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ABSTRACT

Despite a lot of theoretical efforts, very little is known about mechanisms of im-
plicit regularization by which the low complexity contributes to generalization in
deep learning. In particular, causality between the generalization performance,
implicit regularization and nonlinearity of activation functions is one of the ba-
sic mysteries of deep neural networks (DNNs). In this work, we introduce a
novel technique for DNNs called “random walk analysis” and reveal a mech-
anism of the implicit regularization caused by nonlinearity of ReLU activation.
Surprisingly, our theoretical results suggest that the learned DNNs interpolate al-
most linearly between data points, which leads to the low complexity solutions
in the over-parameterized regime. As a result, we prove that stochastic gradient
descent can learn a class of continuously differentiable functions with generaliza-
tion bounds of the order of O(n−2) (n: the number of samples). Furthermore, our
analysis is independent of the kernel methods, including neural tangent kernels.

1 INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated dominating performance in numerous machine
learning tasks, and it shows great generalization performance in the over-parameterized regime.
Theoretically, mechanisms of implicit regularization, which is considered as an important factor of
such generalization performance in over-parameterized DNNs, still remain unknown (Zhang et al.,
2016; Neyshabur, 2017). In the over-parameterized regime, recent studies report that generalization
bounds for DNNs can be obtained by replacing the neural network with its linear approximation
model with respect to weight parameters at initialization. Most of these studies rely on the connec-
tion between deep learning and neural tangent kernels (NTKs) (Daniely et al., 2016; Jacot et al.,
2018; Arora et al., 2019b), which characterizes the dynamics of network outputs throughout gra-
dient descent training in the infinite width limit. However, a source of implicit regularization in
over-parameterized DNNs has not been identified. Recent empirical and theoretical results indicate
that generalization performance and implicit regularization of over-parameterized DNNs cannot be
captured by NTK analysis (Wei et al., 2018; Allen-Zhu & Li, 2019; Woodworth et al., 2019; Geiger
et al., 2019). Understanding how implicit regularization properly controls the superfluous expres-
sive power of over-parameterized DNNs gives us new insights into the theoretical analysis in deep
learning. This leads to the first question:

Question 1. What kind of low complexity is caused by implicit regularization in deep learning?

Linear networks without activation functions are important subject, and there are a number of theo-
retical works on the implicit regularization in over-parameterized neural networks mainly focusing
on linear models (Ji & Telgarsky, 2018; Gidel et al., 2019; Arora et al., 2019a). In contrast, whole
properties of over-parameterized DNNs that may result from nonlinearity of activation functions
cannot be captured by the NTK analysis. This is because DNN models optimized by gradient de-
scent are approximated by linear models, specifically, a linear combination of corresponding NTKs.
However, some mechanisms of the implicit regularization can depend on nonlinearity. This leads to
the next question:

Question 2. Can we identify a mechanism of implicit regularization that depends on nonlinearity
of activation functions?
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Figure 1: Random walks having a step size distributed according to N (0, 2/m) (m = 103) after
α steps. The smaller the number of steps α is, the more straight. For visibility, we transformed the
random walk sequence {yi}αi=0 into {zi}αi=0 defined by zi := (yi − y0)− (i/α)(yα − y0).

Now for optimization algorithms, the training dynamics of full batch gradient descent (GD) is better
understood although GD is too expensive for most applications and one often uses stochastic gra-
dient decent (SGD) instead. In most cases, the authors used GD to derive their results by the NTK
analysis. Recent work showed that without any structural assumptions about the data distribution,
two-layer or three-layer over-parameterized networks trained by SGD can learn C∞-class functions
(Allen-Zhu et al., 2018a; Arora et al., 2019c). However, it is not clear the relation between gener-
alization and implicit regularization for DNNs optimized by SGD. Towards this end, the following
question is also unsolved:

Question 3. Is it possible to obtain provable generalization bounds based on implicit regularization
for DNNs optimized by SGD?

To answer these questions, we introduce a novel analysis for DNNs and characterize a mechanism
of implicit regularization that caused by nonlinearity of ReLU activation. Our results indicate that
the DNNs (trained by SGD) interpolate almost linearly between data points, which leads to the
low complexity solutions in the over-parameterized regime. Accordingly, we prove that SGD with
random initialization can learn a class of continuously differentiable functions with generalization
error bounds of the order of O(n−2) (n: the number of samples), which is independent of the NTK
analysis.

In order to introduce our analysis for implicit regularization, let us focus on the DNN output on a
one-dimensional linear path between training points. We define it as x(s) := (1 − s)x(p) + sx(q)

(s ∈ [0, 1]), where x(p) and x(q) are training points. The corresponding function of the DNN with
ReLU (ReLU DNN) is continuous piecewise linear on the linear path x(s). In the hidden layer, the
corresponding function gl(x) of each unit in the l-th layer is also continuous piecewise linear on the
linear path x(s), that is, a composite function (gl ◦x)(s) is continuous piecewise linear. Since DNN
nonlinearity is linked to breakpoints, which is caused by ReLU activation, the set of the breakpoints
plays a key role in the network behavior. These kind of breakpoints are also known as kinks or
knots (Steinwart, 2019). Since (gl ◦x)(s) is continuous piecewise linear, the gradient of (gl ◦x)(s)
has gaps at the breakpoints, which we call gradient gaps. We focus on gradient gaps with respect
to the parameter s.1 Our key finding is that the gradient gaps are a constant multiple of independent
Gaussian random variables according to N (0, 2/m), where m is the number of units in the hidden
layer. Since the gradient of the unit (gl ◦ x)(s) is the sum of the gradient gaps, it is a “Gaussian
random walk”2 (see Step 2 in the proof of Lemma 3). The relation between the step size variance
and the number of steps determines the Gaussian random walk behavior.3 In a regime where ( the
number of steps × the step size variance) ≤ O(1), the Gaussian random walk strolls little from the

1 It is worth pointing out that in this paper, each gradient is a derivative not with respect to weight parameters
but with respect to input parameters.

2 If {Xi}αi=1 are independent Gaussian random variables, then {Yi}αi=1, where Yi := X1+X2+ · · ·+Xi,
is called a Gaussian random walk.

3 In the corresponding function of the DNN, the step size variance is the variance of weights, and the number
of steps is the number of breakpoints.
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origin with high probability (see Figure 1). Our results show that the ReLU DNN is in the same
regime and “simplicity” of the gradient depends crucially on the number of breakpoints. Hanin &
Rolnick (2019) proves that the average number of breakpoints is linear in the number of hidden units
at initialization, and we also give a proof of an upper bound on the number of breakpoints even after
training (see §3.1).

In this work, we prove a priori generalization estimates, which is independent of the posterior data
distribution, by analyzing the behavior of DNNs on the linear path x(s). Our key analysis is that
the gradient of unit (gl ◦ x)(s) is a “Gaussian random walk” and approximately equal to a straight
line on the linear path x(s), which we call random walk analysis. Our technique is based on a
priori estimates that variation of the gradients between data points is extremely small and depends
essentially on the value of the number of breakpoints times the variance of weights.

