL ENCODING FOR IMAGES

There are two types of positional encoding that has been used in transformer-based architectures:
the absolute and relative encoding (see also Table 3 in the Appendix).

With absolute encodings, a (fixed or learned) vector Pp,: is assigned to each pixel p. The computa-
tion of the attention scores we saw in eq. (2) can then be decomposed as follows:

Aabs
q,k = (Xq,: + Pq,:)WqryW

>
key(Xk,: + Pk,:)>

= Xq,:WqryW
>

keyX
>
k,: + Xq,:WqryW

>
keyP

>
k,: + Pq,:WqryW

>
keyXk,: + Pq,:WqryW

>
keyPk,: (7)

where q and k correspond to the query and key pixels, respectively.

The relative positional encoding was introduced by Dai et al. (2019). The main idea is to only
consider the position difference between the query pixel (pixel we compute the representation of)
and the key pixel (pixel we attend) instead of the absolute position of the key pixel:

Arel
q,k := X>q,:W

>
qryWkey Xk,: + X>q,:W

>
qryŴkey rδ + u>Wkey Xk,: + v>Ŵkey rδ (8)

In this manner, the attention scores only depend on the shift δ := q − k. Above, the learnable
vectors u and v are unique for each head, whereas for every shift δ the relative positional encoding
rδ ∈ RDp is shared by all layers and heads. Moreover, now the key weights are split into two types:
Wkey pertain to the input and Ŵkey to the relative position of pixels.

3 SELF-ATTENTION AS A CONVOLUTIONAL LAYER

This section derives sufficient conditions such that a multi-head self-attention layer can simulate a
convolutional layer. Our main result is the following:

4To simplify notation, we index the first two dimensions of the tensor from −bK/2c to bK/2c.
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Figure 1: Illustration of a Multi-Head Self-Attention layer applied to a tensor image X. Each head h
attends pixel values around shift ∆(h) and learn a filter matrix W (h). We show attention maps
computed for a query pixel at position q.

Theorem 1. A multi-head self-attention layer with Nh heads of dimension Dh, output dimen-
sion Dout and a relative positional encoding of dimension Dp ≥ 3 can express any convolutional
layer of kernel size

√
Nh ×

√
Nh and min(Dh, Dout) output channels.

The theorem is proven constructively by selecting the parameters of the multi-head self-attention
layer so that the latter acts like a convolutional layer. In the proposed construction, the attention
scores of each self-attention head should attend to a different relative shift within the set ∆∆K =
{−bK/2c, . . . , bK/2c}2 of all pixel shifts in a K ×K kernel. The exact condition can be found in
the statement of Lemma 1.

Then, Lemma 2 shows that the aforementioned condition is satisfied for the relative positional en-
coding that we refer to as the quadratic encoding:

v(h) := −α(h) (1,−2∆
(h)
1 ,−2∆

(h)
2 ) rδ := (‖δ‖2, δ1, δ2) Wqry =Wkey := 0 Ŵkey := I (9)

The learned parameters ∆(h) = (∆
(h)
1 ,∆

(h)
2 ) and α(h) determine the center and width of attention

of each head, respectively. On the other hand, δ = (δ1, δ2) is fixed and expresses the relative shift
between query and key pixels.

It is important to stress that the above encoding is not the only one for which the conditions of
Lemma 1 are satisfied. In fact, in our experiments, the relative encoding learned by the neural
network also matched the conditions of the lemma (despite being different from the quadratic en-
coding). Nevertheless, the encoding defined above is very efficient in terms of size, as only Dp = 3
dimensions suffice to encode the relative position of pixels, while also reaching similar or better
empirical performance (than the learned one). Though we lack a formal proof, we conjecture that
every encoding that satisfies Lemma 1 should have at least three dimensions.

Remark for the 1D case. Convolutional layers acting on sequences are commonly used in the lit-
erature for text (Kim, 2014), as well as audio (van den Oord et al., 2016) and time series (Franceschi
et al., 2019). Theorem 1 can be straightforwardly extended to show that multi-head self-attention
with Nh heads can also simulate a 1D convolutional layer with a kernel of size K = Nh with
min(Dh, Dout) output channels using a positional encoding of dimension Dp ≥ 2. Since we have
not tested empirically if the preceding construction matches the behavior of 1D self-attention in
practice, we cannot claim that it actually learns to convolve an input sequence—only that it has the
capacity to do so.

