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ABSTRACT

Deep reinforcement learning (RL) algorithms can use high-capacity deep networks
to learn directly from image observations. However, these kinds of observation
spaces present a number of challenges in practice, since the policy must now solve
two problems: a representation learning problem, and a task learning problem.
In this paper, we aim to explicitly learn representations that can accelerate re-
inforcement learning from images. We propose the stochastic latent actor-critic
(SLAC) algorithm: a sample-efficient and high-performing RL algorithm for learn-
ing policies for complex continuous control tasks directly from high-dimensional
image inputs. SLAC learns a compact latent representation space using a stochas-
tic sequential latent variable model, and then learns a critic model within this
latent space. By learning a critic within a compact state space, SLAC can learn
much more efficiently than standard RL methods. The proposed model improves
performance substantially over alternative representations as well, such as vari-
ational autoencoders. In fact, our experimental evaluation demonstrates that the
sample efficiency of our resulting method is comparable to that of model-based
RL methods that directly use a similar type of model for control. Furthermore, our
method outperforms both model-free and model-based alternatives in terms of final
performance and sample efficiency, on a range of difficult image-based control
tasks. Our code and videos of our results are available at our website.1

1 INTRODUCTION

Deep reinforcement learning (RL) algorithms can automatically learn to solve certain tasks from raw,
low-level observations such as images. However, these kinds of observation spaces present a number
of challenges in practice: on one hand, it is difficult to directly learn from these high-dimensional
inputs, but on the other hand, it is also difficult to tease out a compact representation of the underlying
task-relevant information from which to learn instead. For these reasons, deep RL directly from
low-level observations such as images remains a challenging problem. Particularly in continuous
domains governed by complex dynamics, such as robotic control (Tassa et al., 2018; Brockman
et al., 2016), standard approaches still require separate sensor setups to monitor details of interest
in the environment, such as the joint positions of a robot or specific pose information of objects
of interest. To instead be able to learn directly from the more general and rich modality of vision
would greatly advance the current state of our learning systems, so we aim to study precisely this.
Standard model-free deep RL aims to use direct end-to-end training to explicitly unify these tasks of
representation learning and task learning. However, solving both problems together is difficult, since
an effective policy requires an effective representation, but in order for an effective representation to
emerge, the policy or value function must provide meaningful gradient information using only the
model-free supervision signal (i.e., the reward function). In practice, learning directly from images
with standard RL algorithms can be slow, sensitive to hyperparameters, and inefficient. In contrast to
end-to-end learning with RL, predictive learning can benefit from a rich and informative supervision
signal before the agent has even made progress on the task or received any rewards. This leads us to
ask: can we explicitly learn a latent representation from raw low-level observations that makes deep
RL easier, through learning a predictive latent variable model?

1https://rl-slac.github.io/slac/

1

https://rl-slac.github.io/slac/


Under review as a conference paper at ICLR 2020

Predictive models are commonly used in model-based RL for the purpose of planning (Deisenroth &
Rasmussen, 2011; Finn & Levine, 2017; Nagabandi et al., 2018; Chua et al., 2018; Zhang et al., 2019)
or generating cheap synthetic experience for RL to reduce the required amount of interaction with the
real environment (Sutton, 1991; Gu et al., 2016). However, in this work, we are primarily concerned
with their potential to alleviate the representation learning challenge in RL. We devise a stochastic
predictive model by modeling the high-dimensional observations as the consequence of a latent
process, with a Gaussian prior and latent dynamics, as illustrated in Figure 1. A model with an entirely
stochastic latent state has the appealing interpretation of being able to properly represent uncertainty
about any of the state variables, given its past observations. We demonstrate in our work that fully
stochastic state space models can in fact be learned effectively: With a well-designed stochastic
network, such models outperform fully deterministic models, and contrary to the observations in prior
work (Hafner et al., 2019; Buesing et al., 2018), are actually comparable to (if not better than) mixed
deterministic/stochastic models. Finally, we note that this explicit representation learning, even on
low-reward data, allows an agent with such a model to make progress on representation learning even
before it makes progress on task learning.

Equipped with this model, we can then perform RL in the learned latent space of the predictive
model. We posit—and confirm experimentally—that our latent variable model provides a useful
representation for RL. Our model represents a partially observed Markov decision process (POMDP),
and solving such a POMDP exactly would be computationally intractable (Astrom, 1965; Kaelbling
et al., 1998; Igl et al., 2018). We instead propose a simple approximation that trains a Markovian
critic on the (stochastic) latent state and trains an actor on a history of observations and actions. The
resulting stochastic latent actor-critic (SLAC) algorithm loses some of the benefits of full POMDP
solvers, but it is easy and stable to train. It also produces good results, in practice, on a range of
challenging problems, making it an appealing alternative to more complex POMDP solution methods.

The main contributions of our SLAC algorithm are useful representations learned from our stochastic
sequential latent variable model, as well as effective RL in this learned latent space. We show
experimentally that our approach substantially improves on both model-free and model-based RL
algorithms on a range of image-based continuous control benchmark tasks, attaining better final
performance and learning more quickly than algorithms based on (a) end-to-end deep RL from
images, (b) learning in a latent space produced by various alternative latent variable models, such as
a variational autoencoder (VAE) (Kingma & Welling, 2014), and (c) model-based RL based on latent
state-space models with mixed deterministic/stochastic variables (Hafner et al., 2019).