Difference from NTK. Interestingly, our analysis idea is different from other previous work based
on NTK. Our findings are some novel aspects as follows:

• The NTK is defined using the gradient of the DNN output with respect to weight param-
eter space. In contrast, the linear approximation (Lemma 3 in this paper) is defined using
the gradient of the DNN output with respect to input parameter space. In other words,
the variables to be differentiated are different.

• Although NTK analysis is limited to gradient descent, our analysis can be applied to
stochastic gradient descent.

• The random walk analysis indicates that over-parameterized ReLU DNNs interpolate al-
most linearly between the data points. For ReLU activation, since the NTK kernel mapping
is not Lipschitz but 1/2-Hölder, it is difficult to obtain such a result in the NTK analysis
without a tradeoff between smoothness and approximation (Bietti & Mairal, 2019).

Our Contributions. In this work, we consider an L-layer over-parameterized ReLU neural net-
work with l2 regression task using SGD from random initialization. We show the constitutive rela-
tion between implicit regularization and generalization, which enables us to provide new insights on
the role of implicit regularization in deep learning. Our main contributions are as follows:

• Our random walk analysis provides a priori estimates of low complexity in over-
parameterized deep neural networks, and directly indicates that the unit output between
data points is properly controlled by weight initialization and SGD to keep connecting the
data points almost straight, which is one of the underlying mechanisms of implicit regular-
ization in the over-parameterized regime.

• Our result suggests that implicit regularization is attributed to the nonlinearity of ReLU
DNN, which is indicated by the fact that variance of weight and the number of breakpoints
determine the Gaussian random walk behavior.

• We also prove that in one-dimensional input case, SGD with random initialization can learn
C1-class functions. Our generalization estimates are based on the implicit regularization.

2 PRELIMINARIES AND NOTATION

Notation. For n ∈ N, we let [n] = {1, 2, . . . , n}. We use N (µ, σ2) to denote the Gaussian
distribution of mean µ and variance σ2. We use ‖v‖2 to denote the Euclidean norm of a vector v,
use ‖v‖F to denote the Frobenius norm of a vector v. When z is a sub-Gaussian random variable,
we let ‖z‖ψ2

= inf{t > 0 | E[exp(z2/t2)] ≤ 2} to denote sub-Gaussian norm (Vershynin, 2018).
For a vector v, we denote by [v]i or vi the i-th element of v. For a matrix M , we denote by [M ]i,j
or Mi,j the entry in the i-th row and j-th column of M , and we denote by [M ]i the i-th row vector
of M . We denote by 1{E} the indicator function for the event E. ReLU activation is given by
φ(x) = max{0, x}, and for a vector a ∈ Rn, we define φ(a) =

(
φ(a1), φ(a2), . . . , φ(an)

)
.

Network structure. In this work, an L-layer fully-connected feed-forward ReLU neural network
with m units in each hidden layer is given by f : Rd → Rc. For input x ∈ Rd, unit output gl(x) of
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each layer l ∈ [L] and network output f(x) are given by the following functions:

g0(x) := Ax, gl(x) := Wlφ(gl−1(x)) (l ∈ [L]), f(x) := Bφ(gL(x)), (1)

where A ∈ Rm×d, Wl ∈ Rm×m (l ∈ L), and B ∈ Rc×m are weight matrices. We assume the
following Gaussian initialization: Ai,j ∼ N (0, 2/m), Wl

i,j ∼ N (0, 2/m), and Bi,j ∼ N (0, 2/c).

For input x and weight matrices
−→
W := (W1,W2, . . . ,WL), the network output f(x) is also

denoted by f(
−→
W,x). In this work, we only update weights in

−→
W and leave A and B at the random

initialization. For input x ∈ Rd and l ∈ [L] , we denote by Gl(x) a diagonal matrix, which
represents the activation pattern of the l-th layer, which we call an indicator matrix. More precisely,
we define the i-th diagonal element as

[
Gl(x)

]
i,i

:= 1{gli(x)≥0}. Since the ReLU activation is

positive homogeneous, we obtain the following equality: gl(x) = WlGl−1(x)gl−1(x).

Dataset and loss function. The data are generated from an unknown distribution D over (x,y) ∈
Rd × Rc, where x is the input data point and y is the label associated with this data point. We
assume without loss of generality that for each input x = (x1, . . . , xd), using additional coordinates
(xd+1, xd+2), the replacement input x′′ := (x1, . . . , xd, xd+1, xd+2) is normalized so that ‖x′′‖2 =

1 and its last coordinate xd+2 = 1/
√

2. 4 we also use x to denote the replacement input x′′ ∈ Rd+2.
The training data Z := {(x(1),y(1)), . . . , (x(n),y(n))} is given as n i.i.d. samples from D. We
define the minimum distance of the training data: δ := min{‖x(i)−x(j)‖2 : ∀i, j ∈ [n], i 6= j} > 0.

For the l2 regression loss `(ŷ,y) := 1
2‖ŷ − y‖22 and a subset of training data Z(τ) ⊂ Z, we define

our regression objective as follows: LZ(τ)(
−→
W) := E(x,y)∼Z(τ) [`(f(

−→
W,x),y)].

Stochastic gradient descent with Gaussian initialization. We use mini-batch SGD to train
the network with a constant learning rate η > 0, a batch size b and iteration number T . Let
−→
W(0) := (W1,(0),W2,(0), . . . ,WL,(0)), A, B be weight matrices generated from the above Gaus-

sian initialization. Suppose we start at
−−−→
W(0) and for each l ∈ [L] and t = 0, 1, . . . , T − 1,

Wl,(t+1) = Wl,(t) − η · ∇WlLZ(t)(
−→
W(t)), (2)

where Z(t) ⊂ Z is a mini-batch of size b. For input x, each layer l ∈ [L] and each step t ∈ [T ],
we denote by gl,(t)(x) the unit output, f (t)(x) the network output, Wl,(t) the weight matrix, and
Gl,(t)(x) the indicator matrix.

In the above setting, recent paper (Allen-Zhu et al., 2018b) shows that SGD can allow an over-
parameterized multi-layer network to attain arbitrarily low training error as follows:

Theorem 1 (Convergence of SGD (Allen-Zhu et al., 2018b)). For any ε ∈ (0, 1], δ ∈
(0, O(1/L)] and b ∈ [n], let m ≥ Ω̃

(
poly(n,L,δ−1)e

b

)
, η := Θ

(
bδe

poly(n,L)m log2m

)
, T =

Θ
(

poly(n,L) log2m
bδ2 log

(
n logm

ε

))
, and

−→
W(0),A,B are at random initialization. Then, it satisfies

with probability at least 1− e−Ω(log2m) over randomness of Z(1), . . . Z(T ):
LZ(
−→
W) ≤ ε, ‖Wl,(t) −Wl,(0)‖F ≤ O

(
λ logm√

m

)
, ‖[Wl,(t)]i − [Wl,(0)]i‖2 ≤ O

(
λ logm

m

)
(∀t ∈ [T ]), where λ := n3.5√c

δ
√
b

.

