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ABSTRACT

A key component of most neural network architectures is the use of normalization
layers, such as Batch Normalization. Despite its common use and large utility in
optimizing deep architectures that are otherwise intractable, it has been challeng-
ing both to generically improve upon Batch Normalization and to understand the
circumstances that lend themselves to other enhancements. In this paper, we iden-
tify four improvements to the generic form of Batch Normalization and the cir-
cumstances under which they work, yielding performance gains across all batch
sizes while requiring no additional computation during training. These contri-
butions include proposing a method for reasoning about the current example in
inference normalization statistics, fixing a training vs. inference discrepancy; rec-
ognizing and validating the powerful regularization effect of Ghost Batch Normal-
ization for small and medium batch sizes; examining the effect of weight decay
regularization on the scaling and shifting parameters γ and β; and identifying a
new normalization algorithm for very small batch sizes by combining the strengths
of Batch and Group Normalization. We validate our results empirically on five
datasets: CIFAR-100, SVHN, Caltech-256, Oxford Flowers102, and ImageNet.

1 INTRODUCTION

Neural networks have transformed machine learning, forming the backbone of models for tasks in
computer vision, natural language processing, and robotics, among many other domains (Krizhevsky
& Hinton, 2009; He et al., 2017; Levine et al., 2016; Sutskever et al., 2014; Graves et al., 2013). A
key component of many neural networks is the use of normalization layers such as Batch Normaliza-
tion (Ioffe & Szegedy, 2015), Group Normalization (Wu & He, 2018), or Layer Normalization (Ba
et al., 2016), with Batch Normalization the most commonly used for vision-based tasks. While
the true reason why these methods work is still an active area of research (Santurkar et al., 2018),
normalization techniques typically serve the purpose of making neural networks more amenable
to optimization, allowing the training of very deep networks without the use of careful initializa-
tion schemes (Simonyan & Zisserman, 2015; Zhang et al., 2019), custom nonlinearities (Klambauer
et al., 2017), or other more complicated techniques (Xiao et al., 2018). Even in situations where
training without normalization layers is possible, their usage can still aid generalization (Zhang
et al., 2019). In short, normalization layers make neural networks train faster and generalize better.

Despite this, it has been challenging to improve normalization layers. In the general case, a new
approach would need to be uniformly better than existing normalization methods, which has proven
difficult. It has even been difficult to tackle a simpler task: characterizing when specific changes
to common normalization approaches might yield benefits. In all, this has created an environment
where approaches such as Batch Normalization are still used as-is, unchanged since their creation.

In this work we identify four techniques that everyone should know to improve their usage of Batch
Normalization, arguably the most common method for normalization in neural networks. Taken
together, these techniques apply in all circumstances in which Batch Normalization is currently used,
ranging from large to very small batch sizes, including one method which is even useful when the
batch size B = 1, and for each technique we identify the circumstances under which it is expected
to be of use. In summary, our contributions are:
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1. A way to more effectively use the current example during inference, fixing a discrepancy
between training and inference that had been previously overlooked,

2. Identifying Ghost Batch Normalization, a technique originally designed for very large-
batch multi-GPU training (Hoffer et al., 2017), as surprisingly effective even in the
medium-batch, single-GPU regime,

3. Recognizing weight decay of the scaling and centering variables γ and β as a valuable
source of regularization, an unstudied detail typically neglected, and

4. Proposing a generalization of Batch and Group Normalization in the small-batch setting,
effectively making use of cross-example information present in the minibatch even when
such information is not enough for effective normalization on its own.

Experimentally, we study the most common use-case of Batch Normalization, image classification,
which is fundamental to most visual problems in machine learning. In total, these four techniques
can have a surprisingly large effect, improving accuracy by over 6% on one of our benchmark
datasets while only changing the usage of Batch Normalization layers.

The remainder of this paper is organized as follows: in Sec. 2 we provide an overview of work
related to Batch Normalization, and in Sec. 3 we give details of each of the techniques. For clarity,
we demonstrate experiments throughout the exposition, examining each technique in detail, and then
provide experiments combining the techniques in Sec. 4, concluding with Sec. 5.

