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ABSTRACT

Source separation for music is the task of isolating contributions, or stems, from
different instruments recorded individually and arranged together to form a song.
Such components include voice, bass, drums and any other accompaniments. While
end-to-end models that directly generate the waveform are state-of-the-art in many
audio synthesis problems, the best multi-instrument source separation models gen-
erate masks on the magnitude spectrum and achieve performances far above current
end-to-end, waveform-to-waveform models. We present an in-depth analysis of
a new architecture, which we will refer to as Demucs, based on a (transposed)
convolutional autoencoder, with a bidirectional LSTM at the bottleneck layer and
skip-connections as in U-Networks (Ronneberger et al., 2015). Compared to the
state-of-the-art waveform-to-waveform model, Wave-U-Net (Stoller et al., 2018),
the main features of our approach in addition of the bi-LSTM are the use of trans-
posed convolution layers instead of upsampling-convolution blocks, the use of
gated linear units, exponentially growing the number of channels with depth and
a new careful initialization of the weights. Results on the MusDB dataset show
that our architecture achieves a signal-to-distortion ratio (SDR) nearly 2.2 points
higher than the best waveform-to-waveform competitor (from 3.2 to 5.4 SDR).
This makes our model match the state-of-the-art performances on this dataset,
bridging the performance gap between models that operate on the spectrogram and
end-to-end approaches.

1 INTRODUCTION

Cherry first noticed the “cocktail party effect” (Cherry, 1953): how the human brain is able to separate
a single conversation out of a surrounding noise from a room full of people chatting. Bregman later
tried to understand how the brain was able to analyse a complex auditory signal and segment it
into higher level streams. His framework for auditory scene analysis (Bregman, 1990) spawned
its computational counterpart, trying to reproduce or model accomplishments of the brains with
algorithmic means (Wang & Brown, 2006), in particular regarding source separation capabilities.

When producing music, recordings of individual instruments called stems are arranged together and
mastered into the final song. The goal of source separation is to recover those individual stems
from the mixed signal. Unlike the cocktail party problem, there is not a single source of interest to
differentiate from an unrelated background noise, but instead a wide variety of tones and timbres
playing in a coordinated way. In the SiSec Mus evaluation campaign for music separation (Stöter
et al., 2018), those individual stems were grouped into 4 broad categories: (1) drums, (2) bass,
(3) other, (4) vocals. Given a music track which is a mixture of these four sources, also called
the mix, the goal is to generate four waveforms that correspond to each of the original sources. We
consider here the case of supervised source separation, where the training data contain music tracks
(i.e., mixtures), together with the ground truth waveform for each of the sources.

In the fields of speech or music generation, models trained end-to-end to directly synthesize wave-
forms have outperformed methods that generate spectrograms (Van Den Oord et al., 2016; Mehri
et al., 2016; Défossez et al., 2018). However, state-of-the-art approaches in music source separation
still operate on the spectrograms generated by the short-time Fourier transform (STFT). They pro-
duce a mask on the magnitude spectrums for each frame and each source, and the output audio is
generated by running an inverse STFT on the masked spectrograms reusing the input mixture phase
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(Takahashi & Mitsufuji, 2017; Takahashi et al., 2018). Several architectures trained end-to-end to
directly synthesize the waveforms have been proposed, based on WaveNet-inspired decoders (Lluís
et al., 2018), or U-networks (Jansson et al., 2017). They however achieve performances that are far
below those of the best approaches that operate on spectrograms: In the last SiSec Mus evaluation
campaign (Stöter et al., 2018), the best model that directly predicts waveforms achieves an average
signal-to-noise ratio (SDR) over all four sources of 3.2, against 5.3 for the best approach that predicts
spectrograms masks (also see Table 1 in Section 5).