2 RELATED WORK

Representation learning in RL. End-to-end deep RL can in principle learn representations directly
as part of the RL process (Mnih et al., 2013). However, prior work has observed that RL has a
“representation learning bottleneck”: a considerable portion of the learning period must be spent
acquiring good representations of the observation space (Shelhamer et al., 2016). This motivates the
use of a distinct representation learning procedure to acquire these representations before the agent
has even learned to solve the task. The use of unsupervised learning to learn such representations
has been explored in a number of prior works (Lange & Riedmiller, 2010; Finn et al., 2016). In
contrast to this class of representation learning algorithms where temporal connections between data
are not explicitly considered, we utilize a latent-space dynamics model, which we find in empirical
comparisons to result in substantially better representations for RL. By modeling covariances between
consecutive latent states, we make it feasible for our proposed stochastic latent actor-critic (SLAC)
algorithm to perform Bellman backups directly in the latent space of the learned model. In contrast to
prior work that also uses latent-space dynamical system models (Watter et al., 2015; Karl et al., 2017;
Zhang et al., 2019; Hafner et al., 2019), our approach benefits from the good asymptotic performance
of model-free RL, while at the same time leveraging the improved latent space representation for
sample efficiency, despite not using any model-based rollouts for data augmentation.

Partial observability. Our work is also related to prior research on RL under partial observability.
Prior work has studied end-to-end RL with recurrent models (Hausknecht & Stone, 2015; Zhu et al.,
2018), as well as explicit modeling of the POMDP (Astrom, 1965; Kaelbling et al., 1998) to incorpo-
rate belief state into the policy. Prior work has also proposed to train a mixed deterministic/stochastic
hidden state model jointly with a policy for the purpose of solving POMDPs (Igl et al., 2018). Our
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approach is closely related to this prior method, in that we also use model-free RL with a hidden state
representation that is learned via prediction. However, our model learns a fully stochastic latent state,
and we focus on tasks with high-dimensional image observations for complex underlying continuous
control tasks, in contrast to (Igl et al., 2018), which evaluates on Atari tasks and low-dimensional
continuous control tasks that emphasize partial observability and knowledge-gathering actions. Our
method learns a critic directly on the latent state. This makes our method simpler and more scalable,
but at the cost of not being able to reason about the full belief state. In this sense, the strengths of
our approach and (Igl et al., 2018) are complementary, and combining their strengths would be an
interesting direction for future work.

Model stochasticity. Previous works have typically observed that mixed deterministic-stochastic
state space models are more effective (Hafner et al., 2019; Igl et al., 2018; Buesing et al., 2018)
than fully stochastic ones. In these models, the state of the underlying MDP is modeled with
the deterministic state of a recurrent network (e.g., LSTM (Hochreiter & Schmidhuber, 1997) or
GRU (Cho et al., 2014)), and optionally with some stochastic random variables. As mentioned
earlier, a model with a latent state that is entirely stochastic has the appealing interpretation of
learning a representation that can properly represent uncertainty about any of the state variables,
given past observations. We demonstrate in our work that fully stochastic state space models can in
fact be learned effectively and, with a well-designed stochastic network, such models substantially
outperform both fully deterministic and mixed deterministic/stochastic models.

3 REINFORCEMENT LEARNING AND MODELING

This work addresses the problem of learning maximum entropy policies from high-dimensional
observations in POMDPs, by simultaneously learning a latent representation of the underlying MDP
state using variational inference and learning the policy in a maximum entropy RL framework. In
this section, we describe maximum entropy RL (Ziebart, 2010; Haarnoja et al., 2018a; Levine, 2018)
in fully observable MDPs, as well as variational methods for training latent state space models for
POMDPs.

3.1 MAXIMUM ENTROPY RL IN FULLY OBSERVABLE MDPS

In a Markov decision process (MDP), an agent at time t takes an action at ∈ A from state st ∈ S
and reaches the next state st+1 ∈ S according to some stochastic transition dynamics p(st+1|st,at).
The initial state s1 comes from a distribution p(s1), and the agent receives a reward rt on each of
the transitions. Standard RL aims to learn the parameters φ of some policy πφ(at|st) such that the
expected sum of rewards is maximized under the induced trajectory distribution ρπ. This objective
can be modified to incorporate an entropy term, such that the policy also aims to maximize the
expected entropyH(πφ(·|st)) under the induced trajectory distribution ρπ. This formulation has a
close connection to variational inference (Ziebart, 2010; Haarnoja et al., 2018a; Levine, 2018), and
we build on this in our work. The resulting maximum entropy objective is

φ∗ = arg max
φ

T∑
t=1

E
(st,at)∼ρπ

[r(st,at) + αH(πφ(·|st))], (1)

where r is the reward function, and α is a temperature parameter that controls the trade-off between
optimizing for the reward and for the entropy (i.e., stochasticy) of the policy. Soft actor-critic
(SAC) (Haarnoja et al., 2018a) uses this maximum entropy RL framework to derive soft policy
iteration, which alternates between policy evaluation and policy improvement within the described
maximum entropy framework. SAC then extends this soft policy iteration to handle continuous
action spaces by using parameterized function approximators to represent both the Q-function Qθ
(critic) and the policy πφ (actor). The soft Q-function parameters θ are optimized to minimize the
soft Bellman residual,