2 RELATED WORK/BACKGROUND ON NORMALIZATION METHODS

Most normalization approaches in neural networks, including Batch Normalization, have the general
form of normalizing their inputs xi to have a learnable mean and standard deviation:

x̂i = γ
xi − µi√
σ2
i + ε

+ β (1)

where γ and β are the learnable parameters, typically initialized to 1 and 0, respectively. Where
approaches typically differ is in how the mean µi and variance σ2

i are calculated.

Batch Normalization (Ioffe & Szegedy, 2015), the pioneering work in normalization layers, defined
µi and σ2

i as calculated for each channel or feature map separately across a minibatch of data. For
example, in a convolutional layer, the mean and variance are computed across all spatial locations
and training examples in a minibatch. During inference, these statistics are replaced with an expo-
nential moving average of the mean and variance during training, which allows for the predictions
for each image to be independent from all other images. The effectiveness of Batch Normaliza-
tion is undeniable, playing a key role in nearly all state-of-the-art convolutional neural networks
since its discovery (Szegedy et al., 2016; 2017; He et al., 2016a;b; Zoph & Le, 2017; Zoph et al.,
2018; Hu et al., 2018; Howard et al., 2017; Sandler et al., 2018). Despite this, there is still a fairly
limited understanding of Batch Normalization’s efficacy — while Batch Normalization’s original
motivation was to reduce internal covariate shift during training (Ioffe & Szegedy, 2015), recent
work has instead proposed that its true effectiveness stems from making the optimization landscape
smoother (Santurkar et al., 2018).

One weakness of Batch Normalization is its critical dependence on having a reasonably large batch
size, due to the inherent approximation of estimating the mean and variance with a single batch of
data. Several works propose methods without this limitation: Layer Normalization (Ba et al., 2016),
which has found use in many natural language processing tasks (Vaswani et al., 2017), tackles this
by calculating µi and σ2

i over all channels, rather than normalizing each channel independently, but
does not calculate statistics across examples in each batch. Instance Normalization (Ulyanov et al.,
2016), in contrast, only calculates µi and σ2

i using the information present in each channel, rely-
ing on the content of each channel at different spatial locations to provide effective normalization
statistics. Group Normalization (Wu & He, 2018) generalizes Layer and Instance Normalization,
calculating statistics in “groups” of channels, allowing for stronger normalization power than In-
stance Normalization, but still allowing for each channel to contribute significantly to the statistics
used for its own normalization. The number of normalization groups per normalization layer is
typically set to a global constant in group normalization, though alternatives such as specifying the
number of channels per group have also been tried (Wu & He, 2018).
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Besides these most common approaches, many other forms of normalization also exist: For exam-
ple, Weight Normalization (Salimans & Kingma, 2016) normalizes the weights of each layer instead
of the inputs, parameterizing them in terms of a vector giving the direction of the weights and an ex-
plicit scale, which must be initialized very carefully. Batch Renormalization (Ioffe, 2017) explicitly
tries to address the small batch problem by using the moving average of batch statistics to normal-
ize during training, parameterized in such a way that gradients still propagate through the minibatch
mean and standard deviation, but introduces two new hyperparameters and still suffers somewhat di-
minished performance in the small-batch setting, performing worse than Group Normalization (Wu
& He, 2018). More recently, Switchable Normalization (Luo et al., 2019) aims to learn a more
effective normalizer by calculating µi and σ2

i as learned weighted combinations of the statistics
computed from other normalization methods. While flexible, care must be taken for two reasons:
First, as the parameters are learned differentiably, they are fundamentally aimed at minimizing the
training loss, rather than improved generalization, which typical hyperparameters are optimized for
on validation sets. Second, the choice of which normalizers to include in the weighted combination
remains important, manifesting in Switchable Normalization’s somewhat worse performance than
Group Normalization for small batch sizes. Beyond these, there are many approaches we omit for
lack of space (Littwin & Wolf, 2018; Deecke et al., 2019; Hoffer et al., 2018; Klambauer et al.,
2017; Xiao et al., 2018; Zhang et al., 2019).