Our results on generalization also crucially depend on this analysis.

4Without loss of generality, one can rescale and assume ‖x‖2 ≤ 1/
√
2 for every input x. Again, without

loss of generality, one can pad each x by an additional coordinate xd+1 to ensure ‖x′‖2 = 1/
√
2. Finally,

without loss of generality, one can pad each x′ by an additional coordinate xd+2 to ensure ‖x′′‖2 = 1. This
last coordinate xd+2 = 1/

√
2 is equivalent to introducing a (random) bias term and this procedure is described

in Allen-Zhu et al. (2018a).
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3 RANDOM WALK ANALYSIS

In this work, we consider the behavior of the unit output in each layer on a one-dimensional linear
path between two data points, which we denote by x(s) (s ∈ [0, 1]). In this section, for notational
simplicity, we drop the superscript with respect to (t), which is the t-th iteration.

Definition 3.1 (One-dimensional Linear Path). For each pair of data points x(p) and x(q) (p 6= q),
We define x(s) := (1− s) x(p) + s x(q), s ∈ [0, 1], and denote by v := x(q) − x(p) the direction
vector.

Note that the unit output gli(x(s)) and the network output fi(x(s)) are continuous piecewise linear
functions on s ∈ [0, 1], and the network output can be expressed as follows:

f(x(s)) = BGL(x(s))WLGL−1(x(s))WL−1 · · ·G1(x(s))W1G0(x(s))Ax(s). (3)

Note that gli(x(s)) and fi(x(s)) have linear approximations at the point s = 0 as follows5:

g̃li(s) := gli(x(0)) + s ·
[
d

ds
gli(x(s))

]
s=0

, f̃i(s) := fi(x(0)) + s ·
[
d

ds
fi(x(s))

]
s=0

. (4)

We prove that the unit output can be approximated by the linear function with high accuracy. More-
over, the small difference between gli(x(s)) and g̃li(s) indicates the low complexity of the unit output.
Theorem 2 (A Priori Estimates for Implicit Regularization). Under the same setting as Theorem 1,
with probability at least 1 − e−Ω(log2m), for every x(p), x(q) (p, q ∈ [n], p 6= q), t ∈ [T ], l ∈ [L],
i ∈ [m] and j ∈ [c], we have

sup
0≤s≤1

∣∣∣gl,(t)i (x(s))− g̃l,(t)i (s)
∣∣∣ ≤ O

(
loglm√
m

)
‖v‖2, (5)

sup
0≤s≤1

∣∣∣f (t)
j (x(s))− f̃ (t)

j (s)
∣∣∣ ≤ O

(
logL+1m√

c

)
‖v‖2. (6)

3.1 INTUITION BEHIND IMPLICIT REGULARIZATION

To prove Theorem 2, we introduce our key analysis that the gradient of gl,(t)(x(s)) is “Gaussian
random walk” and nearly equal to a straight line on the linear path x(s), which we call random
walk analysis. For simplicity, we explain the outline of the proof for the initial state of the network
(i.e. t = 0). All proofs are given in the Supplementary Material (including 0 ≤ t ≤ T ).

To state our key Lemma, we define the following function: ğl(s) := Wlφ(g̃l−1(s)), which is an
analogue of the unit output gl(x(s)) = Wlφ(gl−1(x(s))). In other words, ğl(s) is the one in which
gl−1(x(s)) is replaced by g̃l−1(s). Next, Lemma 3 shows that each ğli can be well approximated by
a linear function g̃li(s) with high probability.

Lemma 3 (Linear Approximation Analogue). With probability at least 1 − e−Ω(log2m), for every
x(p), x(q) (p, q ∈ [n], p 6= q), t ∈ [T ] and l ∈ [L], we have

sup
0≤s≤1

∣∣∣ğl,(t)i (s)− g̃l,(t)i (s)
∣∣∣ ≤ O( log2m√

m

)
‖v‖2, (∀i ∈ [m]). (7)

The purpose of this subsection is to give an intuitive explanation of the proof of Lemma 3, which
can be divided into two steps. The first step gives estimates of the number of breakpoints. We
show that the number of breakpoints of the piecewise linear function ğli(s) is less than or equal to
the number of units in the layer (i.e. m).

The second step gives estimates of gradient gaps of ğli(s). We show that the gradient gaps are
independent Gaussian random variables and the gradient of ğl(s) is the sum of the gradient gaps,
which indicates that the gradient is a “Gaussian random walk”. Note that in this setting, the number
of breakpoints is equal to the total number of steps of the random walk.

5 Although the components of gl(s), f(s) are non-differentiable at breakpoints, with probability 1, the start
point s = 0 is not a breakpoint.
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Step 1. By the definition of ğl(s), we may write

ğ li (s) =

m∑
j=1

[Wl]i,j φ(g̃ l−1
j (s)) . (8)

Note that the input to the above φ, that is g̃ l−1
j (s), is a linear function on s ∈ [0, 1]. For each

j ∈ [m], the linear equation g̃ l−1
j (s) = 0 has at most one solution (s = s∗). If the solution s = s∗

satisfies 0 < s∗ < 1, then ğ li (s) has a breakpoint at s = s∗. This shows that the number of
breakpoints of ğ li (s) is bounded by the number of the linear equations {g̃ l−1

j (s) = 0}j∈[m], which
is equal to m. We denote by 0 < s1 < s2 < · · · < sα < 1 breakpoints of ğ li (s), where α is the
number of breakpoints. For β ∈ [α], we set an open interval of breakpoints Iβ := (sβ , sβ+1).

Step 2. To give an intuition that the gradient of ğli(s)− g̃ li (s) is “Gaussian random walk”, we fix
some notation. For β ∈ [α], we define the gradient∇β :

∇β :=
d

ds

(
ğli(s)− g̃li(s)

)∣∣∣∣
s∈Iβ

. (9)

Note that g̃ li (s) is a linear function, and there is no breakpoints for ğli(s) on Iβ . Note also that since
ğli(s)− g̃ li (s) is linear on Iβ , the gradient is constant on Iβ . For β ∈ [α], we define a gradient gap:
xβ := ∇β −∇β−1, and we have the following estimate with probability at least 1− e−Ω(log2m):

xβ = Sωβ where ωβ ∼ N (0, 2/m), |S| ≤ logm√
m
‖v‖2. (10)

Note that ωβ is an element of the weight matrix Wl. Thus, {xβ} are independent Gaussian random
variables, and∇β is the sum of xβ , that is

∇β =

β∑
γ=1

xγ , (β ∈ [α]). (11)

This shows that the gradient ∇β is a “Gaussian random walk” and depends essentially on the num-
ber of breakpoints α and the variance of weights 2/m. Using the randomness of Wl and general
Hoeffding’s inequality (Vershynin, 2018), we have

P
[∣∣∣ β∑
γ=1

Sωγ

∣∣∣ ≤ ε] ≥ 1− e
−Ω

(
m2ε2

α‖v‖22 log2m

)
. (12)

According to Step 1, the number of breakpoints α is less than or equal to m. Thus, ∇β is bounded
by log2m√

m
‖v‖2 with probability at least 1 − e−Ω(log2m). Therefore, with the same probability, we

have
∣∣ d
ds

(
ğli(s)− g̃li(s)

)∣∣ ≤ logm√
m
‖v‖2, (∀s ∈ [0, 1]). Thus, integrating this inequality from s = 0

to s = 1 shows the estimates of Lemma 3.