JQ(θ) = E
(st,at,rt,st+1)∼D

[
1

2
(Qθ(st,at)− (rt + γVθ̄(st+1)))

2

]
, (2)

Vθ̄(st+1) = E
at+1∼πφ

[Qθ̄(st+1,at+1)− α log πφ(at+1|st+1)] , (3)
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where D is the replay buffer, γ is the discount factor, and θ̄ are delayed parameters. The policy
parameters φ are optimized to update the policy towards the exponential of the soft Q-function,

Jπ(φ) = E
st∼D

[
E

at∼πφ
[α log(πφ(at|st))−Qθ(st,at)]

]
. (4)

Results of this stochastic, entropy maximizing RL framework demonstrate improved robustness
and stability. SAC also shows the sample efficiency benefits of an off-policy learning algorithm, in
conjunction with the high performance benefits of a long-horizon planning algorithm. Precisely for
these reasons, we choose to extend the SAC algorithm in this work to formulate our SLAC algorithm.

3.2 SEQUENTIAL LATENT VARIABLE MODELS AND AMORTIZED VARIATIONAL INFERENCE
IN POMDPS

To learn representations for RL, we use latent variable models trained with amortized variational
inference. The learned model must be able to process a large number of pixels that are present in the
entangled image x, and it must tease out the relevant information into a compact and disentangled
representation z. To learn such a model, we can consider maximizing the probability of each observed
datapoint x from some training set D under the entire generative process p(x) =

∫
p(x|z)p(z) dz.

This objective is intractable to compute in general due to the marginalization of the latent variables z.
In amortized variational inference, we utilize the following bound on the log-likelihood (Kingma &
Welling, 2014),

Ex∼D [log p(x)] ≥ Ex∼D [Ez∼q [log p(x|z)]−DKL (q(z|x) ‖ p(z))] . (5)

We can maximize the probability of the observed datapoints (i.e., the left hand side of Equation (5))
by learning an encoder q(z|x) and a decoder p(x|z), and then directly performing gradient ascent on
the right hand side of the equation. In this setup, the distributions of interest are the prior p(z), the
observation model p(x|z), and the posterior q(z|x).

Although such generative models have been shown to successfully model various types of complex
distributions (Kingma & Welling, 2014) by embedding knowledge of the distribution into an informa-
tive latent space, they do not have a built-in mechanism for the use of temporal information when
performing inference. In the case of partially observable environments, as we discuss below, the
representative latent state zt corresponding to a given non-Markovian observation xt needs to be
informed by past observations.

Consider a partially observable MDP (POMDP), where an action at ∈ A from latent state zt ∈ Z
results in latent state zt+1 ∈ Z and emits a corresponding observation xt+1 ∈ X . We make an
explicit distinction between an observation xt and the underlying latent state zt, to emphasize that
the latter is unobserved and the distribution is not known a priori. Analogous to the fully observable
MDP, the initial state distribution is p(z1), the transition probability distribution is p(zt+1|zt,at),
and the reward is rt. In addition, the observation model is given by p(xt|zt).

As in the case for VAEs, a generative model of these observations xt can be learned by maximizing the
log-likelihood. In the POMDP setting, however, we note that xt alone does not provide all necessary
information to infer zt, and thus, prior temporal information must be taken into account. This brings
us to the discussion of sequential latent variable models. The distributions of interest are the priors
p(z1) and p(zt+1|zt,at), the observation model p(xt|zt), and the approximate posteriors q(z1|x1)
and q(zt+1|xt+1, zt,at). The log-likehood of the observations can then be bounded, similarly to the
VAE bound in Equation (5), as

log p(x1:τ+1|a1:τ ) ≥ E
z1:τ+1∼q

[
τ+1∑
t=1

log p(xt|zt)−DKL (q(z1|x1) ‖ p(z1))

+

τ∑
t=1

−DKL (q(zt+1|xt+1, zt,at) ‖ p(zt+1|zt,at))
]
. (6)

Prior work (Hafner et al., 2019; Buesing et al., 2018; Doerr et al., 2018) has explored modeling
such non-Markovian observation sequences, using methods such as recurrent neural networks with
deterministic hidden state, as well as probabilistic state-space models. In this work, we enable
the effective training of a fully stochastic sequential latent variable model, and bring it together
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with a maximum entropy actor-critic RL algorithm to create SLAC: a sample-efficient and high-
performing RL algorithm for learning policies for complex continuous control tasks directly from
high-dimensional image inputs.

4 JOINT MODELING AND CONTROL AS INFERENCE

z1 · · · zτ zτ+1

a1 aτ aτ+1

x1 xτ xτ+1

Oτ+1

Figure 1: Graphical model of
POMDP with optimality variables.

Our method aims to learn maximum entropy policies from high-
dimensional, non-Markovian observations in a POMDP, while
also learning a model of that POMDP. The model alleviates
the representation learning problem, which in turn helps with
the policy learning problem. We formulate the control prob-
lem as inference in a probabilistic graphical model with latent
variables, as shown in Figure 1.

For a fully observable MDP, the control problem can be em-
bedded into a graphical model by introducing a binary random
variable Ot, which indicates if time step t is optimal. When its
distribution is chosen to be p(Ot = 1|st,at) ∝ exp(r(st,at)),
then maximization of p(O1:T ) via approximate inference in
that model yields the optimal policy for the maximum entropy objective (Levine, 2018).

