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ABSTRACT

Autoencoder reconstructions are widely used for the task of unsupervised anomaly localization.
Indeed, an autoencoder trained on normal data is expected to only be able to reconstruct normal
features of the data, allowing the segmentation of anomalous pixels in an image via a simple com-
parison between the image and its autoencoder reconstruction. In practice however, local defects
added to a normal image can deteriorate the whole reconstruction, making this segmentation chal-
lenging. To tackle the issue, we propose in this paper a new approach for projecting anomalous data
on a autoencoder-learned normal data manifold, by using gradient descent on an energy derived from
the autoencoder’s loss function. This energy can be augmented with regularization terms that model
priors on what constitutes the user-defined optimal projection. By iteratively updating the input of
the autoencoder, we bypass the loss of high-frequency information caused by the autoencoder bot-
tleneck. This allows to produce images of higher quality than classic reconstructions. Our method
achieves state-of-the-art results on various anomaly localization datasets. It also shows promising
results at an inpainting task on the CelebA dataset.

1 INTRODUCTION

Automating visual inspection on production lines with artificial intelligence has gained popularity and interest in recent
years. Indeed, the analysis of images to segment potential manufacturing defects seems well suited to computer vision
algorithms. However these solutions remain data hungry and require knowledge transfer from human to machine
via image annotations. Furthermore, the classification in a limited number of user-predefined categories such as non-
defective, greasy, scratched and so on, will not generalize well if a previously unseen defect appears. This is even more
critical on production lines where a defective product is a rare occurrence. For visual inspection, a better-suited task
is unsupervised anomaly detection, in which the segmentation of the defect must be done only via prior knowledge of
non-defective samples, constraining the issue to a two-class segmentation problem.

From a statistical point of view, an anomaly may be seen as a distribution outlier, or an observation that deviates
so much from other observations as to arouse suspicion that it was generated by a different mechanism (Hawkins,
1980). In this setting, generative models such as Variational AutoEncoders (VAE, Kingma & Welling (2013)), are es-
pecially interesting because they are capable to infer possible sampling mechanisms for a given dataset. The original
autoencoder (AE) jointly learns an encoder model, that compresses input samples into a low dimensional space, and
a decoder, that decompresses the low dimensional samples into the original input space, by minimizing the distance
between the input of the encoder and the output of the decoder. The more recent variant, VAE, replaces the deter-
ministic encoder and decoder by stochastic functions, enabling the modeling of the distribution of the dataset samples
as well as the generation of new, unseen samples. In both models, the output decompressed sample given an input is
often called the reconstruction, and is used as some sort of projection of the input on the support of the normal data
distribution, which we will call the normal manifold. In most unsupervised anomaly detection methods based on VAE,
models are trained on flawless data and defect detection and localization is then performed using a distance metric
between the input sample and its reconstruction (Bergmann et al., 2018; 2019; An & Cho, 2015; Baur et al., 2018;
Matsubara et al., 2018).

One fundamental issue in this approach is that the models learn on the normal manifold, hence there is no guarantee of
the generalization of their behavior outside this manifold. This is problematic since it is precisely outside the dataset
distribution that such methods intend to use the VAE for anomaly localization. Even in the case of a model that
always generates credible samples from the dataset distribution, there is no way to ensure that the reconstruction will
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be connected to the input sample in any useful way. An example illustrating this limitation is given in figure 1, where
a VAE trained on regular grid images provides a globally poor reconstruction despite a local perturbation, making the
anomaly localization challenging.

In this paper, instead of using the VAE reconstruction, we propose to find a better projection of an input sample on
the normal manifold, by optimizing an energy function defined by an autoencoder architecture. Starting at the input
sample, we iterate gradient descent steps on the input to converge to an optimum, simultaneously located on the data
manifold and closest to the starting input. This method allows us to add prior knowledge about the expected anomalies
via regularization terms, which is not possible with the raw VAE reconstruction. We show that such an optimum
is better than previously proposed autoencoder reconstructions to localize anomalies on a variety of unsupervised
anomaly localization datasets (Bergmann et al., 2019) and present its inpainting capabilities on the CelebA dataset
(Liu et al., 2015). We also propose a variant of the standard gradient descent that uses the pixel-wise reconstruction
error to speed up the convergence of the energy.