In this paper, we propose a new architecture for end-to-end, waveform-to-waveform source separation.
The model builds borrows the skip-connections and the encoder/decoder architecture of Wave-U-Net
(Jansson et al., 2017), but uses a decoder based on wide transposed convolutions with large strides
inspired by recent work on music synthesis (Défossez et al., 2018), rather than the blocks composed
of linear interpolation upsampling and convolution layers of Wave-U-Net. The other critical features
of the approach are a bidirectional LSTM between the encoder and the decoder, increasing the number
of channels exponentially with depth, gated linear units as activation function (Dauphin et al., 2017),
and a new initialization scheme. On the MusDB dataset of the last SiSec competition, our approach
achieves a state-of-the-art SDR of 5.35 ± 0.03, while being computationally more efficient than
the competing methods. In pure terms of performances, it represents an absolute gain of 2.1 SDR
compared to the closest end-to-end competitor.

We discuss in more detail the related work in the next Section. We then describe the model and
motivate the key components in Section 3. We present the experimental protocol in Section 4, and
the experimental results compared to the state-of-the-art in Section 5. We finally report the results of
an in-depth ablation study that analyzes the importance of our main design choices.

2 RELATED WORK

A first category of methods for supervised music source separation work on power spectrograms.
They predict a power spectrogram for each source and reuse the phase from the input mixture to
synthesise individual waveforms. Traditional methods have mostly focused on blind (unsupervised)
source separation. Non-negative matrix factorization techniques (Smaragdis et al., 2014) model
the power spectrum as a weighted sum of a learnt spectral dictionary, whose elements can then be
grouped into individual sources. Independent component analysis (Hyvärinen et al., 2004) relies on
independence assumptions and multiple microphones to separate the sources. Learning a soft/binary
mask over power spectrograms has been done using either HMM-based prediction (Roweis, 2001) or
segmentation techniques (Bach & Jordan, 2005).

With the development of deep learning, fully supervised methods have gained momentum. Initial work
was performed on speech source separation (Grais et al., 2014), followed by works on music using
simple fully connected networks over few spectrogram frames (Uhlich et al., 2015), LSTMs (Uhlich
et al., 2017), or multi scale convolutional /recurrent networks (Liu & Yang, 2018; Takahashi &
Mitsufuji, 2017). Nugraha et al. (2016) showed that Wiener filtering is an efficient post-processing
step for spectrogram-based models and it is now used by all top performing models in this category.
Those methods have performed the best during the last SiSec 2018 evaluation (Stöter et al., 2018)
for source separation on the MusDB (Rafii et al., 2017) dataset. After the evaluation, a reproducible
baseline called Open Unmix has been released by Stöter et al. (2019) and matches the top submissions
trained only on MusDB. Our model reaches the same performance as Open Unmix when trained
on MusDB. MMDenseLSTM, a model proposed by Takahashi et al. (2018) and trained on 807
unreleased songs currently holds the absolute record of SDR in the SiSec campaign. We nearly attain
the same SDR when trained with only 150 extra tracks.

More recently, models operating in the waveform domain have been developed, so far with worse
performance than those operating in the spectrogram domain. A convolutional network with a U-Net
structure called Wave-U-Net was used first on spectrograms (Jansson et al., 2017) and then adapted to
the waveform domain (Stoller et al., 2018). Wave-U-Net was submitted to the SiSec 2018 evaluation
campaign with a performance inferior to that of most spectrogram domain models by a large margin.
A Wavenet-inspired, although using a regression loss and not auto-regressive, was first used for
speech denoising (Rethage et al., 2018) and then adapted to source separation (Lluís et al., 2018).
Our model significantly outperforms Wave-U-Net.Given that the Wavenet inspired model performed
worse than Wave-U-Net, we did not consider it for comparison.
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(a) Demucs architecture with the mixture waveform as
input and the four sources estimates as output. Arrows
represents U-Net connections.
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Figure 1: Demucs complete architecture on the left, with detailed representation of the encoder
and decoder layers on the right. Key novelties compared to the previous Wave-U-Net are the GLU
activation in the encoder and decoder, extra convolutions with kernel 1 (resp 3) in the encoder (resp
decoder), the bidirectional LSTM in-between and doubling the channels between layers, allowed by
the stride of 4 in all convolutions.