3 IMPROVING NORMALIZATION: WHAT EVERYONE SHOULD KNOW

In this section we detail four methods for improving Batch Normalization. We also refer readers to
the Appendix for a discussion of methods which do not improve normalization layers (sometimes
surprisingly so). For clarity, we choose to interleave descriptions of the methods with experimental
results, which aids in understanding each of the approaches as they are presented. We experiment
with four standard image-centric datasets in this section: CIFAR-100, SVHN, Caltech-256, and
ImageNet, and report results on validation datasets in order to fully describe each approach without
contaminating test-set results. We give results on test sets, and experimental details in Sec. 4.

3.1 INFERENCE EXAMPLE WEIGHING

Batch Normalization has a disparity in function between training inference: As previously noted,
Batch Normalization calculates its normalization statistics over each minibatch of data separately
while training, but during inference a moving average of training statistics is used, simulating the
expected value of the normalization statistics. Resolving this disparity is a common theme among
methods that have sought to replace Batch Normalization (Ba et al., 2016; Ulyanov et al., 2016;
Salimans & Kingma, 2016; Wu & He, 2018; Ioffe, 2017). Here we identify a key component of this
training versus inference disparity which can be fixed within the context of Batch Normalization
itself, improving it in the general case: when using a moving average during inference, each example
does not contribute to its own normalization statistics.

To give an example of the effect this has, we consider the output range of Batch Normalization.
During training, due to the inclusion of each example in its own normalization statistics, it can be
shown1 that the minimum possible output of a Batch Normalization layer is:

min
x1,...,xB−1

γ
x0 − µi√
σ2
i + ε

+ β = −γ
√
B − 1 + β (2)

with a corresponding maximum value of γ
√
B − 1 + β, where B is the batch size, and we assume

for simplicity that Batch Norm is being applied non-convolutionally. In contrast, during inference
the output range of Batch Normalization is unbounded, creating a discrepancy.

Fortunately, once this problem has been realized, it is possible to fix — we need only figure out how
to incorporate example statistics during inference. Denoting mx as the moving average over x and

1Proof in Appendix.
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Figure 1: Effect of the example-weighing hyperparameter α on ImageNet for ResNet-152, Mo-
bileNetV2, and NASNet-A, measuring top-1 and top-5 accuracies and the cross-entropy loss.
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Figure 2: Effect of the example-weighing hyperparameter α for models trained with Group Nor-
malization on CIFAR-100, SVHN, and Caltech-256.

mx2 the corresponding moving average over x2, we apply the following normalization:

µi = αE[xi] + (1− α)mx

σ2
i = (αE[x2i ] + (1− α)mx2)− µ2

i

x̂i = γ
xi − µi√
σ2
i + ε

+ β

(3)

where α is the contribution of xi to the normalization statistics, and we have reparameterized the
variance as σ2

i = E[x2i ]− E[xi]
2.

Given this formulation, a natural question is the choice of the parameter α, where α = 0 corresponds
to the classical inference setting of Batch Normalization and α = 1 replicates the setting of tech-
niques which do not use cross-image information in calculating normalization statistics. Intuitively,
it would make sense for the optimal value to be α = 1

B . However, this turns out to not be the case —
instead, α is a hyperparameter best optimized on a validation set, whose optimal value may depend
the model, dataset, and metric being optimized. While counterintuitive, this can be explained by the
remaining set of differences between training and inference: for a basic yet fundamental example,
the fact that the model has been fit on the training set (also typically with data augmentation) may
produce systematically different normalization statistics between training and inference.

An advantage of this technique is that we can apply it retroactively to any model trained with Batch
Normalization, allowing us to verify its efficacy on a wide variety of models. In Fig. 1 we show
the effect of α on the ImageNet ILSVRC 2012 validation set (Russakovsky et al., 2015) for three
diverse models: ResNet-152 (He et al., 2016b), MobileNetV2 (Sandler et al., 2018), and NASNet-A
Large (Zoph et al., 2018)2. On ResNet-152, for example, proper setting of α can increase accuracy
by up to 0.6%, top-5 accuracy by 0.16%, and loss by a relative 4.7%, which are all quite significant
given the simplicity of the approach, the competitiveness of ImageNet as a benchmark, and the fact
that the improvement is essentially “free” — it involves only modifying the inference behavior of
Batch Normalization layers, and does not require any re-training. Across models, the optimal value
for α was largest for NASNet-A, the most memory-intensive (and therefore smallest batch size)
model of the three. We refer the reader to the Appendix for additional plots with larger ranges of α.

