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ABSTRACT

Generating visualizations and interpretations from high-dimensional data is a1

common problem in many fields. Two key approaches for tackling this prob-2

lem are clustering and representation learning. There are very performant deep3

clustering models on the one hand and interpretable representation learning tech-4

niques, often relying on latent topological structures such as self-organizing maps,5

on the other hand. However, current methods do not yet successfully combine6

these two approaches. We present a new deep architecture for probabilistic clus-7

tering, VarPSOM, and its extension to time series data, VarTPSOM, composed of8

VarPSOM modules connected by LSTM cells. We show that they achieve supe-9

rior clustering performance compared to current deep clustering methods on static10

MNIST/Fashion-MNIST data as well as medical time series, while inducing an11

interpretable representation. Moreover, on the medical time series, VarTPSOM12

successfully predicts future trajectories in the original data space.13

1 INTRODUCTION14

Information visualization techniques are essential in areas where humans have to make decisions15

based on large amounts of complex data. Their goal is to find an interpretable representation of16

the data that allows the integration of humans into the data exploration process. This encourages17

visual discoveries of relationships in the data and provides guidance to downstream tasks. In this18

way, a much higher degree of confidence in the findings of the exploration is attained (Keim, 2002).19

An interpretable representation of the data, in which the underlying factors are easily visualized, is20

particularly important in domains where the reason for obtaining a certain prediction is as valuable21

as the prediction itself. However, finding a meaningful representation of complex data that can be22

understood by humans is challenging.23

Clustering is one of the most natural ways for retrieving interpretable information from raw data.24

Long-established methods such as K-means (MacQueen, 1967) and Gaussian Mixture Models25

(Bishop, 2006) represent the cornerstone of cluster analysis. Their applicability, however, is of-26

ten constrained to simple data and their performance limited in high-dimensional, complex, real27

world data-sets, which do not exhibit a clustering-friendly structure.28

Deep generative models have recently achieved tremendous success in representation learning.29

Some of the most commonly used and efficient approaches are Autoencoders (AEs), Variational30

Autoencoders (VAEs) and Generative Adversarial Networks (GANs) (Kingma & Welling, 2013;31

Goodfellow et al., 2014). The compressed latent representation, generated by these models, has32

been proven to ease the clustering process (Aljalbout et al., 2018). As a result, the combination of33

deep generative models for feature extraction and clustering results in a dramatic increase of the34

clustering performance (Xie et al., 2015). Although very successful, most of these methods do not35

investigate the relationship among clusters and the clustered feature points live in a high-dimensional36

latent space that cannot be easily observed or interpreted by humans.37

The Self-Organizing Map (SOM) (Kohonen, 1990) is a clustering method that provides such an38

interpretable representation. It arranges the obtained centroids in a topologically meaningful order,39

inducing a flexible neighbourhood structure. If the chosen topological structure is a 2-dimensional40

grid, it facilitates visualization. Alas, its applicability is often constrained to simple data-sets similar41

to other classical clustering methods.42

To resolve the above issues, we propose a novel deep architecture, the Variational Probabilistic SOM43

(VarPSOM), that jointly trains a VAE and a SOM to achieve an interpretable discrete representation44

while exhibiting state-of-the-art clustering performance. Instead of hard assignment of data points45
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to clusters, our model uses a centroid-based probability distribution. It minimizes its Kullback-46

Leibler divergence against an auxiliary target distribution, while enforcing a SOM-friendly space.47

To highlight the importance of an interpretable representation for different purposes, we extended48

this model to deal with temporal data, yielding VarTPSOM. We discuss related work in Section49

2. Extensive evidence of the superior clustering performance of both models, on MNIST/Fashion-50

MNIST images as well as real-world medical time series is presented in Section 4.51

Our main contributions are:52

• A novel architecture for deep clustering, yielding an interpretable discrete representation53

through the use of a probabilistic self-organizing map.54

• An extension of this architecture to time series, improving clustering performance on this55

data type and enabling temporal predictions.56

• A thorough empirical assessment of our proposed models, showing superior performance57

on benchmark tasks and challenging medical time series from the intensive care unit.58