The worse performance of waveform based models might come as a surprise, given the success of
architecture like WaveNet (Van Den Oord et al., 2016) or SampleRNN (Mehri et al., 2016). For speech
synthesis, good performance was initially obtained with in the spectral domain with Tacotron (Wang
et al., 2017) but the synthesis part was later replaced by WaveNet for Tacotron 2 (Shen et al., 2018)
with a noticeable reduction of artifacts. Similarly, for music note generation, the work of Engel
et al. (2017) on the NSynth dataset showed that end-to-end waveform generation far outperformed
spectrogram based methods. Other applications such as domain translation between any instruments
was also made possible (Mor et al., 2018). Then how to explain the lagging of end-to-end waveform
training for source separation? Unlike for speech or music generation, spectrogram methods in
source separation have access to the input signal phase and use it as an approximation of the source
phase instead of recovering it with an algorithm like Griffin-Lim (Griffin & Lim, 1984). Besides,
most research on the MusDB dataset use a sampling rate of 44 kHz, which makes application of
WaveNet computationally prohibitive. In contrast, the NSynth music note dataset is sampled at 16
kHz and WaveNet already requires 32 GPUs for 10 days to be trained on it(Engel et al., 2017). Due
to its auto-regressive nature, evaluation is even slower, unless one trains a distilled Parallel WaveNet
model (Oord et al., 2017), further lengthening training. An alternative was proposed in the work
of Défossez et al. (2018) on the NSynth dataset and achieved higher perceptual quality for a fraction
of the computational cost of a WaveNet. Our architecture is inspired by their SING model, reusing
simple transposed convolutional and recurrent layers with a regression loss.

3 MODEL ARCHITECTURE

Each source s is represented by a waveform xs ∈ RC,T where C is the number of channels (1 for
mono, 2 for stereo) and T the number of samples of the waveform. The mixture (i.e., music track) is
the sum of all sources x :=

∑S
s=1 xs. We aim at training a model g parameterized by θ, such that

g(x) = (gs(x; θ))
S
s=1, where gs(x; θ) is the predicted waveform for source s given x, that minimizes

min
θ

∑
s∈D

S∑
s=1

`(gs(x; θ), xs) (1)
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for some dataset D and reconstruction error `. The architecture we propose is described in the next
few subsections, and the reconstruction loss is discussed in Section 3.3.

The model g we present in this work, which we will refer to as Demucs, takes a stereo mixture as
input and outputs a stereo estimate for each source (C = 2). It is an encoder/decoder architecture
composed of a convolutional encoder, a bidirectional LSTM, and a convolutional decoder, with the
encoder and decoder linked with skip U-Net connections. Similarly to other work in generation
in both image (Karras et al., 2018; 2017) and sound (Défossez et al., 2018), we do not use batch
normalization (Ioffe & Szegedy, 2015) as our early experiments showed that it was detrimental to the
model performance. The overall architecture is depicted in Figure 1a.

3.1 CONVOLUTIONAL ENCODER

The encoder is composed of L := 6 stacked convolutional blocks numbered from 1 to L. Each block
i is composed of a convolution with kernel width 8, stride 4, Ci−1 input channels, Ci output channels
and ReLU activation, followed by a convolution with kernel size 1, 2Ci output channels and gated
linear units (GLU) as activation function (Dauphin et al., 2017). Since GLUs halve the number of
channels, the final output of block i has Ci output channels. A block is described in Figure 1b.

Convolutions with kernel width 1 increase the depth and expressivity of the model at low com-
putational cost. As we show in our ablation study 5.2, the usage of GLU activations after these
convolutions significantly boost performance.

The number of channels in the input mixture is C0 = C = 2, while we use C1 := 64 as the number
of output channels for the first encoder block. The number of channels is then doubled at each
subsequent block, i.e., Ci := 2Ci−1 for i = 2..L, so the final number of channels is CL = 2048. We
then use a bidirectional LSTM with 2 layers and a hidden size CL. The LSTM outputs 2CL channels
per time position. We use a linear layer to take that number down to CL.