Note that as illustrated in Figure 1, for sufficiently large m, the gradient∇β can be made arbitrarily
small, which means that the networks interpolate almost linearly between the data points.

3.2 PROOF THEOREM 2

The purpose of this subsection is to give the proof of Theorem 2. We proceed by induction on the
layer l. Note that since g0(x(s)) = Ax(s) is linear and g̃0(s) = g0(x(s)), ğ1(s) is identically
equal to g1(x(s)) = W1φ(Ax(s)). Thus, the case l = 1 is true. Assume the theorem holds for any
layer l = k, and let us prove it for l = k + 1. Using the triangle inequality, we have∣∣gk+1

i (x(s))− g̃k+1
i (s)

∣∣ ≤ ∣∣gk+1
i (x(s))− ğk+1

i (s)
∣∣+
∣∣ğk+1
i (s)− g̃k+1

i (s)
∣∣ . (13)

By Proposition 11.3 of (Allen-Zhu et al., 2018b), for any y, ỹ ∈ Rm, there exists a diagonal matrix
D ∈ Rm×m such that |Dj,j | ≤ 1 and φ(y) − φ(ỹ) = D(y − ỹ). Thus, for the first term on the

6
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RHS, we may write∣∣gk+1
i (x(s))− ğk+1

i (s)
∣∣ =

∣∣∣[Wk+1φ
(
gk(x(s))

)]
i
−
[
Wk+1φ(g̃k(s))

]
i

∣∣∣ (14)

=
∣∣[Wk+1D

(
gk(x(s))− g̃k(s)

)]
i

∣∣ =
∣∣∣ m∑
ρ=1

[Wk]i,ρDρ,ρ

(
gkρ(x(s))− g̃kρ(s)

)∣∣∣ (15)

≤
∥∥gk(x(s))− g̃k(s)

∥∥
2

logm√
m

. (16)

In the last inequality, we use general Hoeffding’s inequality (Vershynin, 2018), and this inequality
holds with probability at least 1 − e−Ω(log2m). We can now apply our induction hypothesis to the
above estimate. Thus, applying Lemma 3 to the second term on the RHS of eq. (13) shows the
estimates of Theorem 2.

4 GENERALIZATION

In this section, considering the mechanism of implicit regularization revealed by random walk anal-
ysis, we provide a priori estimates for the generalization performance of over-parameterized deep
neural networks, in an l2 regression task on a one-dimensional input-space. Since the network is
over-parameterized, the expressive power of the network is rich enough to considerably overfit the
data. Nevertheless, it is known empirically that properly initialized over-parameterized deep neural
networks can achieve the good generalization performance while fitting all training data. We esti-
mate the low complexity of over-parameterized deep networks and show that the error between a
trained over-parameterized neural network and the target function can be uniformly bounded by an
arbitrarily small positive number.

Setting. We propose a new type of generalization bounds (Theorem 4), and prove this theorem
in the one-dimensional models: d = 1 and c = 1. In the following, we restrict ourselves to a
one-dimensional regression task on an interval [0, ν] ⊂ R. The training dataset {

(
x(i), y(i)

)
}i∈[n]

is given as n i.i.d. samples from some unknown distribution D. We assume that the correspond-
ing target function for the regression task f∗ : [0, ν] → R is a C1- class function. This implies
that y(i) = f∗(x(i)). Without loss of generality, we may assume that the input data {x(i)}i∈[n]

follow a uniform distribution on [0, ν], and after relabeling, we may assume that the data points
{x(1), . . . , x(n)} are ordered by index: 0 < x(1) < · · · < x(n) < ν. We define (x(0), y(0)) :=
(0, f∗(x(0))), (x(n+1), y(n+1)) := (ν, f∗(ν)) and T := supk∈[n+1]

(
x(k) − x(k−1)

)
. We denote by

f̂ : [0, ν]→ R the linear interpolation of the data points
{(
x(i), f∗(x(i))

)}
i∈[n]

.

A priori generalization bounds. Now, we introduce a novel approach for a priori generalization
bounds, which is based on random walk analysis in the over-parameterized regime. This can be
interpreted as the significant expressive power of over-parameterized neural networks is controlled
by implicit regularization.
Theorem 4. Suppose f∗(x) is a C1- class function on [0, ν]. Under the same setting as Theorem 1,
for δ ∈ (0, 1/2], then with probability at least 1− (δ + e−Ω(log2m)), we have

E(x,y)∼D

[
`
(
f (T )(x), y

)]
≤ O

(
ν2

n2δ2

)
. (17)

Proof sketch of generalization. The purpose of this paragraph is to give an intuitive explanation
of the proof of Theorem 4. All proofs are given in the Supplementary Material.

To estimate E(x,y)∼D
[
`
(
f (T )(x), y

)]
, we evaluate

∥∥f (T )(x)− f∗(x)
∥∥

2
, which we may write as∥∥∥f (T )(x)− f∗(x)

∥∥∥
2
≤
∥∥∥f (T )(x)− f̂(x)

∥∥∥
2

+
∥∥∥f̂(x)− f∗(x)

∥∥∥
2

(18)

The first term of the RHS of eq. (18) represents an error between the trained network output f (T )(x)

and the piecewise linear function f̂(x). We can use the results of random walk analysis to evaluate

7
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this critical term as follows. Theorem 2 provides that the linear approximation error of the network
output, which we denote by εf(T ) , is small in each interval [x(k−1), x(k)], and hence in each interval
[x(k−1), x(k)], the difference between f (T )(x) and f̂(x) falls within the error εf(T ) . This suggests
that the network output between adjacent training points is properly controlled by weight initial-
ization and SGD to keep connecting the points almost straight, which results in low complexity of
over-parameterized neural networks. This statement can be extended to the interval [0, ν]. Fix ε > 0,
and suppose m ≥ Õ

(
T 6/ε3

)
. Then with high probability at least 1− e−Ω(log2m), we have

sup
x∈[0,ν]

∥∥∥f (T )(x)− f̂(x)
∥∥∥

2
≤
√
ε

2
(19)

The second term of RHS of eq. (18) is the error of the piecewise linear approximation of f∗(x)

by f̂(x) on the interval [0, ν]. Note that the error can be reduced by increasing n. Hence, for any
fixed ε > 0, there exists δ > 0 such that if n ≥ O

(
ν√
εδ

)
, with probability at least 1 − δ, we

have supx∈[0,ν] ‖f̂(x) − f∗(x)‖2 ≤
√

ε
2 . Thus, from eq. (18), for m and n sufficiently large, the

error between the trained network output and the target function is uniformly bounded by ε on the
interval [0, ν] with probability at least 1 −

(
e−Ω(log2m) + δ

)
. This gives a priori estimates for the

generalization performance of over-parameterized neural networks.