In a POMDP setting, the distribution can analogously be given by p(Ot = 1|zt,at) ∝ exp(r(zt,at)).
Instead of maximizing the likelihood of the optimality variables alone, we jointly model the observa-
tions (including the observed rewards of the past time steps) and learn maximum entropy policies
by maximizing the marginal likelihood p(x1:τ+1,Oτ+1:T |a1:τ ). This objective represents both the
likelihood of the observed data from the past τ steps, as well as the optimality of the agent’s actions
for future steps. We factorize our variational distribution into a product of recognition terms q(z1|x1)
and q(zt+1|xt+1, zt,at), and a policy term π(aτ+1|x1:τ+1,a1:τ ) that is independent of z:

q(z1:τ+1,aτ+1|x1:τ+1,a1:τ ) = q(z1|x1)

τ∏
t=1

q(zt+1|xt+1, zt,at)π(aτ+1|x1:τ+1,a1:τ ). (7)

The posterior over the actions represents the agent’s policy π. We make a design choice in conditioning
this policy directly on observations and actions, instead of the latent state, because this approximation
allows us to directly execute the policy without having to perform inference on the latent belief state
at run time. We use the posterior from Equation (7) and maximize the evidence lower bound (ELBO)
of the marginal likelihood,

log p(x1:τ+1,Oτ+1:T |a1:τ ) ≥ E
(z1:τ+1,aτ+1)∼q

[
τ+1∑
t=1

log p(xt|zt)

−DKL (q(z1|x1) ‖ p(z1))−
τ∑
t=1

DKL (q(zt+1|xt+1, zt,at) ‖ p(zt+1|zt,at))

+ r(zτ+1,aτ+1)− log π(aτ+1|x1:τ+1,a1:τ ) + V (zτ+1)

]
. (8)

This derivation assumes that the reward function, which determines p(O|x,a), is known. However,
in many RL problems, this is not the case. In that situation, we can simply append the reward to the
observation, and learn the reward along with p(x|z). This requires no modification to our method
other than changing the observation space, and we use this approach in all of our experiments.

5 STOCHASTIC LATENT ACTOR CRITIC

We now describe our stochastic latent actor critic (SLAC) algorithm, which approximately maximizes
the ELBO of Equation (8) using function approximators to model the prior and posterior distributions.

Latent Variable Model: The first part of the ELBO corresponds to training the latent variable model
to maximize the likelihood of the observations, analogous to the ELBO in Equation (6) for the
sequential latent variable model. The distributions of the latent variable model are diagonal Gaussian
distributions, where the means and variances are outputs of neural networks. The distribution
parameters ψ of this model are optimized to maximize the first part of the ELBO,
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JM (ψ) = E
(x1:τ+1,a1:τ ,r1:τ )∼D

[
E

z1:τ+1∼qψ

[
τ+1∑
t=1

log pψ(xt|zt)

−DKL (qψ(z1|x1) ‖ pψ(z1))−
τ∑
t=1

DKL (qψ(zt+1|xt+1, zt,at) ‖ pψ(zt+1|zt,at))
]]

. (9)

We use the reparameterization trick to sample from the filtering distribution qψ(z1:τ+1|x1:τ+1,a1:τ ).

Critic and Actor: The second part of the ELBO corresponds to the maximum entropy RL objective.
As in the fully observable case from Section 3.1 and as described by Levine (Levine, 2018), this
optimization can be solved via message passing of soft Q-values, except that we use the latent states
z rather than the standard states s. For continuous state and action spaces, this message passing is
approximated by minimizing the soft Bellman residual, which we use to train our soft Q-function
parameters θ,

JQ(θ) = E
(x1:τ+1,a1:τ ,rτ )∼D

[
E

z1:τ+1∼qψ

[
1

2

(
Qθ(zτ ,aτ )

−
(
rτ + γ E

aτ+1∼πφ
[Qθ̄(zτ+1,aτ+1)− α log πφ(aτ+1|x1:τ+1,a1:τ )]

))2
]]

, (10)

where θ̄ are delayed parameters, obtained as exponential moving averages of θ. Notice that the
latents zτ and zτ+1, which are used in the Bellman backup, are sampled from the same joint, i.e.
zτ+1 ∼ qψ(zτ+1|xτ+1, zτ ,aτ ). Next, the policy parameters φ are optimized to update the policy
towards the exponential of that soft Q-function, analogously to soft actor-critic (Haarnoja et al.,
2018a) as shown in Equation (4):

Jπ(φ) = E
(x1:τ+1,a1:τ )∼D

[
E

z1:τ+1∼qψ

[
E

aτ+1∼πφ
[α log πφ(aτ+1|x1:τ+1,a1:τ )−Qθ(zτ+1,aτ+1)]

]]
.

(11)
We again use the reparameterization trick to sample from the policy, and the policy loss only uses the
last sample zτ+1 of the sequence. Finally, we note that for the expectation over latent states in the
Bellman residual in Equation (10), rather than sampling latent states z ∼ Z , we sample latent states
from the filtering distribution qψ(z1:τ+1|x1:τ+1,a1:τ ). This design choice allows us to minimize
the critic loss for samples that are most relevant for Q, while also allowing the critic loss to use the
Q-function in the same way as implied by the policy loss in Equation (11).