3.2 CONVOLUTIONAL DECODER

The decoder is almost the symmetric of the encoder. It is composed of L blocks numbered in reverse
order from L to 1. The i-th blocks starts with a convolution with stride 1 and kernel width 3 to
provide context about adjacent time steps, input/output channels Ci and a ReLU activation. Finally,
we use a transposed convolution with kernel width 8 and stride 4, Ci−1 outputs and ReLU activation.

The S sources are synthesized at the final layer only, after all decoder blocks. The final layer is linear
with S.C0 output channels, one for each source (4 stereo channels in our case), without any additional
activation function. Each of these channels directly generate the corresponding waveform.

U-network structure Similarly to Wave-U-Net (Jansson et al., 2017), the symmetry of the en-
coder/decoder blocks there are skip connections between the encoder and decoder blocks with the
same index, as originally proposed in U-networks (Ronneberger et al., 2015). While the main motiva-
tion comes from empirical performances, an immediate advantage of the skip connections is to give a
direct access to the original signal, and in particular allows to directly transfers the phase of the input
signal to the output, as discussed in Section 3.3.

Motivation: synthesis vs filtering The approach we follow uses the U-Network architecture
(Ronneberger et al., 2015), and builds on transposed convolutions with large number of channels and
large strides (4) inspired by the approach to the synthesis of music notes of Défossez et al. (2018).
The U-net approach was previously used in the context of music source separation in Wave-U-Net
(Stoller et al., 2018; Jansson et al., 2017). The fundamental difference of the decoding step between
Wave-U-Net and our approach is that Wave-U-Net uses blocks of linear upsampling layers (that
double the sampling rate of the signal), followed by convolutions of stride 1. Thus, Wave-U-Net
follows a filtering approach: it generates its output by iteratively upsampling, adding back the high
frequency part of the signal using skip-connections, and filtering with the convolution. We rather
follow a direct synthesis approach with transposed convolutions that can directly generate a signal at
the desired frequency. For the same increase in the number of time steps, our method requires 4 times
less operations. Furthermore, Wave-U-Net requires using stride of 1 in the encoder convolutions, as
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their output will be used for the skip connections. This further slow down training and also increases
memory usage. Those points are verified experimentally in Section 5.2.

3.3 LOSS FUNCTION

For the reconstruction loss L(gs(x; θ), xs) in equation 1, we either use the average mean square
error or average absolute error between waveforms: for a waveform xs containing T samples and
corresponding to source s, a predicted waveform x̂s and denoting with a subscript t the t-th sample
of a waveform, we use one of L1 or L2:

L1(x̂s, xs) =
1

T

T∑
t=1

|x̂s,t − xs,t| L2(x̂s, xs) =
1

T

T∑
t=1

(x̂s,t − xs,t)2 . (2)

In generative models for audio, direct reconstruction losses on waveforms can pose difficulties
because they are sensitive to the initial phases of the signals: two signals whose only difference is a
shift in the initial phase are perceptually the same, but can have arbitrarily high L1 or L2 losses. It can
be a problem in pure generation tasks because the initial phase of the signal is unknown, and losses
on power/magnitude spectrograms are alternative that do not suffer from this lack of specification of
the output. Approaches that follow this line either generate spectrograms (e.g., Wang et al., 2017), or
use a loss that compares power spectrograms of target/generated waveforms (Défossez et al., 2018).

The problem of invariance to a shift of phase is not as severe in source separation as it is in
unconditional generation, because the model has access to the original phase of the signal. This
can easily be recovered from the skip connections in U-net-style architectures for separation, and is
directly used as input of the inverse STFT for methods that generate masks on power spectrograms.
As such, losses such as L1/L2 are totally valid for source separation. Early experiments with an
additional term including the loss of Défossez et al. (2018) did not suggest that it boosts performance,
so we did not pursue this direction any further. Most our experiments use L1 loss, and the ablation
study presented in Section 5.2 suggests that there is no significant difference between L1 and L2.