3.1 PROOF OF MAIN THEOREM

The proof follows directly from Lemmas 1 and 2 stated below:
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Lemma 1. Consider a multi-head self-attention layer consisting of Nh = K2 heads, Dh ≥ Dout
and let f : [Nh] → ∆∆K be a bijective mapping of heads onto shifts. Further, suppose that for
every head the following holds:

softmax(A(h)
q,: )k =

{
1 if f(h) = q − k
0 otherwise.

(10)

Then, for any convolutional layer with a K × K kernel and Dout output channels, there exists
{W (h)

val }h∈[Nh] such that MHSA(X) = Conv(X) for everyX ∈ RW×H×Din .

Proof. Our first step will be to rework the expression of the Multi-Head Self-Attention operator from
equation (1) and equation (4) such that the effect of the multiple heads becomes more transparent:

MHSA(X) = bout +
∑

h∈[Nh]

softmax(A(h))XW
(h)

val Wout[(h− 1)Dh + 1 : hDh + 1]︸ ︷︷ ︸
W (h)

(11)

Note that each head’s value matrix W (h)
val ∈ RDin×Dh and each block of the projection matrix Wout

of dimension Dh × Dout are learned. Assuming that Dh ≥ Dout, we can replace each pair of
matrices by a learned matrix W (h) for each head. We consider one output pixel of the multi-head
self-attention:

MHSA(X)q,: =
∑

h∈[Nh]

(∑
k

softmax(A(h)
q,: )kXk,:

)
W (h) + bout (12)

Due to the conditions of the Lemma, for the h-th attention head the attention probability is one when
k = q − f(h) and zero otherwise. The layer’s output at pixel q is thus equal to

MHSA(X)q =
∑

h∈[Nh]

Xq−f(h),:W
(h) + bout (13)

For K =
√
Nh, the above can be seen to be equivalent to a convolutional layer expressed in eq. 5:

there is a one to one mapping (implied by map f ) between the matricesW (h) for h = [Nh] and the
matrices Wk1,k2,:,: for all (k1, k2) ∈ [K]2.

Remark about Dh and Dout. It is frequent in transformer-based architectures to set
Dh = Dout/Nh, hence Dh < Dout. In that case, W (h) can be seen to be of rank Dout − Dh,
which does not suffice to express every convolutional layer with Dout channels. Nevertheless, it can
be seen that any Dh out of Dout outputs of MHSA(X) can express the output of any convolutional
layer with Dh output channels. To cover both cases, in the statement of the main theorem we assert
that the output channels of the convolutional layer should be min(Dh, Dout). In practice, we advise
to concatenate heads of dimension Dh = Dout instead of splitting the Dout dimensions among heads
to have exact re-parametrization and no “unused” channels.
Lemma 2. There exists a relative encoding scheme {rδ ∈ RDp}δ∈Z2 with Dp ≥ 3 and parame-
ters Wqry,Wkey, Ŵkey,u with Dp ≤ Dk such that, for every ∆ ∈ ∆∆K there exists some vector v
(conditioned on ∆) yielding softmax(Aq,:)k = 1 if q − k = ∆ and zero, otherwise.

Proof. We show by construction the existence of a Dp = 3 dimensional relative encoding scheme
yielding the required attention probabilities.

As the attention probabilities are independent of the input tensor X, we setWkey = Wqry = 0 which
leaves only the last term of eq. (8). Setting Ŵkey ∈ RDk×Dp to the identity matrix (with appropriate
row padding), yields Aq,k = v>rδ where δ := q − k. Above, we have assumed that Dp ≤ Dk

such that no information from rδ is lost.

Now, suppose that we could write:

Aq,k = −α(‖δ −∆‖2 + c) (14)

for some constant c. In the above expression, the maximum attention score over Aq,: is −αc and it
is reached for Aq,k with δ = ∆. On the other hand, the α coefficient can be used to scale arbitrarily
the difference between Aq,∆ and the other attention scores.
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In this way, for δ = ∆, we have

lim
α→∞

softmax(Aq,:)k = lim
α→∞

e−α(‖δ−∆‖2+c)∑
k′ e−α(‖(q−k′)−∆‖2+c)

= lim
α→∞

e−α‖δ−∆‖
2

e−αc∑
k′ e−α‖(q−k

′)−∆‖2e−αc

= lim
α→∞

e−α‖δ−∆‖
2∑

k′ e−α‖(q−k
′)−∆‖2 =

1

1 + limα→∞
∑
k′ 6=k e

−α‖(q−k′)−∆‖2 = 1

and for δ 6= ∆, the equation becomes limα→∞ softmax(Aq,:)k = 0, exactly as needed to satisfy
the lemma statement.