5 RELATED WORK

Implicit regularization in neural networks has recently become an active area of research in ma-
chine learning. A number of works have focused on the behavior of gradient descent on over-
parameterized neural networks (Neyshabur et al., 2014; Lin et al., 2016; Zhang et al., 2016; Soudry
et al., 2018; Rahaman et al., 2018). In order to get a handle on implicit regularization in deep neu-
ral networks, the majority of theoretical attention has been devoted to linear neural networks (Ji &
Telgarsky, 2018; Gidel et al., 2019; Arora et al., 2019a).

Many works try to explain generalization of over-parameterized neural networks. Recent works have
shown that on sufficiently over-parameterized neural networks, the learning dynamics of gradient
descent are governed by the NTK (Daniely et al., 2016; Jacot et al., 2018; Du et al., 2018; Allen-
Zhu et al., 2018b; Lee et al., 2019; Arora et al., 2019b). In these settings, the implicit regularization
and the generalization error of the resulting network can be analyzed via NTK and the reproducing
kernel Hilbert space (RKHS) (Bietti & Mairal, 2019; Nakkiran et al., 2019). To extend it to SGD,
Hayou et al. (2019) introduce a stochastic differential equation dependent on the NTK.

This contrasts with other recent results that show a provable separation between the generalization
error obtained by neural networks and kernel methods (Wei et al., 2018; Allen-Zhu et al., 2018a;
Allen-Zhu & Li, 2019). Several papers suggest that training deep models with gradient descent can
behave differently from kernel methods, and have much richer implicit regularization (Chizat et al.,
2019; Woodworth et al., 2019; Yehudai & Shamir, 2019; Geiger et al., 2019).

6 CONCLUSION

In this work, probability estimates for the network output behavior (i.e. random walk analysis) pro-
vide a priori generalization estimates for l2 regression problems. We prove that even after training,
network gradients between the data points are approximately Gaussian random walks, and the vari-
ation of the gradients between the data points is extremely small and depends essentially on the
number of breakpoints and the variance of weights. To the best of our knowledge, this paper is the
first to show a mechanism of implicit regularization and to prove the generalization bounds by using
the implicit regularization for deep (three or more layer) neural networks with ReLU activation. As
a result, we also show that over-parameterized deep neural networks can learn C1- class functions.
Importantly, our analysis is independent of the kernel generalization analysis, and the generalization
bounds are different from the NTK inductive bias of the RKHS norm.

8
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A PROOFS

A.1 PROOF OF LEMMA 3

Lemma 3 (reshown, see §3.1). With probability at least 1−e−Ω(log2m), for every x(p), x(q) (p, q ∈
[n], p 6= q), t ∈ [T ] and l ∈ [L], we have

sup
0≤s≤1

∣∣∣ğl,(t)i (s)− g̃l,(t)i (s)
∣∣∣ ≤ O( log2m√

m

)
‖v‖2, (∀i ∈ [m]). (20)

Proof. We prove Lemma 3 for a fixed l ∈ [L] and t ∈ [T ] every pair of data points x(p), x(q)

(p, q ∈ [n], p 6= q), because we can apply union bound at the end.

Recall the definition gl,(t)(x) (the unit output), Gl,(t)(x) (the indicator matrix function) and x(s) =
(1−s)x(p) +sx(q), s ∈ [0, 1] (a linearly interpolating path between data points x(p), x(q)), we have

gl,(t)(x(s)) = Wl,(t)Gl−1,(t)(x(s))Wl−1,(t) · · ·W1,(t)G0,(t)(x(s))Ax(s). (21)

Using the definition g̃ l,(t)(s) and ğ l,(t)(s), we also have

g̃ l,(t)(s) = Wl,(t)Gl−1,(t)(x(0))Wl−1,(t) · · ·W1,(t)G0,(t)(x(0))Ax(s), (22)
(23)

ğ l,(t)(s) = Wl,(t)φ(g̃ l−1,(t)(s)) (24)

= WlG̃l−1,(t)(s)Wl−1,(t)Gl−2,(t)(x(0))Wl−2,(t) · · ·W1,(t)G0,(t)(x(0))Ax(s),
(25)

where G̃l−1,(t)(s) is an indicator diagonal matrix for s ∈ [0, 1] as follows:

[G̃
l−1,(t)

(s)]i,i := 1{
g̃
l−1,(t)
i (s)≥0

}, [G̃
l−1,(t)

(s)]i,j := 0 (i 6= j). (26)

We begin by proving that the number of breakpoints of the function ğ l,(t)i (s) in the interval [0.1] is
bounded by m. For fixed i ∈ [m], we have

ğ
l,(t)
i (s) = [Wl,(t)φ(g̃ l−1,(t)(s))]i (27)

=

m∑
j=1

[Wl,(t)]i,j φ(g̃
l−1,(t)
j (s)) (28)

=

m∑
j=1

[Wl,(t)]i,j g̃
l−1,(t)
j (s)1{

g̃
l−1,(t)
j (s)≥0

} (29)

Note that the input to the above φ, that is g̃ l−1,(t)
j (s), is a linear function on s ∈ [0, 1]. For each

j ∈ [m], the linear equation g̃ l−1,(t)
j (s) = 0 has at most one solution s = s∗6. If the solution s = s∗

satisfies inequality 0 < s∗ < 1, then ğ l,(t)i (s) has a breakpoint at s = s∗. This shows that the
number of breakpoints of ğ l,(t)i (s) is bounded by the number of the linear equations

g̃
l−1,(t)
j (s) = 0 (j ∈ [m]), (30)

which is clearly equal to m.

We denote by 0 < s1 < s2 < · · · < sα < 1 all breakpoints of ğ l,(t)i (s), where α is the number of
breakpoints. For notational simplicity, we set s0 = 0 and sα+1 = 1. Note that, with probability 1,
breakpoints are all distinct from each other. Each breakpoint sβ (β ∈ [α]) corresponds to a linear
equation g̃ l−1,(t)

j (s) = 0 for some j ∈ [m]. In other words, for each breakpoint sβ (β ∈ [α]), there

6Otherwise, the linear function is identically zero (i.e. g̃ l−1,(t)
j (s) ≡ 0), which does not affect the number

of breakpoints.
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exists a unique element j ∈ [m] such that g̃ l−1,(t)
j (s) = 0. Therefore, for s = sβ , we set j = jβ

(β ∈ [α]) then we have g̃ l−1,(t)
jβ

(sβ) = 0.