2 RELATED WORK59

Self-Organizing Maps have been widely used as a means to visualize information from large60

amounts of data (Tirunagari et al., 2014) and as a form of clustering in which the centroids are61

connected by a topological neighborhood structure (Flexer, 1999). Since their early inception, sev-62

eral variants have been proposed to enhance their performance and scope. The adaptive subspace63

SOM, ASSOM (Kohonen, 1995), for example, proposed to combine PCA and SOMs to map data64

into a reduced feature space. Tokunaga & Furukawa (2009) combine SOMs with multi-layer percep-65

trons to obtain a modular network. Liu et al. (2015) proposed Deep SOM (DSOM), an architecture66

composed of multiple layers similar to Deep Neural Networks. There exist several methods tailored67

to representation learning on time series, among them (Fortuin & Rätsch, 2019; Fortuin et al., 2019),68

which are however not based on SOMs. Extensions of SOM optimized for temporal data include69

the Temporal Kohonen map (Chappell & Taylor, 1993) and its improved version Recurrent SOM70

(McQueen et al., 2004) as well as Recursive SOM (Voegtlin, 2002). While SOM and its variants71

are particularly effective for data visualization (Liu et al., 2015), it was rarely attempted to combine72

their merits in this respect with modern state-of-the-art clustering methods, which often use deep73

generative models in combination with probabilistic clustering.74

In particular, recent works on clustering analysis have shown that combining clustering algorithms75

with the latent space of AEs greatly increases the clustering performance (Aljalbout et al., 2018). Xie76

et al. (2015) proposed DEC, a method that sequentially applies embedding learning using Stacked77

Autoencoders (SAE), and the Clustering Assignment Hardening method on the obtained represen-78

tation. An improvement of this architecture, IDEC, (Guo et al., 2017), includes the decoder network79

of the SAE in the learning process, so that training is affected by both the clustering loss and the80

reconstruction loss. Similarly, DCN (Yang et al., 2016) combines a K-means clustering loss with the81

reconstruction loss of SAE to obtain an end-to-end architecture that jointly trains representations and82

clustering. These models achieve state-of-the-art clustering performance but they do not investigate83

the relationship among clusters. An exception is the work by Li et al. (2018), in which they present84

an unsupervised method that learns latent embeddings and discovers multi-facet clustering structure.85

Relationships among clusters were discovered, however, they do not provide a latent space that can86

be easily interpreted and which eases the process of analytical reasoning.87

To the best of our knowledge, only two models used deep generative models in combination with a88

SOM structure in the latent space. The SOM-VAE model (Fortuin et al., 2018), inspired by the VQ-89

VAE architecture (van den Oord et al., 2017), uses an AE to embed the input data points into a latent90

space and then applies a SOM-based clustering loss on top of this latent representation. It features91

hard assignments of points to centroids, as well as the use of a Markov model for temporal data,92

which both reduces modeling power compared to our method. The Deep Embedded SOM, DESOM93

(Forest et al., 2019) improved the previous model by using a Gaussian neighborhood window with94

exponential radius decay and by learning the SOM structure in a continuous setting. Both methods95

feature a topologically interpretable neighborhood structure and yield promising results in visualiz-96

ing state spaces. However their clustering quality is likely limited by the absence of techniques used97

in state-of-the-art clustering methods like IDEC or DCN.98
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3 PROBABILISTIC CLUSTERING WITH VARIATIONAL PSOM99

Given a set of data samples {xi}i=1,...,N , where xi ∈ RM , the goal is to partition the data into a set100

of clusters {Si}i=1,...,K while retaining a topological structure over the cluster centroids.101

The proposed architecture for static data is presented in Figure 1a. The input vector xi is embedded102

into a latent representation zi using a VAE. This latent vector is then clustered using PSOM, a103

new SOM clustering strategy that extends the Clustering assignment hardening method (Xie et al.,104