(a) Training sample (b) Anomalous sam-
ple

(c) VAE reconstruc-
tion

(d) Gradient-based
projection

Figure 1: Even though an anomaly is a local perturbation in the image (b), the whole VAE-reconstructed image can be
disturbed (c). Our gradient descent-based method gives better quality reconstructions (d).

2 BACKGROUND

2.1 GENERATIVE MODELS

In unsupervised anomaly detection, the only data available during training are samples x from a non-anomalous dataset
X ⊂ Rd. In a generative setting, we suppose the existence of a probability function of density q, having its support on
all Rd, from which the dataset was sampled. The generative objective is then to model an estimate of density q, from
which we can obtain new samples close to the dataset. Popular generative architectures are Generative Adversarial
Networks (GAN, Goodfellow et al. (2014)), that concurrently train a generator G to generate samples from random,
low-dimensional noise z ∼ p, z ∈ Rl, l� d, and a discriminatorD to classify generated samples and dataset samples.
This model converges to the equilibrium of the expectation over both real and generated datasets of the binary cross
entropy loss of the classifier minG maxD [ Ex∼q [log(D(x))] + Ez∼p [log(1 − D(G(z)))] ].

Disadvantages of GANs are that they are notoriously difficult to train (Goodfellow, 2016), and they suffer from mode
collapse, meaning that they have the tendency to only generate a subset of the original dataset. This can be problematic
for anomaly detection, in which we do not want some subset of the normal data to be considered as anomalous
(Bergmann et al., 2019). Recent works such as Thanh-Tung et al. (2019) offer simple and attractive explanations for
GAN behavior and propose substantial upgrades, however Ravuri & Vinyals (2019) still support the point that GANs
have more trouble than other generative models to cover the whole distribution support.

Another generative model is the VAE (Kingma & Welling (2013)), where, similar to a GAN generator, a decoder model
tries to approximate the dataset distribution with a simple latent variables prior p(z), with z ∈ Rl, and conditional
distributions output by the decoder p(x|z). This leads to the estimate p(x) =

∫
p(x|z)p(z)dz, that we would like

to optimize using maximum likelihood estimation on the dataset. To render the learning tractable with a stochastic
gradient descent (SGD) estimator with reasonable variance, we use importance sampling, introducing density functions
q(z|x) output by an encoder network, and Jensen’s inequality to get the variational lower bound :

log p(x) = log Ez∼q(z|x)
p(x|z)p(z)
q(z|x)

≥ Ez∼q(z|x) log p(x|z)−DKL(q(z|x)‖p(z)) = −L(x)
(1)

2



We will use L(x) as our loss function for training. We define the VAE reconstruction, per analogy with an autoencoder
reconstruction, as the deterministic sample fV AE(x) that we obtain by encoding x, decoding the mean of the encoded
distribution q(z|x), and taking again the mean of the decoded distribution p(x|z).
VAEs are known to produce blurry reconstructions and generations, but Dai & Wipf (2019) show that a huge enhance-
ment in image quality can be gained by learning the variance of the decoded distribution p(x|z). This comes at the
cost of the distribution of latent variables produced by the encoder q(z) being farther away from the prior p(z), so
that samples generated by sampling z ∼ p(z),x ∼ p(x|z) have poorer quality. The authors show that using a second
VAE learned on samples from q(z), and sampling from it with ancestral sampling u ∼ p(u), z ∼ p(z|u),x ∼ p(x|z),
allows to recover samples of GAN-like quality. The original autoencoder can be roughly considered as a VAE whose
encoded and decoded distributions have infinitely small variances.