Surprisingly, it turns out that this approach can have positive effects on models trained without any
cross-image normalization at all, such as models trained with Group Normalization (Wu & He,

2Models obtained from (Silberman & Guadarrama).
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2018). We demonstrate this in Fig. 2, where we find that adding a tiny amount of information
from the moving average statistics can actually result in small improvements, with relatively larger
improvements in accuracy on Caltech-256 and cross entropy loss on CIFAR-100 and SVHN. This
finding is extremely surprising, since adding in any information from the moving averages at all
represents a clear difference from the training setting of Group Normalization. Similar to the unin-
tuitive optimal value for α, we hypothesize that this effect is due to other differences in the settings
of training and inference: for example, models are generally trained on images with the application
of data augmentation, such as random cropping. During inference, though, images appear unper-
turbed, and it might be the case that incorporating information from the moving averages is a way
of influencing the model’s intermediate activations to be more similar to those of data augmented
images, which it has been trained on. This mysterious behavior may also point to more general
approaches for resolving training-inference discrepancies, and is worthy of further study.

Summary: Inference example weighing resolves one disparity between training and inference for
Batch Normalization, is uniformly beneficial across all models and very easy to tune to metrics of
interest, and can be used with any model trained with Batch Normalization, even retroactively.

3.2 GHOST BATCH NORMALIZATION FOR MEDIUM BATCH SIZES

Ghost Batch Normalization, a technique originally developed for training with very large batch sizes
across many accelerators (Hoffer et al., 2017), consists of calculating normalization statistics on dis-
joint subsets of each training batch. Concretely, with an overall batch size of B and a “ghost” batch
size of B′ such that B′ evenly divides B, the normalization statistics for example i are calculated as

µi =
1

B′

B∑
j=1

xj [

⌊
jB′

B

⌋
=

⌊
iB′

B

⌋
]

σ2
i =

1

B′

B∑
j=1

x2j [

⌊
jB′

B

⌋
=

⌊
iB′

B

⌋
]− µ2

i

(4)

where [·] is the Iverson bracket, with value 1 if its argument is true and 0 otherwise. Ghost Batch
Normalization was previously found to be an important factor in reducing the generalization gap
between large-batch and small-batch models (Hoffer et al., 2017), and has since been used by sub-
sequent research rigorously studying the large-batch regime (Shallue et al., 2018). Here, we show
that it can also be useful in the medium-batch setting3.

Why might Ghost Batch Normalization be useful? One reason is its power as a regularizer: due to
the stochasticity in normalization statistics caused by the random selection of minibatches during
training, Batch Normalization causes the representation of a training example to randomly change
every time it appears in a different batch of data. Ghost Batch Normalization, by decreasing the
number of examples that the normalization statistics are calculated over, increases the strength of
this stochasticity, thereby increasing the amount of regularization. Based on this theory, we would
expect to see a unimodal effect of the Ghost Batch Normalization size B′ on model performance —
a large value of B′ would offer somewhat diminished performance as a weaker regularizer, a very
low value ofB′ would have excess regularization and lead to poor performance, and an intermediate
value would offer the best tradeoff of regularization strength.

We confirm this intuition in Fig. 3. Surprisingly, just using this one simple technique was capable
of improving performance by 5.8% on Caltech-256 and 0.84% on CIFAR-100, which is remarkable
given it has no additional cost during training. On SVHN, though, where baseline performance is
already a very high 98.79% and models do not overfit much, usage of Ghost Batch Normalization
did not result in an improvement, giving evidence that at least part of its effect is regularization in
nature. In practice, B′ may be treated as an additional hyperparameter to optimize.

As a bonus, Ghost Batch Normalization has a synergistic effect with inference example weighing
— it has the effect of making each example more important in calculating its own normalization
statistics µi and σ2

i , with greater effect the smallerB′ is, precisely the setting that inference example
weighing corrects for. We show these results in Fig. 4, where we find increasing gain from inference

3We experiment with batch sizes up to 128 in this work.
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Figure 3: Accuracy vs. Ghost Batch Normalization size for CIFAR-100, SVHN, and Caltech-256.
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Figure 4: The complementary effects of Inference Example Weighing (Sec. 3.1) and Ghost Batch
Normalization (Sec. 3.2) on CIFAR-100, SVHN, and Caltech-256.

example weighing as B′ is made smaller, a gain that compounds from the benefits of Ghost Batch
Normalization itself. Interestingly, these examples also demonstrate that accuracy and cross-entropy,
the most commonly-used classification loss, are only partially correlated, with the optimal values for
the inference example weight α sometimes differing wildly between the two (e.g. for SVHN).