SLAC is outlined in Algorithm 1. The actor-critic component follows prior work, with automatic
tuning of the temperature α and two Q-functions to mitigate underestimation (Fujimoto et al., 2018;
Haarnoja et al., 2018a;b). SLAC can be viewed as a variant of SAC (Haarnoja et al., 2018a) where the
critic is trained on the stochastic latent state of our sequential latent variable model. The backup for the
critic is performed on a tuple (zτ ,aτ , rτ , zτ+1), sampled from the posterior q(zτ+1, zτ |x1:τ+1,a1:τ ).
The critic can, in principle, take advantage of the perfect knowledge of the state zt, which makes
learning easier. However, the actor does not have access to zt, and must make decisions based on a
history of observations and actions. SLAC is not a model-based algorithm, in that in does not use
the model for prediction, but we see in our experiments that SLAC has better sample efficiency than
prior model-based algorithms.

6 LATENT VARIABLE MODEL

We briefly summarize our full model architecture here, with full details in Appendix A. The
architecture in our implementation factorizes the latent variable zt into two stochastic layers, z1

t and
z2
t , as shown in Figure 2. We found this design to produce high quality reconstructions and samples,

and utilize it in all of our experiments. The generative model p and the inference model q are given by

pψ(z1) = pψ(z2
1|z1

1)p(z1
1),

pψ(zt+1|zt,at) = pψ(z2
t+1|z1

t+1, z
2
t ,at)pψ(z1

t+1|z2
t ,at),

qψ(z1|x1) = pψ(z2
1|z1

1)qψ(z1
1|x1),

qψ(zt+1|xt+1, zt,at) = pψ(z2
t+1|z1

t+1, z
2
t ,at)qψ(z1

t+1|xt+1, z
2
t ,at).
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Algorithm 1 Stochastic Latent Actor-Critic (SLAC)

Require: E, ψ, θ1, θ2, φ . Environment and initial parameters for model, actor, and critic
x1 ∼ Ereset() . Sample initial observation from the environment
D ← (x1) . Initialize replay buffer with initial observation
for each iteration do

for each environment step do
at ∼ πφ(at|x1:t,a1:t−1) . Sample action from the policy
rt,xt+1 ∼ Estep(at) . Sample transition from the environment
D ← D ∪ (at, rt,xt+1) . Store the transition in the replay buffer

for each gradient step do
ψ ← ψ − λM∇ψJM (ψ) . Update model weights
θi ← θi − λQ∇θiJQ(θi) for i ∈ {1, 2} . Update the Q-function weights
φ← φ− λπ∇φJπ(φ) . Update policy weights
θ̄i ← νθi + (1− ν)θ̄i for i ∈ {1, 2} . Update target critic network weights

z21 · · · z2τ z2τ+1

z11 · · · z1τ z1τ+1

x1 xτ xτ+1

a1 aτ

Figure 2: Diagram of our full model. Solid arrows
show the generative model, dashed arrows show
the inference model. Rewards are not shown for
clarity.

Note that we choose the variational distribution q
over z2

t to be the same as the model p. Thus, the
KL divergence in JM simplifies to the divergence be-
tween q and p over z1

t . We use a multivariate standard
normal distribution for p(z1

1), since it is not condi-
tioned on any variables, i.e. z1

1 ∼ N (0, I). The
conditional distributions of our model are diagonal
Gaussian, with means and variances given by neural
networks. Unlike models from prior work (Hafner
et al., 2019; Buesing et al., 2018; Doerr et al., 2018),
which have deterministic and stochastic paths and use
recurrent neural networks, ours is fully stochastic, i.e.
our latent state is a Markovian latent random variable
formed by the concatenation of z1

t and z2
t . Further details are discussed in Appendix A.

7 EXPERIMENTAL EVALUATION

We evaluate SLAC on numerous image-based continuous control tasks from both the DeepMind
Control Suite (Tassa et al., 2018) and OpenAI Gym (Brockman et al., 2016), as illustrated in Figure 3.
Full details of SLAC’s network architecture are described in Appendix A. Aside from the value of
action repeats (i.e. control frequency) for the tasks, we kept all of SLAC’s hyperparameters constant
across all tasks in all domains. Training and evaluation details are given in Appendix B, and image
samples from our model for all tasks are shown in Appendix C. Additionally, visualizations of our
results and code are available on the project website.2

7.1 COMPARATIVE EVALUATION ON CONTINUOUS CONTROL BENCHMARK TASKS

To provide a comparative evaluation against prior methods, we evaluate SLAC on four tasks (cheetah
run, walker walk, ball-in-cup catch, finger spin) from the DeepMind Control Suite (Tassa et al., 2018),
and four tasks (cheetah, walker, ant, hopper) from OpenAI Gym (Brockman et al., 2016). Note that
the Gym tasks are typically used with low-dimensional state observations, while we evaluate on them

Figure 3: Example image observations for our continuous control benchmark tasks: DeepMind Control’s
cheetah run, walker walk, ball-in-cup catch, and finger spin, and OpenAI Gym’s half cheetah, walker, hopper,
and ant (left to right). Images are rendered at a resolution of 64× 64 pixels.