2.2 ANOMALY DETECTION AND LOCALIZATION

We will consider that an anomaly is a sample with low probability under our estimation of the dataset distribution. The
VAE loss, being a lower bound on the density, is a good proxy to classify samples between the anomalous and non-
anomalous categories. To this effect, a threshold T can be defined on the loss function, delimiting anomalous samples
with L(x) ≥ T and normal samples L(x) < T . However, according to Matsubara et al. (2018), the regularization
term LKL(x) = DKL(q(z|x)‖p(z)) has a negative influence in the computation of anomaly scores. They propose
instead an unregularized score Lr(x) = −Ez∼q(z|x) log p(x|z) which is equivalent to the reconstruction term of a
standard autoencoder and claim a better anomaly detection.

Going from anomaly detection to anomaly localization, this reconstruction term becomes crucial to most of existing
solutions. Indeed, the inability of the model to reconstruct a given part of an image is used as a way to segment the
anomaly, using a pixel-wise threshold on the reconstruction error. Actually, this segmentation is very often given by a
pixel-wise (An & Cho, 2015; Baur et al., 2018; Matsubara et al., 2018) or patch-wise comparison of the input image,
and some generated image, as in Bergmann et al. (2018; 2019), where the structural dissimilarity (DSSIM, Wang et al.
(2004)) between the input and its VAE reconstruction is used.

Autoencoder-based methods thus provide a straightforward way of generating an image conditioned on the input
image. In the GAN original framework, though, images are generated from random noise z ∼ p(z) and are not
conditioned by an input. Schlegl et al. (2017) propose with AnoGAN to get the closest generated image to the input
using gradient descent on z for an energy defined by:

EAnoGAN = ||x−G(z)||1 + λ · ||fD(x)− fD(G(z))||1 (2)

The first term ensures that the generation G(z) is close to the input x. The second term is based on a distance between
features of the input and the generated images, where fD(x) is the output of an intermediate layer of the discriminator.
This term ensures that the generated image stays in the vicinity of the original dataset distribution.

3 PROPOSED METHOD

Figure 2: Illustration of our method. We perform gradient descent on E(xt) to iteratively correct xt.
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3.1 ADVERSARIAL PROJECTIONS

According to Zimmerer et al. (2018), the loss gradient with respect to x gives the direction towards normal data
samples, and its magnitude could indicate how abnormal a sample is. In their work on anomaly identification, they
use the loss gradient as an anomaly score.

Here we propose to use the gradient of the loss to iteratively improve the observed x. We propose to link this method
to the methodology of computing adversarial samples in Szegedy et al. (2013).

After training a VAE on non-anomalous data, we can define a threshold T on the reconstruction loss Lr as in (Matsub-
ara et al., 2018), such that a small proportion of the most improbable samples are identified as anomalies. We obtain a
binary classifier defined by

A(x) =

{
1 if Lr(x) ≥ T
0 otherwise (3)

Our method consists in computing adversarial samples of this classifier (Szegedy et al., 2013), that is to say, starting
from a sample x0 with A(x0) = 1, iterate gradient descent steps over the input x, constructing samples x1, . . .xN , to
minimize the energy E(x), defined as

E(xt) = Lr(xt) + λ · ||xt − x0||1 (4)

An iteration is done by calculating xt+1 as

xt+1 = xt − α · ∇xE(xt), (5)

where α is a learning rate parameter, and λ is a parameter trading off the inclusion of xt in the normal manifold, given
by Lr(xt), and the proximity between xt and the input x0, assured by the regularization term ||xt − x0||1.