3.4 WEIGHT RESCALING AT INITIALIZATION

The initialization of deep neural networks is known to have a critical impact on the overall perfor-
mances (Glorot & Bengio, 2010; He et al., 2015), up to the point that Zhang et al. (2019) showed that
with a different initialization called fixup, very deep residual networks and transformers can be trained
without batch normalization. While Fixup is not designed for U-Net-style skip connections, we
observed that the following different initialisation scheme had great positive impact on performances
compared to the standard initialization of He et al. (2015) used in U-Networks.

Considering the so-called Kaiming initialization (He et al., 2015) as a baseline, let us look at a
single convolution layer for which we denote w the weights after the first initialization. We take
α := std(w)/a, where a is a reference scale, and replace w by w′ = w/

√
α. Since the original

weights have element-wise order of magnitude (KCin)
−1/2 where K is the kernel width and Cin

the number of output channels, it means that our initialization scheme produces weights of order of
magnitude (KCin)

−1/4, together with a non-trivial scale. Based on preliminary experiments, we set
a = 0.1 for all the regular and transposed convolutions.

4 EXPERIMENTAL SETUP

4.1 EVALUATION FRAMEWORK

MusDB and unsupervised datasets We use the MusDB dataset (Rafii et al., 2017) , which is
composed of 150 songs with full supervision in stereo and sampled at 44100Hz. For each song, we
have the exact waveform of the drums, bass, other and vocals parts, i.e. each of the sources.
The actual song, the mixture, is the sum of those four parts. The first 84 songs form the train set, the
next 16 songs form the valid set1 while the remaining 50 are kept for the test set.

1We use the official MusDB python package https://github.com/sigsep/sigsep-mus-db.
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We collected raw stems for 150 tracks, i.e., individual instrument recordings used in music production
software to make a song. We manually assigned each instrument to one of the sources using simple
rules on the filenames or listening to the stems in case of ambiguity. We call this extra supervised
data the stem set. As some of the baselines used additional labeled data (807 songs), we also provide
metrics for our own architecture trained using this extra stem set.

Source separation metrics Measurements of the performance of source separation models was
developed by Vincent et al. for blind source separation (Vincent et al., 2006) and reused for supervised
source separation in the SiSec Mus evaluation campaign (Stöter et al., 2018). Reusing the notations
from (Vincent et al., 2006), let us take a source j ∈ 1, 2, 3, 4 and introduce Psj (resp Ps) the
orthogonal projection on sj (resp on Span(s1, . . . , s4)). We then take with ŝj the estimate of
source sj , starget := Psj (ŝj), einterf := Ps(ŝj)− Psj (ŝj) and eartif := ŝj − Ps(ŝj). The signal to
distortion ratio is then defined as

SDR := 10 log10
‖starget‖2

‖einterf + eartif‖2
. (3)

Note that this definition is invariant to the scaling of ŝj . We used the python package museval2

which provide a reference implementation for the SiSec Mus 2018 evaluation campaign. It also
allows time invariant filters to be applied to ŝj as well as small delays between the estimate and
ground truth (Vincent et al., 2006). As done in the SiSec Mus competition, we report the median
over all tracks of the median of the metric over each track computed using the museval package.
Similarly to previous work (Stoller et al., 2018; Takahashi & Mitsufuji, 2017; Takahashi et al., 2018),
we focus in this section on the SDR, as it summarizes the best the overall performance of a model
but other metrics can be defined (SIR an SAR) and we present them in the supplementary material.

4.2 BASELINES

As baselines, we selected Open Unmix (Stöter et al., 2019)3, a 3-layer BiLSTM model with encoding
and decoding fully connected layers on spectrogram frames. It was release by the organizers of
the SiSec 2018 to act as a strong reproducible baseline and matches the performances of the best
candidates trained only on MusDB. We also selected MMDenseLSTM (Takahashi et al., 2018), a
multi-band dense net with LSTMs at different scales of the encoder and decoder. This model was
submitted as TAK2 and trained with 804 extra labeled songs4. Both MMDenseLSTM and Open
Unmix use Wiener filtering (Nugraha et al., 2016) as a last post processing step. The only waveform
based method submitted to the evaluation campaign is Wave-U-Net (Stoller et al., 2018) with the
identifier STL2. Metrics were downloaded from the SiSec submission repository5 for Wave-U-Net
and MMDenseLSTM. For Open Unmix they were provided by their authors6.