It is easy to verify d
dsx(s) = x(q) − x(p) =: v. Therefore,

d

ds
g̃ l,(t)(s) = Wl,(t)Gl−1,(t)(x(0))Wl−1,(t)Gl−2,(t)(x(0))Wl−2,(t) · · ·W1,(t)G0,(t)(x(0))Av,

(31)
d

ds
ğ l,(t)(s) = Wl,(t)G̃l−1,(t)(s)Wl−1Gl−2(x(0))Wl−2 · · ·W1G0(x(0))Av. (32)

This implies,

d

ds
ğ l,(t)(s)− d

ds
g̃ l,(t)(s) (33)

= Wl,(t)
(
G̃l−1,(t)(s)−Gl−1,(t)(x(0))

)
Wl−1,(t)Gl−2,(t)(x(0)) · · ·W1,(t)G0,(t)(x(0))Av.

(34)

Note that from the definition of the indicator matrix, [Gl−1,(t)(x(0))]i,i = 1{[gl−1,(t)(x(0))]i≥0},
and from the definition of the linear approximation, g̃ l−1,(t)(0) = gl−1,(t)(x(0)), which says that
G̃l−1,(t)(0) equals Gl−1,(t)(x(0)).

For each i ∈ [m], we may write

d

ds
ğ
l,(t)
i (s)− d

ds
g̃
l,(t)
i (s) =

m∑
j=1

[Wl,(t)]i,j [M
(t)v]j λ̃j , (35)

where M(t) is a matrix:

M(t) := Wl−1,(t)Gl−2,(t)(x(0))Wl−2,(t) · · ·W1,(t)G0,(t)(x(0))A (36)

and λ̃j is a difference of indicator functions:

λ̃j := 1{
g̃
l−1,(t)
j (s)≥0

} − 1{
g̃
l−1,(t)
j (0)≥0

}. (37)

For β ∈ [α], we set an open interval of breakpoints Iβ := (sβ , sβ+1), and recall the notation of the
gradient∇β

∇β :=
d

ds

(
ğ
l,(t)
i (s)− g̃l,(t)i (s)

)∣∣∣∣
s∈Iβ

, (38)

and the gradient gap xβ := ∇β −∇β−1. Note that since there is not a breakpoint in Iβ , the gradient
∇β is constant in Iβ .

Hence, for β ∈ [α] and s ∈ Iβ , we may write

d

ds
ğ
l,(t)
i (s)− d

ds
g̃
l,(t)
i (s) =

β∑
γ=1

xγ . (39)

Note that the gradient gap xγ (γ ∈ [α]) can be rewritten as

xγ = [Wl,(t)]ijγ [M(t)v]jγ ζ̃γ , (40)

where ζ̃γ is a difference of indicator functions:

ζ̃γ := 1{
g̃
l−1,(t)
jγ

(dγ)≥0
} − 1{

g̃
l−1,(t)
jγ

(dγ−1)≥0
}, ∀ dγ−1 ∈ Iγ−1 and ∀ dγ ∈ Iγ . (41)

Note that ζ̃γ is independent of the choice of dγ−1 and dγ . Note also that since the linear function
g̃
l−1,(t)
jγ

(s) switches the sign at s = sγ , we have ζ̃γ = ±1.

12
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We begin by proving the upper bound on
∑β
γ=1 xγ . For notational simplicity, we use Wl to denote

Wl,(0), and for l ∈ [L] we set
dWl := Wl,(t) −Wl,(0), (42)

then we may write for γ ∈ [α],

[M(t)v]jγ = [Wl−1,(t)Gl−2,(t)(x(0))Wl−2,(t) · · ·W1,(t)G0,(t)(x(0))Av]jγ (43)

=

m∑
ρ=1

[Wl−1,(t)]jγ ,ρ[Nv]ρ (44)

=

m∑
ρ=1

[Wl−1]jγ ,ρ[Nv]ρ +

m∑
ρ=1

[dWl−1]jγ ,ρ[Nv]ρ (45)

=: hγ + dhγ , (46)

where N := Gl−2,(t)(x(0))Wl−2,(t) · · ·W1,(t)G0,(t)(x(0))A.

Therefore, we have
xγ = ζ̃γ [Wl,(t)]i,jγ [M(t)v]jγ (47)

= ζ̃γ
(
[Wl]i,jγ + [dWl]i,jγ

) (
hγ + dhγ

)
(48)

= ζ̃γ [Wl]i,jγhγ + ζ̃γ [dWl]i,jγhγ + ζ̃γ [Wl]i,jγdhγ + ζ̃γ [dWl]i,jγdhγ (49)

=: x(0)
γ + x(1)

γ + x(2)
γ + x(3)

γ . (50)

In order to estimate Nv, we use the following estimate (see Lemma 7.1 and Claim 11.2 in (Allen-
Zhu et al., 2018b)):
Lemma. If ε ∈ (0, 1], with probability at least 1 − e−Ω(mε2/L), for a fixed vector z and l ∈ [L],
we have

‖Gl,(t)(x(0))Wl,(t) · · ·W1,(t)G0,(t)(x(0))Az‖2 ≤ (1 + ε)‖z‖2. (51)

This Lemma implies that with probability at least 1− e−Ω(m/L), we have

‖Nv‖2 = ‖Gl−2,(t)(x(0))Wl−2,(t) · · ·W1,(t)G0,(t)(x(0))Av‖2 ≤ 2‖v‖2. (52)

We will estimate the 1st term x(0)
γ . Conditioning on this event (52) happens, using the randomness

of Wl−1 and general Hoeffding’s inequality (Vershynin, 2018), for each fixed vector v, we have

P {|hγ | > τ} ≤ 2 exp

(
− cτ2

(2/m)‖Nv‖22

)
. (53)

Choose τ := logm√
m
‖Nv‖2. Then, with probability at least 1− e−Ω(log2m), we have

|hγ | ≤
logm√
m
‖Nv‖2. (54)

We set u(0)
γ := ζ̃γhγ and u(0) = (u(0)

1 , . . . , u(0)
β ). Note that since ζ̃γ = ±1, we have

∣∣∣u(0)
γ

∣∣∣ =∣∣∣ζ̃γhγ
∣∣∣ ≤ logm√

m
‖Nv‖2. The set of the gradient gaps {x(0)

γ } = {u(0)
γ [Wl]i,jγ} are a sequence of

independent Gaussian random variables. Hence,
∑β
γ=1 x(0)

γ is a “Gaussian random walk” (eq. (11)).
Thus, using the randomness of Wl, conditioning on the above event (54), fixing any v, with proba-
bility at least 1− e−Ω(log2m), we have∣∣∣∣∣

β∑
γ=1

x(0)
γ

∣∣∣∣∣ ≤ logm√
m
‖u(0)‖2 (55)

≤ logm√
m

(
β∑
γ=1

(
logm√
m
‖Nv‖2

)2
)1/2

(56)

≤ 2
log2m√

m
‖v‖2. (57)
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Therefore, we have the estimate of x(0)
γ .