What remains is to prove that there exist v and {rδ}δ∈Z2 for which eq. (14) holds. Expanding the
rhs of the equation, we have −α(‖δ −∆‖2 + c) = −α(‖δ‖2 + ‖∆‖2 − 2〈δ,∆〉+ c) . Now if we
set v = −α (1,−2∆1,−2∆2) and rδ = (‖δ‖2, δ1, δ2), then

Aq,k = v>rδ = −α(‖δ‖2−2∆1δ1−2∆2δ2) = −α(‖δ‖2−2〈δ,∆〉) = −α(‖δ−∆‖2−‖∆‖2),

which matches eq. (14) with c = −‖∆‖2 and the proof is concluded.

4 EXPERIMENTS

The aim of this section is to validate the applicability of our theoretical results—which state that
self-attention can perform convolution—and to examine whether self-attention layers in practice do
actually learn to operate like convolutional layers, when being trained on standard image classifi-
cation tasks. In particular, we study the relationship between self-attention and convolution with
quadratic and learned relative positional encodings. We find that for both cases, the attention prob-
abilities learned tend to respect the conditions of Lemma 1, corroborating our hypothesis.

4.1 IMPLEMENTATION DETAILS

We study a fully attentional model consisting of six multi-head self-attention layers. As it has
already been shown by Bello et al. (2019) that combining attention features with convolutional
features improves performance on Cifar-100 and ImageNet, we do not focus on attaining state-
of-the-art performance. Nevertheless, to validate that our model learns a meaningful classifier we
compare it to the standard ResNet18 (He et al., 2015) on the CIFAR-10 dataset (Krizhevsky et al.).
In all experiments, we use a 2 × 2 invertible down-sampling (Jacobsen et al., 2018) on the input
to reduce the size of the image as storing the attention coefficient tensor requires a large amount of
GPU memory. The fixed size representation of the input image is computed as the average pooling
of the last layer representations and given to a linear classifier.

We used the PyTorch library (Paszke et al., 2017) and based our implementation on PyTorch Trans-
formers5. We release our code on Github6 and all hyper-parameters are in Table 4 in the Appendix.

4.2 QUADRATIC ENCODING

As a first step, we aim to verify that, with the relative position encoding introduced in equation (9),
attention layers learn to behave like convolutional layers. We train nine attention heads at each layer
to be on par with the 3 × 3 kernels used predominantly by the ResNet architecture. The center of
attention of each head h is initialized to ∆(h) ∼ N (0, 2I2).

Figure 2 shows how the initial positions of the heads (different colors) at layer 4 changed during
training. We can see that after optimization, the heads attend on specific pixel of the image forming
a grid around the query pixel. Our intuition that Self-Attention applied to images learn convolutional
filter around the queried pixel is then confirmed.

5https://github.com/huggingface/pytorch-transformers
6URL available after deanonymization.
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Figure 2: Centers of attention of each attention head (different colors) at layer 4 during the training.
Use quadratic relative positional encoding. The central black square is the query pixel, whereas
solid and dotted circles represent the 50% and 90% percentiles of each Gaussian, respectively.

Figure 3 displays all attention head at each layer of the model at the end of the training. It can
be seen that in the first few layers the heads tend to focus on local patterns (layers 1 and 2), while
deeper layers (layers 3-6) also attend to larger patterns by positioning the center of attention further
from the queried pixel position. We also include in the Appendix a plot of the attention positions for
a higher number of heads (Nh = 16), Figure 8 displays both local patterns similar to CNN and long
range dependencies. Interestingly, attention heads do not overlap and seem to take an arrangement
maximizing the coverage of the input space.

Figure 3: Centers of attention of each attention head (different colors) for the 6 self-attention layers
using quadratic positional encoding. The central black square is the query pixel, whereas solid and
dotted circles represent the 50% and 90% percentiles of each Gaussian, respectively.

To verify that our self-attention model performs equally well as a small ResNet (Table 1), in Fig-
ure 5 we display the evolution of the test accuracy on CIFAR-10 over the 300 epochs of training. The
ResNet is faster to converge, but we cannot ascertain whether this corresponds to an inherent prop-
erty of the architecture or an artifact of the adopted optimization procedures. Our implementation
could be optimized to exploit the locality of Gaussian attention probabilities and reduce significantly
the number of FLOPS.