4.3 TRAINING PROCEDURE

We define one epoch over the dataset as a pass over all 11-second extracts with a stride of 1 seconds.
We use a random audio shift between 0 and 1 second and keep 10 seconds of audio from there as
a training example. We perform the following data augmentation (Uhlich et al., 2017), also used
by Open Unmix and MMDenseLSTM: shuffling sources within one batch to generate one new mix,
randomly swapping channels. We additionnaly multiply each source by ±1.

The Demucs separation model described in Section 3 is trained for 240 epochs on 16 Volta GPUs
with 32GB or RAM, with a batch size of 128. The learning rate was chosen among [1e-4, 5e-4, 1e-3]
and the initial number of channels was chosen in [32, 48, 64] based on the L1 loss on the validation
set. Given the cost of training those models, we computed confidence intervals using 5 random seeds
in Table 1. For the ablation study on Table 2, we provide metrics for a single run.

2https://github.com/sigsep/sigsep-mus-eval
3Reference implementation available at https://github.com/sigsep/open-unmix-pytorch.
4Source: https://sisec18.unmix.app/#/methods/TAK2
5https://github.com/sigsep/sigsep-mus-2018
6https://zenodo.org/record/3370486
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Table 1: Comparison of our architecture Demucs with the state-of-the-art in the waveform domain
(Wave-U-Net) and in the spectrogram domain (Open-Unmix without extra data, MMDenseLSTM
with extra data) on the MusDB test set. The Extra? indicates the number of extra training songs
used. We report the median over all tracks of the median SDR over each track, as done in the SiSec
Mus evaluation campaign (Stöter et al., 2018). The All column reports the average over all sources.
Demucs metrics are averaged over 5 runs, the confidence interval is the standard deviation over

√
5.

In bold are the values that are statistically state-of-the-art either with or without extra training data.

Test SDR in dB

Architecture Wav? Extra? All Drums Bass Other Vocals

Open-Unmix 7 7 5.33 5.73 5.23 4.02 6.32
Wave-U-Net 3 7 3.23 4.22 3.21 2.25 3.25
Demucs 3 7 5.35 ±.03 5.87 ±.04 5.76 ±.04 3.76 ±.05 6.02 ±.05

Demucs 3 150 5.97 ±.05 6.93 ±.11 6.34 ±.07 3.97±.03 6.65 ±.02
MMDenseLSTM 7 804 6.04 6.81 5.40 4.80 7.16

5 EXPERIMENTAL RESULTS

In this section we provide here experimental results on the MusDB dataset for our architecture
Demucs compared with state-of-the-art baselines and then dive into individual contributions from our
architecture specificities detailed in Section 3.

5.1 COMPARISON WITH BASELINES

We provide a comparison the state-of-the-art baselines on Table 1. The models on the top half were
trained without any extra data while the lower half used unreleased training songs.We did observe
a high variance across runs, sadly no previous work included confidence intervals. As a result, we
considered the single metric provided by previous work the exact estimate of their mean performance.
We would encourage all future work to include such intervals for easier comparison between models.

Quality of the separation We significantly improved the metrics compared to Wave-U-Net for
all sources and matched the overall performance of Open-Unmix when trained with no extra data.
Similarly, when trained with only 150 extra songs against 804 for MMDenseLSTM, we achieved
similar overall performance than the latter. Our model performs significantly better on the drums
and bass sources while still behind for the other and vocals. This is the first case of end-to-end
waveform models to beat spectrogram domain methods for source separation in music, albeit only
for some sources. We provide results for the other metrics (SIR and SAR) as well as box plots with
quantiles over the test set tracks in the Appendix, Section B. Audio samples for Demucs and all
baselines are provided in the ICLR link code, with more details given in the Appendix, Section A.