3.2 REGULARIZATION TERM

We model the anomalous images that we encounter as normal images in which a region or several regions of pixels are
altered but the rest of the pixels are left untouched. To recover the best segmentation of the anomalous pixels from an
anomalous image xa, we want to recover the closest image from the normal manifold xg . The term closest has to be
understood in the sense that the smallest number of pixels are modified between xa and xg . In our model, we therefore
would like to use the L0 distance as a regularization distance of the energy. Since the L0 distance is not differentiable,
we use the L1 distance as an approximation.

3.3 OPTIMIZATION IN INPUT SPACE

While in our method the optimization is done in the input space, in the previously mentioned AnoGAN, the search for
the optimal reconstruction is done by iterating over z samples with the energy defined in equation 2. Following the
aforementioned analogy between a GAN generator G and a VAE decoder Dec, a similar approach in the context of a
VAE would be to use the energy

||x−Dec(z)||1 − λ · log p(z) (6)
where the − log p(z) term has the same role as AnoGAN’s ||fD(x)− fD(G(z))||1 term, to ensure that Dec(z) stays
within the learned manifold. We chose not to iterate over z in the latent space for two reasons. First, because as noted
in Dai & Wipf (2019) and Hoffman & Johnson (2016), the prior p(z) is not always a good proxy for the real image of
the distribution in the latent space q(z). Second, because the VAE tends to ignore some details of the original image
in its reconstruction, considering that these details are part of the independent pixel noise allowed by the modeling
of p(x|z) as a diagonal Gaussian, which causes its infamous blurriness. An optimization in latent space would have
to recreate the high frequency structure of the image, whereas iterating over the input image space, and starting the
descent on the input image x0, allows us to keep that structure and thus to obtain projections of higher quality.

3.4 OPTIMIZING GRADIENT DESCENT

We observed that using the Adam optimizer (Kingma & Ba, 2014) is beneficial for the quality of the optimization.
Moreover, to speed up the convergence and further preserve the aforementioned high frequency structure of the input,
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we propose to compute our iterative samples using the pixel-wise reconstruction error of the VAE. To explain the
intuition behind this improvement, we will consider the inpainting task. In this setting, as in anomaly localization, a
local perturbation is added on top of a normal image. However, in the classic inpainting task, the localization of the
perturbation is known beforehand, and we can use the localization mask Ω to only change the value of the normal
pixels in the gradient descent:

xt+1 = xt − α · (∇xE(xt) � Ω ) (7)
where � is the Hadamard product.

For anomaly localization and blind inpainting, where this information is not available, we compute the pixel-wise
reconstruction error which gives a rough estimate of the mask. The term ∇xE(xt) is therefore replaced with
∇xE(xt) � (xt − fV AE(xt))

2 ) in equation 5:

xt+1 = xt − α · (∇xE(xt) � (xt − fV AE(xt))
2 ) (8)

where fV AE(x) is the standard reconstruction of the VAE. Optimizing the energy this way, a pixel where the recon-
struction error is high will update faster, whereas a pixel with good reconstruction will not change easily. This prevents
the image to update its pixels where the reconstruction is already good, even with a high learning rate. As can be seen
in appendix B, this method converges to the same performance as the method of equation 5, but with fewer iterations.
An illustration of our method can be found in figure 2.

3.5 STOP CRITERION

A standard stop criterion based on the convergence of the energy can efficiently be used. Using the adversarial setting
introduced in section 3.1, we also propose to stop the gradient descent when a certain predefined threshold on the
VAE loss is reached. For example, such a threshold can be chosen to be a quantile of the empirical loss distribution
computed on the training set.

4 EXPERIMENTS

In this section, we evaluate the proposed method for two different applications: anomaly segmentation and image in-
painting. Both applications are interesting use cases of our method, where we search to reconstruct partially corrupted
images, correcting the anomalies while preserving the uncorrupted image regions.

4.1 UNSUPERVISED ANOMALY SEGMENTATION

In order to evaluate the proposed method for the task of anomaly segmentation, we perform experiments with the
recently proposed MVTec dataset (Bergmann et al., 2019). This collection of datasets consists of 15 different cate-
gories of objects and textures in the context of industrial inspection, each category containing a number of normal and
anomalous samples.