2015). The VAE and PSOM are trained jointly to learn a latent representation with the aim to boost105

the clustering performance. To prevent the network from outputting a trivial solution, the decoder106

network reconstructs the input from the latent embedding, encouraging it to be as similar as possible107

to the original input. The obtained loss function is a linear combination of the clustering loss and108

the reconstruction loss. To deal with temporal data, we propose another model variant, which is109

depicted in Figure 1b.110

DECODER

ENCODER

(a) VarPSOM architecture for cluster-
ing of static data. Data points xi are
mapped to a continuous embedding zi
using a VAE (parameterized by Φ).
The loss function is the sum of a SOM-
based clustering loss and the ELBO.

(b) VarTPSOM architecture, composed of VarPSOM modules con-
nected by LSTMs across the time axis, which predict the continu-
ous embedding zt+1 of the next time step. This architecture allows
to unroll future trajectories in the latent space as well as the origi-
nal data space by reconstructing the xt using the VAE.

Figure 1: Model architectures of VarPSOM / VarTPSOM

3.1 BACKGROUND111

A Self-Organizing Map is comprised of k nodes connected to form a grid M ∈ N2, where the node112

mi,j , at position (i, j) of the grid, corresponds to a centroid vector, µi,j in the input space. The113

centroids are tied by a neighborhood relation N (µi,j) = {µi−1,j , µi+1,j , µi,j−1, µi,j+1}. Given a114

random initialization of the centroids, the SOM algorithm randomly selects an input xi and updates115

both its closest centroid µi,j and its neighbors N (µi,j) to move them closer to xi. For a complete116

description of the SOM algorithm, we refer to the appendix (A).117

The Clustering Assignment Hardening method has been recently introduced by the DEC model (Xie
et al., 2015) and was shown to perform well in the latent space of AEs (Aljalbout et al., 2018). Given
an embedding function zi = f(xi), it uses a Student’s t-distribution (S) as a kernel to measure the
similarity between an embedded data point zi, and a centroid µj :

sij =

(
1 + ‖zi − µj‖2 /α

)−α+1
2

∑
j′

(
1 + ‖zi − µj′‖2 /α

)−α+1
2
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It improves the cluster purity by enforcing the distribution S to approach a target distribution, T :

tij =
sγij/

∑
i sij∑

j′ s
γ
ij′/

∑
i sij′

.

By taking the original distribution to the power γ and normalizing it, the target distribution puts
more emphasis on data points that are assigned a high confidence. We follow (Xie et al., 2015) in
choosing γ=2, which leads to larger gradient contributions of points close to cluster centers, as they
show empirically. The resulting clustering loss is defined as:

L = KL(T‖S) =
∑
i

∑
j

tij log
tij
sij
. (1)

3.2 PROBABILISTIC SOM (PSOM) CLUSTERING118

Our proposed clustering method, called PSOM, expands Clustering Assignment Hardening to in-
clude a SOM neighborhood structure over the centroids. We add an additional loss to (1) to achieve
an interpretable representation. This loss term maximizes the similarity between each data point
and the neighbors of the closest centroids. For each embedded data point, zi, and each centroid µj
the loss is defined as the negative sum of all the neighbors of µj , {e : µe ∈ N(µj(xi))}, of the
probability that zi is assigned to e, defined as sie. This sum is weighted by the similarity between zi
and the centroid µj (sij):

LSOM = − 1

N

∑
i

∑
j

sij
∑

e:µe∈N(µj(xi))

sie .

The complete PSOM clustering loss is then:

LPSOM = KL(T‖S) + βLSOM .