Training speed We measured the time taken to process a single batch of size 16 with 10 seconds
of audio at 44kHz (the original Wave-U-Net being only trained on 22 kHz audio, we double the time
for fairness), ignoring data loading and using torch.cuda.synchronize to wait on all kernels
to be completed. MMDenseLSTM does not provide a reference implementation. Wave-U-Net takes
1.2 seconds per batch, Open Unmix 0.2 seconds per batch and Demucs 0.9 seconds per batch.

5.2 ABLATION STUDY

We provide an ablation study of the main novelties of this paper on Table 2. Given the cost of training
a single model, we did not compute confidence intervals for each variation. Yet, any difference
inferior to .06, which is the standard deviation observed over 5 repetitions of the Reference model,
could be attributed to noise. As mentioned in Section 3.3, we observe a small but non significant
improvement when using an L1 loss instead of the MSE loss. Adding a BiLSTM and using the initial
weight rescaling described in Section 3.4 provides significant gain, each of around 0.4 points of SDR.
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Table 2: Ablation study for the novel elements in our architecture described in Section 3. We use
only the train set from MusDB and report best L1 loss over the valid set throughout training as well
the SDR on the test set for the epoch that achieved this loss. For the 12 layers model, we increase
the number of channels by a factor of

√
2 (rounded to the nearest integer) to match the number of

channels of the 6 layers model. Experiments are ordered by increasing Test SDR.

Valid set Test set
Difference L1 loss SDR

upsample-convolution instead of transposed 0.166 out of memory
ReLU instead of GLU 0.169 4.62
depth 12, kernel=4, stride=2, Ci+1 :=

⌊√
2Ci
⌋

0.163 4.85
no BiLSTM 0.169 4.86
no initial weight rescaling 0.162 4.88
no convolution with kernel 1 in encoder 0.162 5.04
kernel size of 1 in decoder convolution 0.162 5.16
MSE loss N/A 5.22

Reference 0.160 5.27

GLUs, extra convolutions in encoder/decoder We introduced extra convolutions in the encoder
and decoder, as described in Sections 3.1 and 3.2. The two proved useful, improving the expressivity
of the model, especially when combined with GLU activation (Dauphin et al., 2017). Using a kernel
size of 3 instead of 1 in the decoder further improves performance. We conjecture that the context
from adjacent time steps helps the output of the transposed convolutions to be consistent through
time and reduces potential artifacts arising from using a stride of 4.

Upsampling-convolution Those artifacts caused Stoller et al. (2018) to replace transposed convo-
lutions with upsampling followed by convolutions with a stride of 1. We again compared the two
approaches. When using upsampling, the convolution in each encoder layer must be performed with
a stride of 1 which is merged with a skip connection to the upsampled output of each decoder layer.
It allows to recover high frequencies, but the downside is an increased memory usage. The overall
number of examples processed per seconds in training is halved compared to our approach using
transposed convolutions. We obtain a worse validation loss than our Reference model, and we failed
to evaluate the model on the test set as it ran out of memory for one of the track, despite using 32GB
GPUs. Splitting the input would be a possibility, but could introduce artifacts at the boundaries
(Stoller et al., 2018), especially with the addition of the BiLSTM. Taking C1 = 32 instead of 64
allows to complete the evaluation but with sub-optimal performance (valid loss is 0.171, SDR 4.24).
Thus, transposed convolutions achieve higher quality, run faster and have a smaller memory footprint.

Model depth We also tried training a model with a depth of 12, a kernel size of 4 and stride of
2, increasing the channels by

√
2 for fairness with the Reference model. Training diverged with a

learning rate of 5e-4, so we used 1e-4 and doubled the number of epochs. Training speed is largely
impaired (92 examples/sec on 16 GPUs against 211) as well as the final training loss. We conclude
that our approach works best with a “stocky and short” rather than a “deep and thin” architecture.