We train our model on normal training samples and test it on both normal and anomalous test samples to evaluate the
anomaly segmentation performance.

We perform experiments with three different baseline autoencoders: A “vanilla” variational autoencoder with decoder
covariance matrix fixed to identity (Kingma & Welling, 2013), a variational autoencoder with learned decoder vari-
ance (Dai & Wipf, 2019), a “vanilla” deterministic autoencoder trained with L2 as reconstruction loss (L2AE) and a
deterministic autoencoder trained with DSSIM reconstruction loss (DSAE), as proposed by Bergmann et al. (2018).
For the sake of a fair comparison, all the autoencoder models are parameterized by convolutional neural networks with
the same architecture, latent space dimensionality (set to 100), learning rate (set to 0.0001) and number of epochs
(set to 300). The architecture details (layers, paddings, strides) are the same as described in Bergmann et al. (2018)
and Bergmann et al. (2019). Similarly to the authors in Bergmann et al. (2019), for the textures datasets, we first
subsample the original dataset images to 512 × 512 and then crop random patches of size 128 × 128 which are used
to train and test the different models. For the object datasets, we directly subsample the original dataset images to
128× 128 unlike in Bergmann et al. (2019) who work on 256× 256 images, then we perform rotation and translation
data augmentations. For all datasets we train on 10000 images.

Anomaly segmentation is then computed by reconstructing the anomalous image and comparing it with the original.
We perform the comparison between reconstructed and original with the DSSIM metric as it has been observed in

5



Table 1: Results for anomaly segmentation on MVTec datasets, expressed in AUROC (Area Under the Receiver
Operating Characteristics). Four different baselines are trained on normal samples and are augmented by our proposed
gradient based reconstruction (grad) for comparison: A deterministic autoencoder trained with L2 loss (L2AE) as in
(Bergmann et al., 2019); A deterministic autoencoder trained with DSSIM loss (DSAE) as in (Bergmann et al., 2019);
A variational autoencoder (VAE); And a variational autoencoder with a learned decoder variance (γ-VAE) as in (Dai
& Wipf, 2019). For each result (↑, ↓) denotes respectively an improvement or a decrease in performance of less than
10%, while (⇑, ⇓) denotes respectively an improvement or a decrease in performance of more than 10% compared to
the baseline. It can be seen that the proposed gradient-based reconstruction achieves the best segmentation for most
datasets, with a mean improvement rate of 9.52% over all baselines.

Category L2AE L2AE-grad DSAE DSAE-grad VAE VAE-grad γ-VAE γ-VAE-grad

Te
xt

ur
es

carpet 0.539 0.734 ⇑ 0.545 0.774 ⇑ 0.580 0.735 ⇑ 0.648 0.727 ⇑
grid 0.960 0.981 ↑ 0.960 0.980 ↑ 0.888 0.961 ↑ 0.950 0.979 ↑
leather 0.751 0.921 ⇑ 0.710 0.602 ⇓ 0.834 0.925 ⇑ 0.818 0.897 ↑
tile 0.476 0.575 ⇑ 0.496 0.626 ⇑ 0.465 0.654 ⇑ 0.491 0.581 ⇑
wood 0.630 0.805 ⇑ 0.641 0.738 ⇑ 0.695 0.838 ⇑ 0.665 0.809 ⇑