Summary: Ghost Batch Normalization is beneficial for all but the smallest of batch sizes, has no
computational overhead, is straightforward to tune, and can be used in combination with inference
example weighing to great effect.

3.3 BATCH NORMALIZATION AND WEIGHT DECAY

Weight decay (Krogh & Hertz, 1992) is a regularization technique that scales the weight of a neural
network after each update step by a factor of 1 − δ, and has a complex interaction with Batch
Normalization. At first, it may even seem paradoxical that weight decay has any effect in a network
trained with Batch Normalization, as scaling the weights immediately before a normalization layer
by any non-zero constant has mathematically almost no effect on the output of the normalization
layer (and no effect at all when ε = 0). However, weight decay actually has a subtle effect on the
effective learning rate of networks trained with Batch Normalization — without weight decay, the
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weights in a batch-normalized network grow to have large magnitudes, which has an inverse effect
on the effective learning rate, hampering training (Hoffer et al., 2018; van Laarhoven, 2017).

Here we turn our attention to the less studied scale and bias parameters common in most normaliza-
tion methods, γ and β. As far as we are aware, the effect of regularization on γ and β has not been
studied to any great extent — Wu & He (2018) briefly mention weight decay with these parame-
ters, where weight decay was used when training from scratch, but not fine-tuning, and two other
papers (Goyal et al., 2017; He et al., 2016a) have this form of weight decay explicitly turned off.

Unlike weight decay on weights in e.g. convolutional layers, which typically directly precede nor-
malization layers, weight decay on γ and β can have a regularization effect so long as there is a
path in the network between the layer in question and the ultimate output of the network, as if such
paths do not pass through another normalization layer, then the weight decay is never “undone” by
normalization. This structure is only common in certain types of architectures; for example, Resid-
ual Networks (He et al., 2016a;b) have such paths for many of their normalization layers due to
the chaining of skip-connections. However, Inception-style networks (Szegedy et al., 2016; 2017)
have no residual connections, and despite the fact that each “Inception block” branches into multiple
paths, every Batch Normalization layer other than those in the very last block do not have a direct
path to the network’s output.

We evaluated the effects of weight decay on γ and β on CIFAR-100 across 10 runs, where we found
that incorporating it improved accuracy by a small but significant 0.3% (P = 0.002). Interestingly,
even though γ has a multiplicative effect, we did not find it mattered whether γ was regularized to 0
or 1 (P = 0.46) — what was important was whether it had weight decay applied at all.

We did the same comparison on Caltech-256 with Inception-v3 and ResNet-50 networks, where we
found evidence that the network architecture plays a crucial effect: for Inception-v3, incorporating
weight decay on γ and β actually hurt performance by 0.13% (mean across 3 trials), while it im-
proved performance for the ResNet-50 network by 0.91%, supporting the theory that the structure
of paths between layers and the network’s output are what matter in determining its utility.

On SVHN, where the baseline ResNet-18 already had a performance of 98.79%, we found a similar
pattern as with Ghost Batch Normalization — introducing this regularization produced no change.

Summary: Regularization in the form of weight decay on the normalization parameters γ and
β can be applied to any normalization layer, but is only effective in architectures with particular
connectivity properties like ResNets and in tasks for which models are already overfitting.

3.4 GENERALIZING BATCH AND GROUP NORMALIZATION FOR SMALL BATCHES

While Batch Normalization is very effective in the medium to large-batch setting, it still suffers
when not enough examples are available to calculate reliable normalization statistics. Although we
have shown that techniques such as Inference Example Weighing (Sec. 3.1) can help significantly
with this, it is still only a partial solution. At the same time, Group Normalization (Wu & He, 2018)
was designed for a batch size of B = 1 or greater, but ignores all cross-image information.