We note that for β = 0 it becomes equivalent to Clustering assignment hardening.119

3.3 VARPSOM: VAE FOR FEATURE EXTRACTION120

In our method the nonlinear mapping between the input xi and embedding zi is realized by a VAE.
Instead of directly embedding the input xi into a latent embedding zi, the VAE learns a probability
distribution qφ(z | xi) parametrized as a multivariate normal distribution whose mean and variance
are (µφ,Σφ) = fφ(xi). Similarly, it also learns the probability distribution of the reconstructed
output given a sampled latent embedding, pθ(xi | z) where (µθ,Σθ) = fθ(zi). Both fφ and fθ are
neural networks, called respectively encoder and decoder. The ELBO loss is:

LELBO =
∑
i

[−Ez(log pθ(xi | z)) +DKL(qφ(z | xi) ‖ p(z))] , (2)

where p(z) is an isotropic Gaussian prior over the latent embeddings. The second term can be
interpreted as a form of regularization, which encourages the latent space to be compact. For each
data point xi the latent embedding zi is sampled from qφ(z | xi). Adding the ELBO loss to the
PSOM loss from the previous subsection, we yield the overall loss function of VarPSOM:

LVarPSOM = LPSOM + LELBO . (3)

121

To the best of our knowledge, no previous SOM methods attempted to use a VAE to embed the inputs122

into a latent space. There are many advantages of a VAE over an AE for realizing our goals. Most123

importantly, learning a probability distribution over the embedding space improves interpretability124

of the model. For example, points with a higher variance in the latent space could be identified as125

potential outliers and therefore treated as less precise and trustworthy. Moreover, the regularization126

term of the VAE prevents the network from scattering the embedded points discontinuously in the127

latent space, which naturally facilitates the fitting of the SOM. To test if the use of CNNs can boost128

clustering performance on image data, we introduce another model variant called VarCPSOM, which129

uses convolutional filters as part of the VAE.130
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3.4 VARTPSOM: EXTENSION TO TIME SERIES DATA131

To extend our proposed model to time series data, we add a temporal component to the architecture.
Given a set of N time series of length T , {xt,i}t=1,...,T ;i=1,...,N , the goal is to learn interpretable
trajectories on the SOM grid. To do so, the VarPSOM could be used directly but it would treat each
time-step t of the time series independently, which is undesirable. To exploit temporal information
and enforce smoothness in the trajectories, we add an additional loss to (3):

Lsmooth = − 1

NT

∑
i

∑
t

uit,it+1
, (4)

where uit,it+1 = g(zi,t, zi,t+1) is the similarity between zi and zj using a Student’s t-distribution132

and zi,t refers to the embedding of time series xi at time index t. It maximizes the similarity between133

latent embeddings of adjacent time steps, such that large jumps in the latent state between time points134

are discouraged.135

One of the main goals in time series modeling is to predict future data points, or alternatively, future
embeddings. This can be achieved by adding a long short-term memory network (LSTM) across
the latent embeddings of the time series, as shown in Fig 1b. Each cell of the LSTM takes as input
the latent embedding of time-step t (zt), and predicts a probability distribution over the next latent
embedding, pω(zt+1 | zt). We parametrize this distribution as a Multivariate Normal Distribution
whose mean and variance are learnt by the LSTM. The prediction loss is the log-likelihood between
the learned distribution and a sample of the next embedding zt+1:

Lpred = −
∑
i

∑
t

log pω(zt+1 | zt) (5)

The final loss of VarTPSOM, which is trainable in a fully end-to-end fashion, is

LVarTPSOM = LVarPSOM + Lsmooth + ηLpred . (6)

136

4 EXPERIMENTS137

First, we evaluate VarPSOM and VarCPSOM and compare them with state-of-the-art classical/SOM-138

based clustering methods on MNIST (Lecun et al., 1998) and Fashion-MNIST (Xiao et al., 2017)139

data. Hereby, particular focus is laid on the comparison of VarPSOM and the clustering models DEC140

and IDEC, to investigate the role of the VAE and the SOM loss. We then present visualizations of the141

obtained 2D representations, to illustrate how our method could ease visual reasoning about the data.142