O
bj

ec
ts

bottle 0.909 0.916 ↑ 0.933 0.951 ↑ 0.902 0.922 ↑ 0.913 0.931 ↑
cable 0.732 0.864 ⇑ 0.790 0.859 ↑ 0.828 0.910 ↑ 0.777 0.880 ⇑
capsule 0.786 0.952 ⇑ 0.769 0.884 ⇑ 0.862 0.917 ↑ 0.814 0.917 ⇑
hazelnut 0.976 0.984 ↑ 0.966 0.966 0.977 0.976 ↓ 0.977 0.988 ↑
metalnut 0.880 0.899 ↑ 0.881 0.920 ↑ 0.881 0.907 ↑ 0.883 0.914 ↑
pill 0.885 0.912 ↑ 0.895 0.927 ↑ 0.888 0.930 ↑ 0.897 0.935 ↑
screw 0.979 0.980 ↑ 0.983 0.925 ↓ 0.958 0.945 ↓ 0.976 0.972 ↓
toothbrush 0.971 0.983 ↑ 0.973 0.984 ↑ 0.971 0.985 ↑ 0.971 0.983 ↑
transistor 0.906 0.921 ↑ 0.904 0.934 ↑ 0.894 0.919 ↑ 0.896 0.931 ↑
zipper 0.680 0.889 ⇑ 0.828 0.887 ↑ 0.814 0.869 ↑ 0.706 0.871 ⇑

Bergmann et al. (2018) that it provides better anomaly localization than L2 or L1 distances. For the gradient descent,
we set the step size α := 0.5, L1 regularization weight λ := 0.05 and the stop criterion is achieved when a sample
reconstruction loss is inferior to the minimum reconstruction loss over the training set.

In table 1 we show the AUROC (Area Under the Receiver Operating Characteristics) for different autoencoder meth-
ods, with different thresholds applied to the DSSIM anomaly map computed between original and reconstructed im-
ages. Note that an AUROC of 1 expresses the best possible segmentation in terms of normal and anomalous pixels.
For each autoencoder variant we compare the baseline reconstruction with the proposed gradient-based reconstruction
(grad.). It can be seen that anomaly segmentation is improved for most autoencoder variants. Although different
autoencoder models give the best results for different datasets, in almost all the cases a variant augmented with the
gradient based reconstruction provides the best anomaly segmentation.

In figure 3 we compare our anomaly segmentation with a baseline L2 autoencoder Bergmann et al. (2019) (L2AE) for
a number of image categories. For all results in figure 3, we set the same threshold to 0.2 to the anomaly detection
map given by the DSSIM metric. The visual results in figure 3 highlights an overall improvement of anomaly local-
ization by our proposed iterative reconstruction (L2AE-grad). See appendix C for additional visual results of anomaly
segmentation on remaining categories of MVTec dataset.

4.2 INPAINTING

Image inpainting is a well known image reconstruction problem which consists of reconstructing a corrupted or miss-
ing part of an image, where the region to be reconstructed is usually given by a known mask. Many different ap-
proaches for inpainting have been proposed in the literature, such as anisotropic diffusion (Bertalmio et al., 2000),
patch matching (Criminisi et al., 2004), context autoencoders (Pathak et al., 2016) and conditional variational autoen-
coders (Ivanov et al., 2019).

If we consider that the region to be reconstructed is not known beforehand, the problem is sometimes called blind
inpainting (Altinel et al., 2018), and the corrupted part can be seen as an anomaly to be corrected.
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Figure 3: First row: Normal samples of hazelnut, grid, cable, wood, carpet and bottle categories in MVTec dataset;
Second row: anomalous samples from the aforementioned dataset categories; Third row: Anomaly segmentation
with baseline L2 autoencoder (Bergmann et al., 2019); Fourth row: our proposed anomaly segmentation with L2

autoencoder augmented with gradient-based iterative reconstruction. Ground truth is represented by red contour, and
each estimated segmentation by a green overlay. It can be seen that anomaly segmentation is refined by our proposed
method, with a tendency of detecting less false positives.