In order to generalize Batch and Group Normalization in the batch size B > 1 case, we propose to
expand the grouping mechanism of Group Normalization from being over only channels to being
over both channels and examples — that is, normalization statistics are calculated both within groups
of channels of each example and across examples in groups within each batch 4.

In principle, this would appear to introduce an additional hyperparameter on top of the number
of channel groups used by Group Normalization, both of which would need to be optimized by
expensive end-to-end runs of model training. However, in this case we can actually take advantage
of the fact that the target batch size is small: if the batch size B is ever large enough that having
multiple groups in the example dimension is useful, then it is also large enough to eschew usage of
the channel groups from Group Normalization, in a regime where either vanilla Batch Normalization
or Ghost Batch Normalization is more effective. Thus, when dealing with a small batch size, in
practice we only need to optimize over the same set of hyperparameters as Group Normalization.

4See submitted code for specific implementation details.
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To demonstrate, we target the extreme setting of B = 2, and incorporate Inference Example Weigh-
ing to all approaches. For CIFAR-100, this approach improves validation set performance over a
tuned Group Normalization by 0.69% in top-1 accuracy (from 73.91% to 74.60%, average over three
runs), and on Caltech-256, performance dramatically improved by 5.0% (from 48.2% to 53.2%, av-
erage over two runs). However, this approach has one downside: due to differences in feature
statistics across examples, when using only two examples the variability in the normalization statis-
tics can still be quite high, even when using multiple channels within each normalization group. As
a result, a regularization effect can occur, which may be undesirable for tasks which models are not
overfitting much. As in Sec. 3.2 and Sec. 3.3, we see this effect in SVHN, where this approach
is actually ever so slightly worse than Group Normalization on the validation set (from 98.75% to
98.73%). On such datasets and tasks, it may be more fruitful to invest in higher-capacity models.

Summary: Combining Group and Batch Normalization leads to more accurate models in the set-
ting of batch sizes B > 1, and can have a regularization effect due to Batch Normalization’s vari-
ability in statistics when calculated over small batch sizes.

4 ADDITIONAL EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

All results in Sec. 3 were performed on the validation datasets of each respective dataset (this section
examines test set performance after hyperparameters have been optimized). Of the five datasets we
experiment with, only ImageNet (Russakovsky et al., 2015) and Flowers-102 (Nilsback & Zisser-
man, 2008) have their own pre-defined validation split, so we constructed validation splits for the
other datasets as follows: for CIFAR-100 (Krizhevsky & Hinton, 2009), we randomly took 40,000
of the 50,000 training images for the training split, and the remaining 10,000 as a validation split.
For SVHN (Netzer et al., 2011), we similarly split the 604,388 non-test images in a 80-20% split for
training and validation. For Caltech-256, no canonical splits of any form are defined, so we used 40
images of each of the 256 categories for training, 10 images for validation, and 30 for testing.

The model used for CIFAR-100 and SVHN was an 18-layer ResNet (He et al., 2016b;a) with 64,
128, 256, and 512 filters across blocks. For Caltech-256, a much larger Inception-v3 (Szegedy et al.,
2016) model was used, and we additionally experiment with a ResNet-152 (He et al., 2016b) on
Flowers-102 in Sec. 4.3. All experiments were done on two Nvidia Geforce GTX 1080 Ti GPUs.

4.2 COMBINING ALL FOUR: IMPROVEMENTS ACROSS BATCH SIZES

Here we show the end-to-end effect of these four improvements on the test sets of each dataset, com-
paring against both Batch and Group Normalization. We plot results for CIFAR-100 and Caltech-
256 in Fig. 5 (left and middle), comparing against Group Normalization and an idealized Batch
Normalization with constant performance across batch sizes. On CIFAR-100, we see improvements
against the best available baseline across all batch sizes, noting that Batch Normalization degrades
in performance significantly for B ≤ 4. For larger batch sizes (B ≥ 8), improvements are driven by
the combination of Ghost Batch Normalization (Sec. 3.2), Inference Example Weighing (Sec. 3.1),
and weight decay introduced on γ and β (Sec. 3.3), for B = 1 improvements are due to the in-
troduced weight decay, and for B = 2 the generalization of Batch and Group Normalization leads
to the improvement (Sec. 3.4), with some additional effect from weight decay. Improvements on
Caltech-256 follow the same trends, but to greater magnitude, with a total increase in performance
of 6.5% over Batch Normalization and an increase of 5.9% over Group Normalization for B = 2.