4.3 LEARNED RELATIVE POSITIONAL ENCODING

We move on to study the positional encoding used in practice by fully-attentional models on images.

We implemented the 2D relative positional encoding scheme used by (Ramachandran et al., 2019;
Bello et al., 2019): we learn a bDp/2c position encoding vector for each row and each column
pixel shift. Hence the relative positional encoding of a key pixel at position k with a query pixel
at position q is the concatenation of the row shift embedding δ1 and the column shift embedding
δ2 (where δ = k − q). We chose Dp = Dout = 400 in the experiment. We differ from the
(unpublished) implementation described by Ramachandran et al. (2019) in the following points:
(i) we do not use convolution stem and ResNet bottlenecks for downsampling, but only a 2 × 2
invertible downsampling layer (Jacobsen et al., 2018) at input, (ii) we use Dh = Dout instead of
Dh = Dout/Nh backed from our theory that the effective number of learned filters is min(Dh, Dout),
(iii) the attention scores are computed using only the relative positions of the pixels and not the data.
As seen in Table 1, our implementation achieves accuracy close to that of ResNet18.

The attention probabilities of each head at each layer are displayed on Figure 5. The figure confirms
our hypothesis for the first two layers and partially for the third: even when left to learn the encoding
from the data, certain self-attention heads (depicted on the left) learn to attend to individual pixels,
closely matching the condition of Lemma 1 and thus Theorem 1. At the same time, other heads
pay attention to horizontally-symmetric but non-localized patterns, as well as to long-range pixel

7
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Figure 4: Test accuracy on CIFAR-10.

Models accuracy # of params # of FLOPS

ResNet18 0.938 11.2M 1.1B
SA quadratic 0.938 12.1M 6.2B
SA learned 0.918 12.3M 6.2B

Table 1: Test accuracy on CIFAR-10 and model
sizes. SA stands for Self-Attention.

Figure 5: Attention maps of each head (column) at each layer (row) using learned relative positional
encoding. The central black square is the query pixel. We reordered the heads for visualization.

inter-dependencies. The phenomenon is particularly prominent for layers four to six, where the
behavior of self-attention can be seen to deviate from that of convolution. We also notice that vertical
symmetry is much more rare in the learned attention probabilities of high layers. This matches the
intuition that, for image classification, distinguishing between what is above or below something is
more crucial than what is left or right. Finally, the fact that some of the heads in the last two layers
seem to be redundant, likely indicating that the computational and space complexity of the model
could be amenable to further reduction, for example by pruning.

5 CONCLUSION

We showed that self-attention layers applied to images can express any convolutional layer (given
sufficiently many heads) and that learned fully-attentional models do behave similar to CNN in
practice. More generally, fully-attentional models seem to learn a generalization of CNNs where
the kernel pattern is learned at the same time as the filters—similar to deformable convolutions
(Dai et al., 2017; Zampieri, 2019). Interesting directions for future work include translating existing
insights from the rich CNNs literature back to transformers on various data modalities, including
images, text and time series. Also, though we currently lack the computational resources to do so,
we would be interested to test whether our findings are replicated for datasets of larger-scale, such
as ImageNet and COCO.
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A APPENDIX

A.1 GENERALIZED QUADRATIC POSITIONAL ENCODING

We noticed the similarity of the attention probabilities in the quadratic positional encoding (Sec-
tion 3) to isotropic bivariate Gaussian distributions with bounded support:

softmax(Aq,:)k =
e−α‖(k−q)−∆‖2∑

k′∈[W ]×[H] e
−α‖(k′−q)−∆‖2 . (15)

Building on this observation, we further extended our attention mechanism to non-isotropic Gaus-
sian distribution over pixel positions. Each head is parametrized by a center of attention ∆ and a
covariance matrix Σ to obtain the following attention scores,

Aq,k = −1

2
(δ −∆)>Σ−1(δ −∆) = −1

2
δ>Σ−1δ + δ>Σ−1∆− 1

2
∆>Σ−1∆ , (16)

where, once more, δ = k − q. The last term can be discarded because the softmax is shift invariant
and we rewrite the attention coefficient as a dot product between the head target vector v and the
relative position encoding rδ (consisting of the first and second order combinations of the shift in
pixels δ):

v =
1

2
(2(Σ−1∆)1, 2(Σ−1∆)2,−Σ−1

1,1,−Σ−1
2,2,−2 ·Σ−1

1,2)> and rδ = (δ1, δ2, δ
2
1 , δ

2
2 , δ1δ2)> .