2https://rl-slac.github.io/slac/
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Figure 4: Experiments on the DeepMind Control Suite. SLAC (ours) converges to similar or better final
performance than the other methods, while almost always achieving reward as high as the upper bound SAC
baseline that learns from true state. Note that for these experiments, 1000 environments steps corresponds to 1
episode.
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Figure 5: Experiments on the OpenAI Gym benchmark tasks from images. SLAC (ours) converges to higher
performance than both PlaNet and SAC on all four of these tasks. The number of environments steps in each
episode is variable, depending on the termination.

with raw image observations. We compare our method to the following state-of-the-art model-based
and model-free algorithms:

SAC (Haarnoja et al., 2018a): This is an off-policy actor-critic algorithm, which represents a
comparison to state-of-the-art model-free learning. We include experiments showing the performance
of SAC based on true state (as an upper bound on performance) as well as directly from raw images.

MPO (Abdolmaleki et al., 2018b;a): This is an off-policy actor-critic algorithm that performs an
expectation maximization form of policy iteration, learning directly from raw images.

D4PG (Barth-Maron et al., 2018): This is also an off-policy actor-critic algorithm, learning directly
from raw images. The results reported in the plots below are the performance after 108 training steps,
as stated in the benchmarks from (Tassa et al., 2018).

PlaNet (Hafner et al., 2019): This is a model-based RL method for learning from images, which uses
a mixed deterministic/stochastic sequential latent variable model, but without explicit policy learning.
Instead, the model is used for planning with model predictive control (MPC), where each plan is
optimized with the cross entropy method (CEM).

DVRL (Igl et al., 2018): This is an on-policy model-free RL algorithm that also trains a mixed
deterministic/stochastic latent-variable POMDP model. DVRL uses the full belief over the latent
state as input into both the actor and critic, as opposed to our method, which trains the critic with the
latent state and the actor with a history of actions and observations.

Our experiments on the DeepMind Control Suite in Figure 4 show that the sample efficiency of
SLAC is comparable or better than both model-based and model-free alternatives. This indicates that
overcoming the representation learning bottleneck, coupled with efficient off-policy RL, provides
for fast learning similar to model-based methods, while attaining final performance comparable to
fully model-free techniques that learn from state. SLAC also substantially outperforms DVRL. This
difference can be explained in part by the use of an efficient off-policy RL algorithm, which can
better take advantage of the learned representation.

We also evaluate SLAC on continuous control benchmark tasks from OpenAI Gym in Figure 5. We
notice that these tasks are much more challenging than the DeepMind Control Suite tasks, because
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the rewards are not as shaped and not bounded between 0 and 1, the dynamics are different, and the
episodes terminate on failure (e.g., when the hopper or walker falls over). PlaNet is unable to solve
the last three tasks, while for the cheetah task, it learns a suboptimal policy that involves flipping
the cheetah over and pushing forward while on its back. To better understand the performance of
fixed-horizon MPC on these tasks, we also evaluated with the ground truth dynamics (i.e., the true
simulator), and found that even in this case, MPC did not achieve good final performance, suggesting
that infinite horizon policy optimization, of the sort performed by SLAC and model-free algorithms,
is important to attain good results on these tasks.

Our experiments show that SLAC successfully learns complex continuous control benchmark tasks
from raw image inputs. On the DeepMind Control Suite, SLAC exceeds the performance of PlaNet
on three of the tasks, and matches its performance on the Walker task. However, on the harder
image-based OpenAI Gym tasks, SLAC outperforms PlaNet by a large margin. In both domains,
SLAC substantially outperforms all prior model-free methods. We note that the prior methods that
we tested generally performed poorly on the image-based OpenAI Gym tasks, despite considerable
hyperparameter tuning.

7.2 EVALUATING THE LATENT VARIABLE MODEL

We next study the tradeoffs between different design choices for the latent variable model. We
compare our fully stochastic model, as described in Section 6, to a standard non-sequential
VAE model (Kingma & Welling, 2014), which has been used in multiple prior works for rep-
resentation learning in RL (Higgins et al., 2017; Ha & Schmidhuber, 2018; Nair et al., 2018),
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Figure 6: Comparison of
different design choices for
the latent variable model.

the mixed deterministic/stochastic model used by PlaNet (Hafner et al.,
2019), as well as three variants of our model: a simple filtering model
that does not factorize the latent variable into two layers of stochastic
units, a fully deterministic model that removes all stochasticity from the
hidden state dynamics, and a mixed model that has both deterministic and
stochastic transitions, similar to the PlaNet model, but with our architec-
ture. In all cases, we use the RL framework of SLAC and only vary the
choice of model for representation learning. As shown in the comparison
in Figure 6, our fully stochastic model substantially outperforms prior
models as well as the deterministic and simple variants of our own model.
Although even the non-sequential VAE model provides for fast learning
in the beginning, the performance of these models quickly saturates. The
mixed deterministic/stochastic variant of our model nearly matches the
performance of the final fully stochastic variant but, contrary to the con-
clusions in prior work (Hafner et al., 2019; Buesing et al., 2018), the fully stochastic model performs
on par or better, while retaining the appealing interpretation of a stochastic state space belief model.