Finally, we present extensive evidence of the performance of VarTPSOM on real-world complex143

time series from the eICU data set (Pollard et al., 2018), and illustrate how it allows visualization of144

patient health state trajectories in an easily understandable 2D domain. For details on the data-sets,145

we refer to the appendix (B.1).146

Baselines We used two different types of baselines. The first category contains clustering methods147

that do not provide any interpretable discrete latent representation. Those include K-means, the DEC148

model, as well as its improved version IDEC, whose clustering methods are related to ours. We also149

include a modified version of IDEC that we call VarIDEC, in which we substitute the AE with a150

VAE, to investigate the role of the VAE in our method. For all these methods we use 64 clusters. In151

the second category, we include state-of-the-art clustering methods based on SOMs. Here, we used152

a standard SOM (minisom), AE+SOM, an architecture composed of an AE and a SOM applied on153

top of the latent representation (trained sequentially), SOM-VAE and DESOM. For all SOM-based154

methods we set the SOM grid size to (8× 8).155

Implementation In implementing our models we focused on retaining a fair comparison with the156

baselines. Hence we decided to use a standard network structure, with fully connected layers of157

dimensions d − 500 − 500 − 2000 − l, to implement both the VAE of our models and the AE of158

the baselines. The latent dimension, l, is set to 100 for the VAE, and to 10 for the AEs. Since the159

prior in the VAE enforces the latent embeddings to be compact, it also requires more dimensions160

to learn a meaningful latent space. On the other hand, setting the AEs with a higher latent space,161

needed for the VAE, resulted in a dramatic decrease of performance (see appendix B.2). VarCPSOM162

is composed of 4 convolutional layers of feature maps [32, 64, 128, 256] and kernel size 3× 3 for all163
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Table 1: Clustering performance of VarPSOM using 64 clusters arranged in a 8 × 8 SOM map,
compared with baselines. The methods are grouped into approaches with no topological structure in
the discrete latent space and interpretable methods using a SOM-based structure in the latent space,
as well as an extension of our method using convolutional filters. Means and standard errors across
10 runs with different random model initializations are displayed.

MNIST fMNIST

pur nmi pur nmi

Kmeans 0.845± 0.001 0.581± 0.001 0.716± 0.001 0.514± 0.000
DEC 0.944± 0.002 0.682± 0.001 0.758± 0.002 0.562± 0.001
IDEC 0.950± 0.001 0.681± 0.001 - -
VarIDEC (ours) 0.961± 0.002 0.698± 0.001 0.765± 0.003 0.569± 0.002

SOM 0.701± 0.005 0.539± 0.002 0.667± 0.003 0.525± 0.001
AE+SOM 0.874± 0.004 0.646± 0.001 0.706± 0.002 0.543± 0.001
SOM-VAE 0.868± 0.004 0.595± 0.004 0.739± 0.005 0.520± 0.003
DESOM 0.939 0.657 0.752 0.538
VarPSOM (ours) 0.964± 0.001 0.705± 0.001 0.764± 0.003 0.571± 0.001

VarCPSOM (ours) 0.980± 0.001 0.726± 0.001 0.783± 0.003 0.574± 0.001

layers. For all architectures, no greedy layer-wise pretraining was used to tune the VAE. Instead we164

simply run the VAE without the clustering loss for a few epochs for initialization. A standard SOM165

was then used to produce an initial configuration of the centroids/neighbourhood relation. Finally,166

the entire architecture is trained for 100, 000 iterations. To avoid fine-tuning hyperparameters, given167

the unsupervised setting, α is set to 10 for all experiments while the other hyperparameters are168

modified accordingly to maintain the same order of magnitude of the different loss components.169

Clustering Evaluation Table 1 shows the clustering quality results of VarPSOM and VarCPSOM170

on MNIST and Fashion-MNIST data, compared with the baselines. Purity and Normalized Mutual171

Information are used as evaluation metrics. We observe that our proposed models outperform the172

baselines of both categories and reach state-of-the-art clustering performance.173

VarPSOM vs. IDEC VarIDEC shows superior clustering performance compared to DEC and174