4.3 TRANSFER LEARNING

We also show the applicability of these approaches in the context of transfer learning, which we
demonstrate on the Flowers-102 dataset Nilsback & Zisserman (2008) via fine-tuning a ResNet-152
model from ImageNet. This task presents several challenges: 1) the Flowers-102 data only contains
10 images per category in the training set, 2) pre-training models on ImageNet is a very strong form
of prior knowledge, and despite the small dataset size may heavily reduce the regularization effects
of some of the techniques, and 3) we examine the setting of pre-training with generic ImageNet
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Figure 5: Total performance changes across batch sizes for CIFAR-100 (left) and Caltech-256
(middle) when training from scratch, incorporating all proposed improvements to Batch Normal-
ization. At right is the same on Flowers-102, which employs transfer learning via fine-tuning from
ImageNet. Also shown within each plot is the performance of Group Normalization and an idealized
Batch Normalization that scales perfectly across batch sizes.

models trained without any of these modifications, which gives an advantage to both the generic
Batch Normalization and Group Normalization, for which pre-trained models exist.

We plot results in Fig. 5 (right), where we find remarkable qualitative agreement of our non-transfer
learning results to this setting, despite the challenges. In total, our techniques were able to improve
upon Batch Normalization by 2.4% (from 91.0% to 93.4% top-1 accuracy, a 27% relative reduction
in error), and upon Group Normalization by 6.1% (from 87.3%, a 48% relative reduction in error).
We anticipate that even further improvements might arise by additionally pre-training models with
some of these techniques (particularly Ghost Batch Normalization), as we were able to see a large
impact (roughly 5%) on Group Normalization by pre-training with a Group Normalization-based
model instead of Batch Normalization.

5 CONCLUSION

In this work, we have demonstrated four improvements to Batch Normalization that should be known
by all who use it. These include: a method for leveraging the statistics of inference examples
more effectively in normalization statistics, fixing a discrepancy between training and inference with
Batch Normalization; demonstrating the surprisingly powerful effect of Ghost Batch Normalization
for improving generalization of models without requiring very large batch sizes; investigating the
previously unstudied effect of weight decay on the scaling and shifting parameters γ and β; and
introducing a new approach for normalization in the small batch setting, generalizing and leveraging
the strengths of both Batch and Group Normalization. In each case, we have done our best to not
only demonstrate the effect of the method, but also provide guidance and evidence for precisely
which cases in which it may be effective, which we hope will aid in their applicability.
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A PROOF OF BATCH NORMALIZATION OUTPUT BOUNDS

Here we present a proof of Eq. 2. We first prove the bound as an inequality and then show that it
is tight. Without loss of generality, we assume that x0 is the minimum of {xi}B−1i=0 and that γ ≥ 0.
Then we want to show that

min
x1,...,xB−1

γ
x0 − µi√
σ2
i + ε

+ β = −γ
√
B − 1 + β (5)

Expanding µi and σ2
i (using the maximum likelihood estimator for σ2

i ), and canceling the scaling
and offset terms γ and β, we want to show

min
x1,...,xB−1

x0 − 1
B

∑B−1
i=0 xi√

1
B

∑B−1
i=0 (xi − 1

B

∑B−1
j=0 xj)

2 + ε
= −
√
B − 1 (6)

From here we assume without loss of generality that x0 = 0 and that all xi ≥ 0, and frame the
minimum as a bound

− 1
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With a change of variables, we have the more general(
N−1∑
i=0

xi

)2

≤ N
N−1∑
i=0

x2i (17)

1

N2

(
N−1∑
i=0

xi

)2

≤ 1

N

N−1∑
i=0

x2i (18)

E[x]2 ≤ E[x2] (19)

E[x2]− E[x]2 ≥ 0 (20)

which is simply an alternate form for the variance of x, which is always non-negative, completing
the bound.

To show that the bound is tight, we can set x0 = 0 and xi = a for all i > 0, where a is a non-negative
constant:
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As a→∞ (or if ε = 0), then this approaches

−(B − 1)a

a
√

(B − 1)
(28)

which is simply
−
√

(B − 1) (29)

completing the proof.