Next, we will estimate the 2nd term x(1)
γ . By definition, we may write

β∑
γ=1

x(1)
γ =

β∑
γ=1

ζ̃γ [dWl]i,jγhγ . (58)

Note that we use Theorem 1 (the convergence theorem) to write

‖[dWl]i‖2 = ‖[Wl,(t)]i − [Wl]i‖2 ≤ O
(
λ

logm

m

)
. (59)

Thus, applying the estimate of hγ to eq. (54), we have∣∣∣∣∣
β∑
γ=1

x(1)
γ

∣∣∣∣∣ ≤ 2

β∑
γ=1

(
logm√
m
‖v‖2

)
[dWl]i,jγ (60)

≤ logm√
m
‖v‖2 ·

√
β ‖[dWl]i‖2 (61)

≤ Cλ
log2m

m
‖v‖2 ≤

logm√
m
‖v‖2. (62)

The last inequality uses λ logm ≤ o(
√
m), which is indicated by the condition of Theorem 1,

therefore we have the estimate of x(1)
γ .

Next, we will estimate the 3rd term x(2)
γ . By definition, we may write

β∑
γ=1

x(2)
γ =

β∑
γ=1

ζ̃γ [Wl]i,jγdhγ . (63)

We set u(2)
γ := ζ̃γdhγ and u(2) := (u(2)

1 , . . . , u(2)
β ). Using the randomness of Wl and general

Hoeffding’s inequality Vershynin (2018), for each fixed vector v, we have

P

{∣∣∣∣∣
β∑
γ=1

u(2)
γ [Wl]i,jγ

∣∣∣∣∣ > τ

}
≤ 2 exp

(
− cτ2

‖u(2)‖22 max2
γ ‖[Wl]i,jγ‖ψ2

)
(64)

≤ 2 exp

(
− cmτ2

2‖u(2)‖22

)
(65)

Note that

dhγ =

m∑
ρ=1

[dWl−1]jγ ,ρ[Nv]ρ, (66)

and choose τ := logm√
m
‖u(2)‖2, with probability 1− e−Ω(log2m), we have∣∣∣∣∣

β∑
γ=1

x(2)
γ

∣∣∣∣∣ ≤ logm√
m
‖u(2)‖2 ≤

logm√
m


β∑
γ=1

(
m∑
ρ=1

[dWl−1]jγ ,ρ[Nv]ρ

)2


1/2

(67)

≤ logm√
m

(
β∑
γ=1

‖[dWl−1]jγ‖22‖v‖22

)1/2

≤ logm√
m
‖dWl−1‖F ‖v‖2 (68)

≤ logm√
m
‖v‖2. (69)

The last inequality uses λ logm ≤ o(
√
m) and the result of Theorem 1:

‖dWl−1‖F = ‖Wl−1,(t) −Wl−1‖F ≤ O
(
λ

logm√
m

)
. (70)
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Therefore, we have the estimate of x(2)
γ .

Next, we will estimate the last term x(3)
γ . Note that since ζ̃γ = ±1, we have |ζ̃γ | = 1, and condition-

ing on this event (52) happens, we may write∣∣∣∣∣
β∑
γ=1

x(3)
γ

∣∣∣∣∣ =

∣∣∣∣∣
β∑
γ=1

ζ̃γ [dWl]i,jγdhγ

∣∣∣∣∣ (71)

≤ ‖[dWl]i‖2


β∑
γ=1

(
m∑
ρ=1

[dWl−1]jγ ,ρ[Nv]ρ

)2


1/2

(72)

≤ ‖[dWl]i‖2

(
β∑
γ=1

‖[dWl−1]jγ‖22‖v‖22

)1/2

(73)

≤ ‖[dWl]i‖2‖dWl−1‖F ‖v‖2 ≤
log2m√

m
‖v‖2. (74)

Putting this all together, with probability 1− e−Ω(log2m), we have∣∣∣∣ dds ğ li (s)− d

ds
g̃ li (s)

∣∣∣∣ =

∣∣∣∣∣
β∑
γ=1

xγ

∣∣∣∣∣ ≤ 4
log2m√

m
‖v‖2. (75)

Therefore, we have ∣∣ğ li (s)− g̃ li (s)
∣∣ ≤∫ s

0

∣∣∣∣ dds ğ li (s)− d

ds
g̃ li (s)

∣∣∣∣ ds (76)

≤ 4s
log2m√

m
‖v‖2 (0 ≤ ∀s ≤ 1). (77)

We complete the proof.

A.2 PROOF OF GENERALIZATION THEOREM

Theorem 2 (reshown, see §3). Under the same setting as Theorem 1, with probability at least
1 − e−Ω(log2m), for every x(p), x(q) (p, q ∈ [n] p 6= q), t ∈ [T ], l ∈ [L], i ∈ [m] and j ∈ [c], we
have

sup
0≤s≤1

∣∣∣gl,(t)i (x(s))− g̃l,(t)i (s)
∣∣∣ ≤ O

(
loglm√
m

)
‖v‖2, (78)

sup
0≤s≤1

∣∣∣f (t)
j (x(s))− f̃ (t)

j (s)
∣∣∣ ≤ O

(
logL+1m√

c

)
‖v‖2. (79)

In order to give provable guarantees for the generalization performance of over-parameterized deep
networks in the l2 regression task on the one-dimensional input-space, we apply the above Theorem
2 to bound the error between the trained network output f (T )(x) and the piecewise linear function
f̂(x).

Lemma 5. Under the same setting as Theorem 1 and 2, for δ ∈ (0, 1/2], then with probability at
least 1− (δ + e−Ω(log2m)), we have

sup
x∈[0,ν]

∣∣∣f (T )(x)− f̂(x)
∣∣∣ ≤ O( logL+1m

m1/6
· ν
nδ

)
. (80)
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Proof. While in this setting, the output dimension c is equal to 1, without loss of generality, we may
assume that the entry of the weight matrix Bi,j ∼ N (0, 2/c), where c = Θ

(
m1/3

)
.7

For k ∈ [n+ 1], we denote by |Ik| the length of the interval Ik =
[
x(k−1), x(k)

]
. We set c = c =

m1/3 in Theorem 2, with probability at least 1− e−Ω(log2m), we have

sup
x∈Ik

∣∣∣f (T )
1 (x)− f̃ (T )

1 (x)
∣∣∣ ≤ C logL+1m

m1/6

(
sup

k∈[n+1]

∣∣∣x(k) − x(k−1)
∣∣∣) = C

logL+1m

m1/6
T (81)

where C is a constant, and T := supk∈[n+1]

∣∣x(k) − x(k−1)
∣∣. Here we set ε := C logL+1m

m1/6 T . We

also use f (T ) and f̃ (T ) to denote f (T )
1 and f̃ (T )

1 respectively.