IDEC (Table 1). We conclude that the VAE indeed succeeds in capturing a more meaningful latent175

representation compared to a standard AE. Regarding the second difference, the SOM structure was176

expected to slightly decrease the clustering performance, due to a trade-off between interpretability177

and raw clustering power. However, we do not observe this in our results. Adding the SOM loss178

rather leads to an increase of the clustering performance. We suspect this is due to the regularization179

effect of the SOM’s topological structure. Overall, VarPSOM outperforms both DEC and IDEC.180

Improvement over Training After obtaining the initial configuration of the SOM structure, both181

clustering and feature extraction using the VAE are trained jointly. To illustrate that our architecture182

improves clustering performance over the initial configuration, we plotted NMI and Purity against183

the number of training iterations in Figure 2. We observe that performance is stable when increasing184

number the number of epochs and no overfitting is visible.185

Figure 2: NMI (left) and Purity (right) performance of VarPSOM over iterations on MNIST test set.

Role of the SOM loss To investigate the influence of the SOM loss component, we plot the clus-186

tering performance of VarPSOM against the weight (β) of LSOM in Fig. 3, using MNIST dataset.187
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Table 2: Mean NMI and standard error of cluster enrichment vs. current/future APACHE physiology
scores, using a 2D (8 × 8) SOM map, across 10 runs with different random model initializations.

Model Apache12 Apache6 Apache0

SOM-VAE 0.0444± 0.0006 0.0474± 0.0005 0.0510± 0.0005
VarPSOM 0.0631± 0.0008 0.0639± 0.0008 0.0730± 0.0009
VarTPSOM (η = 0) 0.0710± 0.0005 0.0719± 0.0006 0.0818± 0.0006
VarTPSOM 0.0719± 0.0004 0.0733± 0.0004 0.0841± 0.0005

Table 3: MSE for predicting the time series of the last 6 hours before ICU dispatch, given the prior
time series since ICU admission.

Model LSTM SameState VarTPSOM

MSE 0.0386± 0.0049 0.0576± 0.0012 0.0297± 0.0009

With β = 30, theKL term (responsible for improving clustering purity) and the LSOM term (respon-188

sible for enforcing a SOM structure over the centroids) are almost equal. It is interesting to observe189

the different trends in NMI and Purity. The NMI performance increases for increasing values of190

β while Purity slightly decreases. Overall, enforcing a more interpretable latent space results in a191

more robust clustering model with higher NMI clustering performance.192

Figure 3: NMI (left) and Purity (right) performance of VarPSOM, with standard error, over β values
on MNIST test set.

Time Series Evaluation We evaluate the clustering performance of our proposed models on the193

eICU dataset, comprised of complex medical time series. We compare them against SOM-VAE,194

as this is the only method among the baselines that is suited for temporal data. Table 2 shows the195

cluster cell enrichment in terms of NMI for three different labels, the current (APACHE-0) and worst196

future (APACHE-6/12 hours) physiology scores. VarTPSOM clearly achieves superior clustering197

performance compared to SOM-VAE. This, we hypothesize, is due to the better feature extraction198

using a VAE as well as the improved treatment of uncertainty using PSOM, which features soft199

assignments, whereas SOM-VAE contains a deterministic AE and hard assignments. Moreover,200

both the smoothness loss and the prediction loss seem to increase the clustering performance. More201

results on ICU time series are contained in the appendix (B.3).202

To quantify the performance of VarTPSOM in unrolling future trajectories, we predict the final203

6 latent embeddings of each time series. For each predicted embedding we reconstruct the input204

using the decoder of the VAE. Finally we measure the MSE between the original input and the205

reconstructed inputs for the last 6 hours of the ICU admission. As baselines, we used an LSTM that206

takes as input the first 66 hours of the time series and then predicts the next 6 hours. Since most207

of the trajectories tend to stay in the same state over long periods of time, another strong baseline208

is obtained by duplicating the last seen embedding over the final 6 hours. The results (Table 3)209

indicate that the joint training of clustering and prediction used by VarTPSOM clearly outperforms210

the 2 baselines.211
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(a) MNIST (b) Fashion MNIST

Figure 4: Reconstructions of MNIST / Fashion MNIST data from SOM cells in the 8x8 grid learned
by VarPSOM, illustrating the topological neighbourhood structure induced by our method, which
aids interpretability.