B NEGATIVE RESULTS: APPROACHES THAT DIDN’T WORK.

Here we detail a handful of approaches which seemed intuitively promising but ultimately failed to
produce positive results.
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BATCH NORMALIZATION MOVING AVERAGES. In an attempt to resolve the other disparities
Batch Normalization has between its training and inference behaviors, we experimented with a
handful of different approaches for modifying the moving averages used during inference. First,
since examples at inference time do not have data augmentation applied to them, we tried comput-
ing the moving averages over examples without data augmentation (implemented by training the
model for a few extra epochs over non-augmented examples with a learning rate of 0, but while still
updating the moving average variables). This decreased accuracy on CIFAR-100 by roughly half a
percent, though it did yield mild improvements to the test set cross-entropy loss.

Next, we experimented with calculating the moving averages over the test set, not making use of
any of the test labels. Perhaps surprisingly, this behaved very similar to when moving averages were
calculated over the training examples (within 0.1% in accuracy and within 1% in cross-entropy),
with trends holding regardless of whether data augmentation was applied or not.

ADDING BATCH NORMALIZATION-LIKE STOCHASTICITY TO GROUP NORMALIZATION. One
of the hypotheses for why Group Normalization generally performs slightly worse than Batch Nor-
malization is the regularization effect of Batch Normalization due to random minibatches producing
variability in the normalization statistics. Therefore, we tried introducing stochasticity to Group
Normalization in a variety of ways, none of which we could get to work well: 1) Adding gaussian
noise to the normalization statistics, where the noise is based on a moving average of the normal-
ization statistics, 2) Using random groupings of channels for calculating normalization statistics
(optionally only doing randomization a fraction of the time), and 3) changing the number of groups
throughout the training procedure, either as increasing or decreasing functions of training steps.

MORE PRINCIPLED GROUP SIZE COMPUTATION. As part of generalizing Batch and Group Nor-
malization, we examined whether it was possible to determine the number of groups in each nor-
malization layer in a more principled way that simply specifying it as a constant throughout the
network. For example, one approach we had mild success with was setting the number of elements
per group (height × width × group size) to a constant, making the number of elements contributing
to the normalization statistics uniform across layers. However, we were unable to get any of these
ideas to work in a way that generalized properly across datasets. We also tried learning group sizes
in a differentiable way with Switchable Normalization, but found that this made models overfit too
much.

C SUPPLEMENTAL INFERENCE EXAMPLE WEIGHING PLOTS

In Figures 6, 7, and 8 we present plots corresponding to Figures 1, 2, and 4 of the main text, with
larger ranges of the inference weight α. In the main text, we restricted the range of α to values which
showed off the tradeoff of α versus performance at a reasonably local scale, and these figures show
a larger scale for completeness in characterizing model behavior. While this behavior can largely be
extrapolated from the behavior for a smaller range of α, there are some interesting trends.

On ImageNet 6, we see that only a small amount of inference example weighing is necessary to
get most of its benefit, and setting α to larger values corresponds to a regime quite different than in
training, smoothly decaying model performance as α becomes less and less appropriate. Similarly,
when applying inference example weighing to Group Normalization (Fig. 7, while performance
intuitively decays as α moves farther and farther away from 1, a surprisingly large range of values
for α result in similar performance to Group Normalization, especially on SVHN. Lastly, when
comparing the effect of α on models trained with Ghost Batch Normalization (Fig. 8, we clearly see
that the optimal value for α is decreasing with respect to the Ghost Batch Normalization size, with
the possible unusual exception of optimizing for loss on SVHN.
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Figure 6: Effect of the example-weighing hyperparameter α on ImageNet; supplemental version of
Fig. 1 with a larger range of α.
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Figure 7: Effect of the example-weighing hyperparameter α for models trained with Group Nor-
malization on CIFAR-100, SVHN, and Caltech-256; supplemental version of Fig. 2 with a larger
range of α.
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Figure 8: The complementary effects of Inference Example Weighing and Ghost Batch Normaliza-
tion on CIFAR-100, SVHN, and Caltech-256; supplemental version of Fig. 4 with a larger range of
α.
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