We performed experiments with image inpainting on the CelebA dataset (Liu et al., 2015), which consists of celebrity
faces. In figure 4 we compare the inpainting results obtained with a baseline VAE with learned variance (γ-VAE)
and Resnet architecture, as described by Dai & Wipf (2019), with the same VAE model, augmented by our proposed
gradient-based iterative reconstruction. Note that for the regular inpainting task, gradients are multiplied by the in-
painting mask at each iteration (equation 7), while for the blind inpainting task, the mask is unknown. See appendix D
for a comparison with a recent method based on variational autoencoders, proposed by Ivanov et al. (2019).

5 RELATED WORK

Baur et al. (2018) have used autoencoder reconstructions to localize anomalies in MRI scans, and have compared
several variants using diverse per-pixel distances as well as perceptual metrics derived from a GAN-like architecture.
Bergmann et al. (2018) use the structural similarity metric (Wang et al., 2004) to compare the original image and
its reconstruction to achieve better anomaly localization, and also presents the SSIM autoencoder, which is trained
directly with this metric.

Zimmerer et al. (2018) use the derivative of the VAE loss function with respect to the input, called the score. The
amplitude of the score is supposed to indicate how abnormal a pixel is. While we agree that the gradient of the loss is
an indication of an anomaly, we think that we have to integrate this gradient over the path from the input to the normal
manifold to obtain meaningful information. We compare our results to score-based results for anomaly localization in
appendix A.
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(a) Masked im-
ages

(b) Blind inpaint,
VAE

(c) Inpaint, VAE (d) Blind inpaint,
ours

(e) Inpaint, ours (f) Groundtruth

Figure 4: Inpainting experiment performed on CelebA dataset, where the test face images are masked with uniform
noise. The baseline VAE reconstruction is disturbed by the noise mask, providing a poor inpainting. The proposed
gradient-based VAE provides a more convincing inpainting by an iterative process.

The work that is the most related to ours is AnoGAN (Schlegl et al., 2017). We have mentioned above the differences
between the two approaches, which, apart from the change in underlying architectures, boil down to the ability in our
method to update directly the input image instead of searching for the optimal latent code. This enables the method
to converge faster and above all to keep higher-frequency structures of the input, which would have been deteriorated
if it were passed through the AE bottleneck. Bergmann et al. (2019) compare standard AE reconstructions techniques
to AnoGAN, and observes that AnoGAN’s performances on anomaly localizations tasks are poorer than AE’s due to
the mode collapse tendency of GAN architectures. Interestingly, updates on AnoGAN such as fast AnoGAN (Schlegl
et al., 2019) or AnoVAEGAN (Baur et al., 2018) replaced the gradient descent search of the optimal z with a learned
encoder model, yielding an approach very similar to the standard VAE reconstruction-based approaches, but with a
reconstruction loss learned by a discriminator, which is still prone to mode collapse (Thanh-Tung et al., 2019).

6 CONCLUSION

In this paper, we proposed a novel method for unsupervised anomaly localization, using gradient descent of an energy
defined by an autoencoder reconstruction loss. Starting from a sample under test, we iteratively update this sample
to reduce its autoencoder reconstruction error. This method offers a way to incorporate human priors into what is the
optimal projection of an out-of-distribution sample into the normal data manifold. In particular, we use the pixel-wise
reconstruction error to modulate the gradient descent, which gives impressive anomaly localization results in only a
few iterations. Using gradient descent in the input data space, starting from the input sample, enables us to over-
come the autoencoder tendency to provide blurry reconstructions and keep normal high frequency structures. This
significantly reduces the number of pixels that could be wrongly classified as defects when the autoencoder fails to
reconstruct high frequencies. We showed that this method, which can easily be added to any previously trained au-
toencoder architecture, gives state-of-the-art results on a variety of unsupervised anomaly localization datasets, as well
as qualitative reconstructions on an inpainting task. Future work can focus on replacing the L1-based regularization
term with a Bayesian prior modeling common types of anomalies, and on further improving the speed of the gradient
descent.
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A COMPARISON WITH ZIMMERER ET AL. (2019)

Table 2: Complementary results for anomaly segmentation on MVTec datasets, expressed in AUROC for different
pixel-wise scores derived from a baseline VAE: from left to right, squared error reconstruction ||x− fV AE(x)||2 (de-
noted Lr(x)), gradient of the loss |∇xL(x)|, combination of both, gradient of the KL divergence |DKL(q(z|x)‖p(z))
(denoted |∇xLKL(x)|) as well as combination of KL derivative and error reconstruction as suggested in Zimmerer
et al. (2018; 2019).