Interpretability To illustrate the topological structure in the latent space, we present reconstruc-212

tions of the VarPSOM centroids, arranged in a (8× 8) grid, on static MNIST/Fashion-MNIST data213

in Figure 4. On the real-world ICU time series data, we show example trajectories for one patient214

dying at the end of the ICU stay, as well as two control patients which are dispatched healthily from215

the ICU. We observe that the trajectories are located in different parts of the SOM grid, and form216

a smooth and interpretable representation (Fig. 5). For further results, including a more quantita-217

tive evaluation using randomly sampled trajectories as well as an illustration of how the uncertainty218

generated by the soft assignments can help in data visualization, we refer to the appendix (B.4).219

(a) Patient dispatched expired (b) Patient dispatched healthy 1 (c) Patient dispatched healthy 2

Figure 5: Illustration of 3 example patient trajectories between ICU admission and ICU dispatch,
in the 2D SOM grid of VarTPSOM. The heatmap shows the enrichment of cells for the current
APACHE physiology score. We observe qualitative differences in the trajectories of dying/healthy
patients.

5 CONCLUSION220

We presented two novel methods for interpretable unsupervised clustering, VarPSOM and VarTP-221

SOM. Both models make use of a VAE and a novel clustering method, PSOM, that extends the222

classical SOM algorithm to include a centroid-based probability distribution. Our models achieve223

superior clustering performance compared to state-of-the-art deep clustering baselines on bench-224

mark data sets and real-world medical time series. The use of a VAE for feature extraction, instead225

of an AE, used in previous methods, and the use of soft assignments of data points to clusters results226

in an interpretable model that can quantify uncertainty in the data.227
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APPENDIX304

A SELF-ORGANIZING MAPS305

Among various existing interpretable unsupervised learning algorithms, Kohonen’s self-organizing306

map (SOM) (Kohonen, 1990) is one of the most popular models. It is comprised of K neurons307

connected to form a discrete topological structure. The data are projected onto this topographic map308

which locally approximates the data manifold. Usually it is a finite two-dimensional region where309

neurons are arranged in a regular hexagonal or rectangular grid. Here we use a grid, M ∈ N2,310

because of its simplicity and its visualization properties. Each neuron mij , at position (i, j) of the311

grid, for i, j = 1, . . . ,
√
K, corresponds to a centroid vector, µi,j in the input space. The centroids312

are tied by a neighborhood relation, here defined as N (µi,j) = {µi−1,j , µi+1,j , µi,j−1, µi,j+1}.313

Given a random initialization of the centroids, the SOM algorithm randomly selects an input xi and314

updates both its closest centroid µi,j and its neighbors N (µi,j) to move them closer to xi. The315

algorithm (1) then iterates these steps until convergence.316

Algorithm 1 Self-Organizing Maps

Require: 0 < α(t) < 1; limt→∞
∑
α(t)→∞; limt→∞

∑
α2(t) <∞;

repeat
At each time t, present an input x(t) and select the winner,

ν(t) = arg min
k∈Ω
‖x(t)−wk(t)‖

Update the weights of the winner and its neighbours,

∆wk(t) = α(t)η(ν, k, t) [x(t)−wν(t)]

until the map converges

The range of SOM applications includes high dimensional data visualizations, clustering, image317

and video processing, density or spectrum profile modeling, text/document mining, management318

systems and gene expression data analysis.319

B EXPERIMENTAL AND IMPLEMENTATION DETAILS320

B.1 DATASETS321

• MNIST: It consists of 70000 handwritten digits of 28-by-28 pixel size. Digits range from322

0 to 9, yielding 10 patterns in total. The digits have been size-normalized and centered in a323

fixed-size image Lecun et al. (1998).324

• Fashion MNIST: A dataset of Zalando’s article images consisting of a training set of325