Evaluation. We trained our model using this generalized quadratic relative position encoding. We
were curious to see if, using the above encoding the self-attention model would learn to attend to
non-isotropic groups of pixels—thus forming unseen patterns in CNNs. Each head was parametrized
by ∆ ∈ R2 and Σ−1/2 ∈ R2×2 to ensure that the covariance matrix remained positive semi-definite.
We initialized the center of attention to ∆(h) ∼ N (0, 2I2) and Σ−1/2 = I2 +N (0, 0.01I2) so that
initial attention probabilities were close to an isotropic Gaussian. Figure 6 shows that the network
did learn non-isotropic attention probability patterns, especially in high layers. Nevertheless, the fact
that we do not obtain any performance improvement seems to suggest that attention non-isotropy is
not particularly helpful in practice—the quadratic positional encoding suffices.

Figure 6: Centers of attention of each attention head (different colors) for the 6 self-attention layers
using non-isotropic Gaussian parametrization. The central black square is the query pixel, whereas
solid and dotted circles represent the 50% and 90% percentiles of each Gaussian, respectively.

Pruning degenerated heads. We noticed that certain non-isotropic attention heads attended on
“non-intuitive” patches of pixels: either attending a very thin stripe of pixels, when Σ−1 was almost
singular, or attending all pixels uniformly, when Σ−1 was close to 0 (i.e. constant attention scores).
We asked ourselves, are such attention patterns indeed useful for the model or are these heads degen-
erated and unused? To find out, we pruned all heads having largest eigen-values smaller than 10−5

or condition number (ratio of the biggest and smallest eigen-values) greater than 105. Specifically in
our model with 6-layer and 9-heads each, we pruned [2, 4, 1, 2, 6, 0] heads from the first to the last
layer. This means that these layers cannot express a 3 × 3 kernel anymore. As shown in yellow on
fig. 4, this ablation initially hurts a bit the performance, probably due to off biases, but after a few
epochs of continued training with a smaller learning rate (divided by 10) the accuracy recovers its
unpruned value. Hence, without sacrificing performance, we reduce the size of the parameters and
the number of FLOPS by a fourth.
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Figure 7: Evolution of test accuracy on CIFAR-
10. Pruned model (yellow) is continued training
of the non-isotropic model (orange).

Models accuracy # of params # of FLOPS

ResNet18 0.938 11.2M 1.1B
SA quadratic 0.938 12.1M 6.2B
SA quadratic generalized 0.934 12.1M 6.2B
SA quadratic generalized pruned 0.934 9.7M 4.9B
SA learned 0.918 12.3M 6.2B

Table 2: Number of parameters and accuracy
on CIFAR-10 per model. SA stands for Self-
Attention.

A.2 INCREASING THE NUMBER OF HEADS

For completeness, we also tested increasing the number of heads of our architecture from 9 to 16.

Figure 8: Centers of attention for 16 attention heads (different colors) for the 6 self-attention layers
using quadratic positional encoding. The central black square is the query pixel, whereas solid and
dotted circles represent the 50% and 90% percentiles of each Gaussian, respectively.

Similar to Figure 3, we see that the network distinguishes two main types of attention patterns.
Localized heads (i.e., those that attend to nearly individual pixels) appear more frequently in the first
few layers. The self-attention layer uses these heads to act in a manner similar to how convolutional
layers do. Heads with less-localized attention become more common at higher layers.

A.3 POSITIONAL ENCODING REFERENCES

Model type of positional encoding relative
sinusoids learned quadratic

Vaswani et al. (2017) X
Radford et al. (2018) X
Devlin et al. (2018) X
Dai et al. (2019) X X
Yang et al. (2019) X X

Bello et al. (2019) X X
Ramachandran et al. (2019) X X
Our work X X X

Table 3: Types of positional encoding used by transformers models applied to text (top) and images
(bottom). When multiple encoding types have been tried, we report the one advised by the authors.
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A.4 HYPER-PARAMETERS USED IN OUR EXPERIMENTS

Hyper-parameters

number of layers 6
number of heads 9
hidden dimension 400
intermediate dimension 512
invertible pooling width 2
dropout probability 0.1
layer normalization epsilon 10−12

number of epochs 300
batch size 100
learning rate 0.1
weight decay 0.0001
momentum 0.9
cosine decay X
linear warm up ratio 0.05

Table 4: Self-attention network parameters
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