CONCLUSION

We presented Demucs, a simple architecture inspired by previous work in source separation from
the waveform and audio synthesis that bridges the gap between spectrogram and waveform based
methods, even significantly improving on them for the drums and bass sources, while increasing
the SDR compared to best performing waveform domain Wave-U-Net (Stoller et al., 2018) by 2.2
points. We provided a comprehensive analysis of the differences between our architecture and
Wave-U-Net, showing how to combine simple convolutions, transposed convolutions, BiLSTM
and GLU activations to achieve state-of-the-art quality. We hope our architecture can provide a
useful foundation for solving other audio tasks requiring analysis and synthesis, especially when
using more computationally intensive alternatives like WaveNet (Van Den Oord et al., 2016) or
SampleRNN (Mehri et al., 2016) is not feasible.
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APPENDIX

A AUDIO SAMPLES

We provide audio samples taken from the test set of MusDB. They are available through the ICLR
code sharing url7. To download the archive, click on “Download” > “Direct Download” in the top
right of the page. The audio files for the Wave-U-Net and MMDenseLSTM have been obtained from
the SiSec Mus 2018 evaluation campaign results website8. For Open Unmix, we generated them
from the pretrained UMX model using the reference PyTorch implementation9. We recommend
listening to the audio samples with headphones, while being careful with the volume. An HTML
page index.html is provided for easier comparison. The following folders are provided:

• Reference: ground truth,

• Open Unmix,

• WaveUNet,

• Demucs: trained only on MusDB,

• DemucsExtra: trained on MusDB and an extra 150 songs.

• MMDenseNetLSTM, trained on MusDB and an extra 804 songs,

B RESULTS FOR ALL METRICS WITH BOX PLOTS

Reusing the notations from Vincent et al. (2006), let us take a source j ∈ 1, 2, 3, 4 and introduce
Psj (resp Ps) the orthogonal projection on sj (resp on Span(s1, . . . , s4)). We then take with ŝj the
estimate of source sj

starget := Psj (ŝj) einterf := Ps(ŝj)− Psj (ŝj) eartif := ŝj − Ps(ŝj)

We can now define various signal to noise ratio, expressed in decibels (dB): the source to distortion
ratio

SDR := 10 log10
‖starget‖2

‖einterf + eartif‖2
,

the source to interference ratio

SIR := 10 log10
‖starget‖2

‖einterf‖2

and the sources to artifacts ratio

SAR := 10 log10
‖starget + einterf‖2

‖eartif‖2
.

As explained in the main paper, extra invariants are added when using the museval package. We
refer the reader to Vincent et al. (2006) for more details. We provide box plots for each metric and
each target on Figure 2, generated using the notebook provided specifically by the organizers of the
SiSec Mus evaluation campaign10. Hereafter, we provide the equivalent of Table 1 in the main paper
for both SIR and SAR.

7https://www.dropbox.com/sh/o0gps94s120v7l4/AABS5vDfuuRjgY_zDjdSm_Fsa?
dl=0

8https://sisec18.unmix.app
9https://github.com/sigsep/open-unmix-pytorch.

10https://github.com/sigsep/sigsep-mus-2018-analysis
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Test SIR in dB

Architecture Wav? Extra? All Drums Bass Other Vocals

Open-Unmix 7 7 10.49 11.12 10.93 6.59 13.33
Wave-U-Net 3 7 6.26 8.83 5.78 2.37 8.06
Demucs 3 7 10.34 ±.08 11.93 ±.22 9.97 ±.27 5.34 ±.10 14.13 ±.20
Demucs 3 150 11.59 ±.08 13.23 ±.12 12.59 ±.18 6.10±.16 14.45 ±.16
MMDenseLSTM 7 804 12.24 11.94 11.59 8.94 16.48

Test SAR in dB

Architecture Wav? Extra? All Drums Bass Other Vocals

Open-Unmix 7 7 5.90 6.02 6.34 4.74 6.52
Wave-U-Net 3 7 4.49 5.29 4.64 3.99 4.05
Demucs 3 7 5.76 ±.04 5.99 ±.05 6.07 ±.09 5.02 ±.06 5.96 ±.07

Demucs 3 150 5.97 ±.05 6.04 ±.04 6.65 ±.08 4.92±.03 6.44 ±.07
MMDenseLSTM 7 804 6.50 6.96 6.00 5.55 7.48
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Figure 2: Boxplot showing the distribution of SDR, SIR and SAR over the tracks of the MusDB test.
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