60,000 examples and a test set of 10,000 examples Xiao et al. (2017). Each example is326

a 28×28 grayscale image, associated with a label from 10 classes.327

• eICU: For temporal data we use vital sign/lab measurements of intensive care unit (ICU)328

patients resampled to a 1-hour based grid. The last 72 hours of these time series were329

used for the experiments. As labels we use a variant of the current dynamic APACHE330

physiology score (APACHE-0) as well as the worst APACHE score in the next 6 and 12331

hours (APACHE-6/12).332

Each dataset is divided into training, validation and test sets for both our models and the baselines.333

B.2 LATENT SPACE DIMENSION334

We evaluated the DEC model for different latent space dimensions. Table S1 shows that the AE,335

used in the DEC model, performs better when a lower dimensional latent space is used.336
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Table S1: Mean/Standard error of NMI and Purity of DEC model on MNIST test set, across 10 runs
with different random model initializations. We use 64 clusters and different latent space dimen-
sions.

Latent dimension Purity NMI

l = 10 0.950± 0.001 0.681± 0.001
l = 100 0.750± 0.001 0.573± 0.001

B.3 LEARNING HEALTH STATE REPRESENTATIONS IN THE ICU337

By enforcing a SOM structure, VarPSOM, as well as VarTPSOM, project the cluster centroids onto338

a discrete 2D grid. Such a grid is particularly suited for visualization purposes and relations between339

centroids become immediatively intuitive. In Fig. S1 a heat-map (colored according to enrichment340

in the current APACHE score, as well as future mortality risk in the next 24 hours) shows compact341

enrichment structures. Clusters with similar enrichment for mortality risk and current APACHE342

score, respectively, are often close to each other on the SOM grid. Our model thus succeeds in creat-343

ing a meaningful neighbourhood structure over the centroids with respect to these clinical quantities,344

even though it is learned purely unsupervised. The two heat-maps (S1a and S1b) show different en-345

richment patterns. Clusters which are enriched in patients with higher APACHE scores often do not346

correspond exactly to clusters with a higher mortality risk. This suggests that traditional represen-347

tations of physiologic values, such as the APACHE score, fail to fully use all complex multivariate348

relationships present in the ICU recordings.349

(a) Mortality risk in the next 24 hours (b) Current APACHE score

Figure S1: Heat-maps on enrichment in mortality risk in the next 24 hours as well as the current
dynamic APACHE score, superimposed on the discrete 2D grid learned by VarTPSOM.

B.4 VISUALIZING HEALTH STATE TRAJECTORIES IN THE ICU350

To analyze the trend of the patient pathology, VarTPSOM induces trajectories on the 2D SOM grid351

which can be easily visualized. Fig. S2 shows 20 randomly sampled patient trajectories obtained352

by our model. Trajectories ending in the death of the patient are shown in red, healthily dispatched353

patients are shown in green.354

One of the main advantage of VarTPSOM over the traditional SOM algorithm is the use of soft355

assignments of data points to clusters which results in a better ability to quantify uncertainty in the356

data. For visualizing health states in the ICU, this property is very important. In Fig S3 we plot an357

example patient trajectory, where 6 different time-steps (in temporal order) of the trajectory were358

chosen. Our model yields a soft centroid-based probability distribution which evolves with time and359

which allows estimation of likely discrete health states at a given point in time. For each time-step360

the distribution of probabilities is plotted using a heat-map, whereas the overall trajectory is plotted361

using a black line. The circle and cross indicate ICU admission and dispatch, respectively.362
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Figure S2: Randomly sampled VarTPSOM trajectories, from patients expired at the end of the ICU
stay, as well as healthily dispatched patients. Superimposed is a heatmap which displays the cluster
enrichment in the current APACHE score. We observe that trajectories of dying patients are often
in different locations of the map as healthy patients, in particular in those regions enriched for high
APACHE scores, which corresponds with clinical intuition.

Figure S3: Probabilities over discrete patient health states for 6 different time-steps of the selected
time series.
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