Category Lr(x) |∇xL(x)| |∇xL(x)| � Lr(x) |∇xLKL(x)| |∇xLKL(x)| � Lr(x) VAE-grad

Te
xt

ur
es

carpet 0.537 0.580 0.566 0.553 0.555 0.735
grid 0.823 0.635 0.812 0.507 0.790 0.961
leather 0.783 0.650 0.792 0.627 0.791 0.925
tile 0.547 0.606 0.581 0.623 0.588 0.654
wood 0.686 0.691 0.726 0.643 0.713 0.838

O
bj

ec
ts

bottle 0.831 0.762 0.832 0.629 0.830 0.922
cable 0.831 0.796 0.846 0.674 0.841 0.910
capsule 0.765 0.754 0.772 0.642 0.795 0.917.
hazelnut 0.907 0.831 0.908 0.468 0.885 0.976
metalnut 0.833 0.831 0.870 0.710 0.834 0.907
pill 0.869 0.833 0.872 0.480 0.826 0.930
screw 0.851 0.726 0.842 0.412 0.795 0.945
toothbrush 0.942 0.798 0.943 0.619 0.939 0.985
transistor 0.788 0.843 0.834 0.801 0.836 0.919
zipper 0.725 0.674 0.729 0.562 0.727 0.869

Zimmerer et al. (2019) proposed to perform anomaly localization using different scores derived from the gradient of
the VAE loss. In particular, it has been shown that the product of the VAE reconstruction error with the gradient of
the KL divergence was very informative for medical images. In table 2 we compare the pixel-wise anomaly detection
AUROC of these different scores with our method. For all experiments, we use the same “vanilla” VAE as described
in section 4.1.

It can be seen that other VAE-based methods using a single evaluation of the gradient are constantly outperformed by
our method.
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B CONVERGENCE SPEED

Figure 5: Evolution of pixel-wise anomaly detection AUROC performance.

In figure 5 we compare the number of iterations needed to reach convergence with our two proposals for gradient
descent: Standard update as in equation 5 and Tuned update using a gradient mask computed with the VAE recon-
struction error, as in equation 8. The model is a VAE with learned decoder variance (Dai & Wipf, 2019), trained on the
Grid dataset (Bergmann et al., 2019). We compute the mean pixel-wise anomaly detection AUROC after each iteration
on the test set.

We can see that the tuned method converges to the same performance as the standard method, with far fewer iterations.
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C ADDITIONAL ANOMALY SEGMENTATION RESULTS

Figure 6: From left to right: Normal; Anomalous; Anomaly segmentation with baseline L2 autoencoder (Bergmann
et al., 2019); Our proposed anomaly segmentation with L2 autoencoder augmented with gradient-based iterative re-
construction.
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D INPAINTING COMPARISON

Figure 7: Inpainting comparison with specialized method. Each batch is made of four rows, from top to bottom:
Masked input image; VAEVC Ivanov et al. (2019); Ours; Ground truth.
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E ILLUSTRATION OF THE OPTIMIZATION PROCESS

Figure 8: Principle of the energy optimization to project anomalous sample on the normal manifold

Figure 8 illustrates our method principle. We start with a defective input x0 whose reconstruction x̂0 does not nec-
essarily lie on the normal data manifold. As the optimization process carries on, the optimized sample x0 and its
reconstruction look more similar and get closer to the manifold. The regularization term of the energy function makes
sure that the optimized sample stays close to the original sample.
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