Note that f (T )(x(k−1)) = f̂(x(k−1)) and f (T )(x(k)) = f̂(x(k)), by eq. (81) we have∣∣∣f̃ (T )(x(k−1))− f̂(x(k−1))
∣∣∣ ≤ ε and

∣∣∣f̃ (T )(x(k))− f̂(x(k))
∣∣∣ ≤ ε. (82)

Note that the piecewise linear function f̂ linearly connects
(
x(k−1), f̂(x(k−1))

)
and(

x(k), f̂(x(k))
)

. Thus, the following inequality holds.

sup
x∈Ik

∣∣∣f̃ (T )(x)− f̂(x)
∣∣∣ ≤ ε (83)

We use eq. (81) and eq. (83) to see that

sup
x∈Ik

∣∣∣f (T )(x)− f̂(x)
∣∣∣ ≤ sup

x∈Ik

∣∣∣f (T )(x)− f̃ (T )(x)
∣∣∣+ sup

x∈Ik

∣∣∣f̃ (T )(x)− f̂(x)
∣∣∣ ≤ 2ε. (84)

Note that ε is not dependent on k. Thus, we have

sup
x∈[0,ν]

∣∣∣f (T )(x)− f̂(x)
∣∣∣ ≤ 2ε. (85)

Next, we evaluate T = supk∈[n+1]

∣∣x(k) − x(k−1)
∣∣ . Recall that the training dataset {x(k)}k∈[n] is

generated from the uniform distribution in the interval [0, ν]. We denote by µ := n/ν the density of
training samples. In this setting, it is well known that for every r > 0 (r < ν), the number of train-
ing samples in the interval [0, r] follows the Poisson distribution with mean µr, then the sequence
of inter-sample distances is independent and identically distributed exponential random variables
having mean 1/µ (= ν

n ) (Daley & Vere-Jones, 2007). Define ∆ to be the above exponential distri-
bution having mean ν/n, which is the inter-sample distance. Then, using Markov’s inequality, for
τ > 0, we have

P[∆ ≥ τ ] ≤ E[∆]

τ
=

ν

nτ
. (86)

Thus, we can choose τ := ν
nτ , which implies that with probability at least 1− δ, we have

T ≤ ν

nδ
. (87)

Combining this with eq. (85), with probability at least 1− (δ + e−Ω(log2m)), we have

sup
x∈[0,ν]

∣∣∣f (T )(x)− f̂(x)
∣∣∣ ≤ 2C

logL+1m

m1/6
T ≤ 2C

logL+1m

m1/6

ν

nδ
. (88)

We complete the proof of the Lemma 5.

Lemma 6. Suppose f∗(x) is a C1- class function on [0, ν] and f̂(x) is the linear interpolation of
the data points

{(
x(i), f∗(x(i))

)}
i∈[n]

. For δ ∈ (0, 1/2], with probability at least 1− δ, we have

sup
x∈[0,ν]

∣∣∣f̂(x)− f∗(x)
∣∣∣ ≤ O ( ν

nδ

)
. (89)

7 For each one-dimensional output y = (y1), an additional coordinates (y2, y3, . . . , yc) = (0, 0, . . . , 0) can
always be padded to the output y = (y1). We did not try hard to improve the exponent 1/3.
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Proof. We use f∗′(x) to denote the first derivative of f∗(x). Since f∗ is a C1- class function on the
compact set [0, ν], f∗′ is a bounded function. Thus, we can define S(k) and S as follows:

S(k) := sup
x∈Ik
|f∗′(x)| , S := sup

k∈[n+1]

S(k). (90)

Since f∗(x) and f̂(x) are continuous functions, there exists h(k) (0 ≤ h(k) ≤ x(k) − x(k−1)) such
that

sup
x∈Ik

∣∣∣f∗(x)− f̂(x)
∣∣∣ =

∣∣∣f∗(x(k−1) + hk)− f̂(x(k−1) + hk)
∣∣∣ . (91)

By the mean value theorem, there exists a real number c(k) ∈ Ik such that,

f̂(x(k−1) + h(k)) = f∗′(c(k))h(k) + f∗(x(k−1)). (92)

Note that by the definition of f̂ , we have f∗(x(k−1)) = f̂(x(k−1)), therefore, we also have that∣∣∣f∗(x(k−1) + h(k))− f̂(x(k−1) + h(k))
∣∣∣ =

∣∣∣f∗(x(k−1) + h(k))− f∗(x(k−1))− f∗′(c(k))h(k)
∣∣∣

(93)

≤
∫ x(k−1)+h(k)

x(k−1)

∣∣∣f∗′(x)− f∗′(c(k))
∣∣∣ dx (94)

≤ 2h(k)S(k). (95)

By considering whole interval [0, ν], we have

sup
x∈[0,ν]

∣∣∣f̂(x)− f∗(x)
∣∣∣ = sup

k∈[n+1]

(
sup
x∈Ik

∣∣∣f∗(x)− f̂(x)
∣∣∣) ≤ 2T S (96)

Now we apply the estimate of T from eq. (87). We may therefore rewrite eq. (96) as

sup
x∈[0,ν]

∣∣∣f̂(x)− f∗(x)
∣∣∣ ≤ O ( ν

nδ

)
. (97)

We complete the proof of Lemma 6.

Proof of Theorem 4 (Generalization)

Proof. From eq. (85) and eq. (89), with probability at least 1− (δ + e−Ω(log2m)), we have∣∣∣f (T )(x)− f̂(x)
∣∣∣+
∣∣∣f̂(x)− f∗(x)

∣∣∣ ≤ C ν

nδ

(
1 +

logL+1m

m1/6

)
(∀x ∈ [0, ν]). (98)

Using the triangle inequality, this gives

`
(
f (T )(x), y

)
=

1

2

∣∣∣f (T )(x)− f∗(x)
∣∣∣2 ≤ 1

2
C2 ν2

n2δ2

(
1 +

logL+1m

m1/6

)2

(∀x ∈ [0, ν]). (99)

Thus, we have the following estimate:
With probability at least 1− (δ + e−Ω(log2m)), we have

E(x,y)∼D

[
`
(
f (T )(x), y

)]
=

1

ν

∫ ν

0

1

2

∣∣∣f (T )(x)− f∗(x)
∣∣∣2 dx (100)

≤ 1

2
C2 ν2

n2δ2

(
1 +

logL+1m

m1/6

)2

. (101)

We complete the proof.
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