7.3 QUALITATIVE PREDICTIONS FROM THE LATENT VARIABLE MODEL

We show example image samples from our learned sequential latent variable model for the cheetah
task in Figure 7, and we include the other tasks in the appendix. Samples from the posterior show the
images xt as constructed by the decoder pψ(xt|zt), using a sequence of latents zt that are encoded
and sampled from the posteriors, qψ(z1|x1) and qψ(zt+1|xt+1, zt,at). Samples from the prior, on
the other hand, use a sequence of latents where z1 is sampled from p(z1) and all remaining latents
zt are from the propagation of the previous latent state through the latent dynamics pψ(zt+1|zt,at).
Note that these prior samples do not use any image frames as inputs, and thus they do not correspond
to any ground truth sequence. We also show samples from the conditional prior, which is conditioned
on the first image from the true sequence: for this, the sampling procedure is the same as the prior,
except that z1 is encoded and sampled from the posterior qψ(z1|x1), rather than being sampled from
p(z1). We notice that the generated images samples can be sharper and more realistic by using a
smaller variance for pψ(xt|zt) when training the model, but at the expense of a representation that
leads to lower returns. Finally, note that we do not actually use the samples from the prior for training.
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Figure 7: Example image sequence seen for the cheetah task (first row), corresponding posterior sample
(reconstruction) from our model (second row), and generated prediction from the generative model (last two
rows). The second to last row is conditioned on the first frame (i.e., the posterior model is used for the first
time step while the prior model is used for all subsequent steps), whereas the last row is not conditioned on any
ground truth images. Note that all of these sampled sequences are conditioned on the same action sequence, and
that our model produces highly realistic samples, even when predicting via the generative model.

8 DISCUSSION

We presented SLAC, an efficient RL algorithm for learning from high-dimensional image inputs that
combines efficient off-policy model-free RL with representation learning via a sequential stochastic
state space model. Through representation learning in conjunction with effective task learning in the
learned latent space, our method achieves improved sample efficiency and final task performance as
compared to both prior model-based and model-free RL methods.

While our current SLAC algorithm is fully model-free, in that predictions from the model are
not utilized to speed up training, a natural extension of our approach would be to use the model
predictions themselves to generate synthetic samples. Incorporating this additional synthetic model-
based data into a mixed model-based/model-free method could further improve sample efficiency
and performance. More broadly, the use of explicit representation learning with RL has the potential
to not only accelerate training time and increase the complexity of achievable tasks, but also enable
reuse and transfer of our learned representation across tasks.
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A NETWORK ARCHITECTURES

z21 · · · z2τ z2τ+1

z11 · · · z1τ z1τ+1

x1 xτ xτ+1

a1 aτ

Figure 8: Diagram of our full model, reproduced
from the main paper. Solid arrows show the gen-
erative model, dashed arrows show the inference
model. Rewards are not shown for clarity.

Recall that our full sequential latent variable model
has two layers of latent variables, which we denote
z1
t and z2

t . We found this design to provide a good
balance between ease of training and expressivity,
producing good reconstructions and generations and,
crucially, providing good representations for rein-
forcement learning. For reference, we reproduce the
model diagram from the main paper in Figure 8. Note
that this diagram represents the Bayes net correspond-
ing to our full model. However, since all of the la-
tent variables are stochastic, this visualization also
presents the design of the computation graph. In-
ference over the latent variables is performed using
amortized variational inference, with all training done via reparameterization. Hence, the computation
graph can be deduced from the diagram by treating all solid arrows as part of the generative model
and all dashed arrows as part of approximate posterior. The generative model consists of the following
probability distributions, as described in the main paper:

z1
1 ∼ p(z1

1)

z2
1 ∼ pψ(z2

1|z1
1)

z1
t+1 ∼ pψ(z1

t+1|z2
t ,at)

z2
t+1 ∼ pψ(z2

t+1|z1
t+1, z

2
t ,at)

xt ∼ pψ(xt|z1
t , z

2
t )

rt ∼ pψ(rt|z1
t , z

2
t ,at, z

1
t+1, z

2
t+1).

The initial distribution p(z1
1) is a multivariate standard normal distribution N (0, I). All of the other

distributions are conditional and parametrized by neural networks with parameters ψ. The networks
for pψ(z2

1|z1
1), pψ(z1

t+1|z2
t ,at), pψ(z2

t+1|z1
t+1, z

2
t ,at), and pψ(rt|z1

t , z
2
t ,at, z

1
t+1, z

2
t+1) consist of

two fully connected layers, each with 256 hidden units, and a Gaussian output layer. The Gaussian
layer is defined such that it outputs a multivariate normal distribution with diagonal variance, where
the mean is the output of a linear layer and the diagonal standard deviation is the output of a fully
connected layer with softplus non-linearity. The observation model pψ(xt|z1

t , z
2
t ) consists of 5

transposed convolutional layers (256 4 × 4, 128 3 × 3, 64 3 × 3, 32 3 × 3, and 3 5 × 5 filters,
respectively, stride 2 each, except for the first layer). The output variance for each image pixel is
fixed to 0.1.

The variational distribution q, also referred to as the inference model or the posterior, is represented
by the following factorization:

z1
1 ∼ qψ(z1

1|x1)

z2
1 ∼ pψ(z2

1|z1
1)

z1
t+1 ∼ qψ(z1

t+1|xt+1, z
2
t ,at)

z2
t+1 ∼ pψ(z2

t+1|z1
t+1, z

2
t ,at).

Note that the variational distribution over z2
1 and z2

t+1 is intentionally chosen to exactly match the
generative model p, such that this term does not appear in the KL-divergence within the ELBO,
and a separate variational distribution is only learned over z1

1 and z1
t+1. This intentional design

decision simplifies the inference process. The networks representing the distributions qψ(z1
1|x1) and

qψ(z1
t+1|xt+1, z

2
t ,at) both consist of 5 convolutional layers (32 5×5, 64 3×3, 128 3×3, 256 3×3,

and 256 4× 4 filters, respectively, stride 2 each, except for the last layer), 2 fully connected layers
(256 units each), and a Gaussian output layer. The parameters of the convolution layers are shared
among both distributions.

The latent variables have 32 and 256 dimensions, respectively, i.e. z1
t ∈ R32 and z2

t ∈ R256. For
the image observations, xt ∈ [0, 1]64×64×3. All the layers, except for the output layers, use leaky
ReLU non-linearities. Note that there are no deterministic recurrent connections in the network—all
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Benchmark Task Action
repeat

Original control
time step

Effective control
time step

DeepMind Control Suite

cheetah run 4 0.01 0.04
walker walk 2 0.025 0.05
ball-in-cup catch 4 0.02 0.08
finger spin 2 0.02 0.04

OpenAI Gym

HalfCheetah-v2 1 0.05 0.05
Walker2d-v2 4 0.008 0.032
Hopper-v2 2 0.008 0.016
Ant-v2 4 0.05 0.2

Table 1: Action repeats and the corresponding agent’s control time step used in our experiments.

networks are feedforward, and the temporal dependencies all flow through the stochastic units z1
t and

z2
t

For the reinforcement learning process, we use a critic network Qθ consisting of 2 fully connected
layers (256 units each) and a linear output layer. The actor network πφ consists of 5 convolutional
layers, 2 fully connected layers (256 units each), a Gaussian layer, and a tanh bijector, which
constrains the actions to be in the bounded action space of [−1, 1]. The convolutional layers are the
same as the ones from the latent variable model, but the parameters of these layers are not updated by
the actor objective. The same exact network architecture is used for every one of the experiments in
the paper.

B TRAINING AND EVALUATION DETAILS

The control portion of our algorithm uses the same hyperparameters as SAC (Haarnoja et al., 2018a),
except for a smaller replay buffer size of 100000 environment steps (instead of a million) due to
the high memory usage of image observations. All of the parameters are trained with the Adam
optimizer (Kingma & Ba, 2015), and we perform one gradient step per environment step. The
Q-function and policy parameters are trained with a learning rate of 0.0003 and a batch size of 256.
The model parameters are trained with a learning rate of 0.0001 and a batch size of 32. We use
sequences of length τ = 8 for all the tasks. Note that the sequence length can be less than τ for the
first t steps (t < τ ) of each episode.

We use action repeats for all the methods, except for D4PG for which we use the reported results from
prior work (Tassa et al., 2018). The number of environment steps reported in our plots correspond to
the unmodified steps of the benchmarks. Note that the methods that use action repeats only use a
fraction of the environment steps reported in our plots. For example, 3 million environment steps of
the cheetah task correspond to 750000 samples when using an action repeat of 4. The action repeats
used in our experiments are given in Table 1.

Unlike in prior work (Haarnoja et al., 2018a;b), we use the same stochastic policy as both the
behavioral and evaluation policy since we found the deterministic greedy policy to be comparable or
worse than the stochastic policy.

C ADDITIONAL PREDICTIONS FROM THE LATENT VARIABLE MODEL

We show additional samples from our model in Figure 9 and Figure 10. Samples from the posterior
show the images xt as constructed by the decoder pψ(xt|zt), using a sequence of latents zt that
are encoded and sampled from the posteriors, qψ(z1|x1) and qψ(zt+1|xt+1, zt,at). Samples from
the prior, on the other hand, use a sequence of latents where z1 is sampled from p(z1) and all
remaining latents zt are from the propagation of the previous latent state through the latent dynamics
pψ(zt+1|zt,at). These samples do not use any image frames as inputs, and thus they do not
correspond to any ground truth sequence. We also show samples from the conditional prior, which is
conditioned on the first image from the true sequence: for this, the sampling procedure is the same
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as the prior, except that z1 is encoded and sampled from the posterior qψ(z1|x1), rather than being
sampled from p(z1).
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Figure 9: Example image sequences, along with generated image samples, for three of the DM Control tasks
that we used in our experiments. See Figure 7 for more details and for image samples from the cheetah task.
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Figure 10: Example image sequences, along with generated image samples, for the four OpenAI Gym tasks
that we used in our experiments.

17


	Introduction
	Related Work
	Reinforcement Learning and Modeling
	Maximum Entropy RL in Fully Observable MDPs
	Sequential Latent Variable Models and Amortized Variational Inference in POMDPs

	Joint Modeling and Control as Inference
	Stochastic Latent Actor Critic
	Latent Variable Model
	Experimental Evaluation
	Comparative Evaluation on Continuous Control Benchmark Tasks
	Evaluating the Latent Variable Model
	Qualitative Predictions from the Latent Variable Model

	Discussion
	Network Architectures
	Training and Evaluation Details
	Additional Predictions from the Latent Variable Model

