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ABSTRACT

Knowledge graphs (KGs) represent world’s facts in structured forms. KG com-
pletion exploits the existing facts in a KG to discover new ones. Translation-based
embedding model (TransE) is a prominent formulation to do KG completion. De-
spite the efficiency of TransE in memory and time, it suffers from several limita-
tions in encoding relation patterns such as symmetric, reflexive etc. To resolve this
problem, most of the attempts have circled around the revision of the score func-
tion of TransE i.e., proposing a more complicated score function such as Trans(A,
D, G, H, R, etc) to mitigate the limitations. In this paper, we tackle this problem
from a different perspective. We show that existing theories corresponding to the
limitations of TransE are inaccurate because they ignore the effect of loss func-
tion. Accordingly, we pose theoretical investigations of the main limitations of
TransE in the light of loss function. To the best of our knowledge, this has not
been investigated so far comprehensively. We show that by a proper selection of
the loss function for training the TransE model, the main limitations of the model
are mitigated. This is explained by setting upper-bound for the scores of positive
samples, showing the region of truth (i.e., the region that a triple is considered pos-
itive by the model). Our theoretical proofs with experimental results fill the gap
between the capability of translation-based class of embedding models and the
loss function. The theories emphasise the importance of the selection of the loss
functions for training the models. Our experimental evaluations on different loss
functions used for training the models justify our theoretical proofs and confirm
the importance of the loss functions on the performance.

1 INTRODUCTION

Knowledge is considered as commonsense facts and other information accumulated from different
sources. Throughout history, civilizations have evolved due to increase in the knowledge. With the
passage of time, humans obtain many relations among different entities. Therefore, development of
proper knowledge representation (KR) and management systems is essential.

The aim of KR is to study how the beliefs can be represented in an explicit, symbolic nota-
tion proper to automated reasoning. Knowledge Graph (KG) is a new direction for KR. KGs
are usually represented as a set of triples (h, r, t) where h, t are entities and r is a relation, e.g.
(iphone, hyponym, smartphone). Entities and relations are nodes and edges in the graph, respec-
tively.

KGs are inherently incomplete, making prediction of missing links always relevant. Among dif-
ferent approaches used for KG completion, KG Embedding (KGE) has recently received growing
attentions. KGE embeds entities and relations as low dimensional vectors. To measure the degree
of plausibility of a triple, a scoring function is defined over the embeddings.

TransE, Translation-based Embedding model, Bordes et al. (2013) is one of the most widely used
KGEs. The original assumption of TransE is to hold: h + r = t, for every positive triple (h, r, t)
where h, r, t ∈ Rd are embedding vectors of head (h), relation (r) and tail (t) respectively.
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TransE and its many variants like TransH Wang et al. (2014) and TransR Lin et al. (2015b), un-
derperform greatly compared to the current state-of-the-art embedding models due to the inherent
limitations of their scoring functions.

Recent work has the main limitations of Translation-based models. Wang et al. (2018) reveals that
TransE cannot encode a relation pattern which is neither reflexive nor irreflexive. Sun et al. (2019)
prove that TransE is incapable of encoding symmetric relation. Wang et al. (2014) adds that TransE
cannot properly encode reflexive, one-to-many, many-to-one and many-to-many relations.

TransH, TransR and TransD (Wang et al., 2014; Lin et al., 2015b; Ji et al., 2015) can handle the
mentioned problems of TransE (i.e. one-to-many, many-to-one, many-to-many and reflexive) by
projecting entities to relation space before applying translation. However, Kazemi & Poole (2018)
investigate three additional limitations of TransE, FTransE (Feng et al., 2016), STransE (Nguyen
et al., 2016), TransH and TransR models: (i) if the models encode a reflexive relation r, they au-
tomatically encode symmetric, (ii) if the models encode a reflexive relation r, they automatically
encode transitive and, (iii) if entity e1 has relation r with every entity in ∆ ∈ E and entity e2 has
relation r with one of entities in ∆, then e2 must have the relation r with every entity in ∆.

The mentioned works have investigated these limitations by focusing on the capability of scoring
functions in encoding relation patterns. However, we prove that the selection of loss function affects
the boundary of score functions; consequently, the selection of loss functions significantly affects the
limitations. Therefore, the above mentioned theories corresponding to the limitations of translation-
based embedding models in encoding relation patterns are inaccurate. We pose new theories about
the limitations of TransX(X=H,D,R, etc) models considering the loss functions. To the best of
our knowledge, it is the first time that the effect of loss function is investigated to prove theories
corresponding to the limitations of translation-based models.

In a nutshell, the key contributions of this paper is as follows: (i) We show that different loss func-
tions enforce different upper-bounds and lower-bounds for the scores of positive and negative sam-
ples respectively. This implies that existing theories corresponding the limitation of TransX models
are inaccurate because the effect of loss function is ignored. We introduce new theories accord-
ingly and prove that the proper selection of loss functions mitigates the main limitations. (ii) We
reformulate the existing loss functions and their optimization problems as an standard constrained
optimization problem. This makes perfectly clear that how each of the loss functions affect on the
boundary of triples scores and consequently ability of relation pattern encoding. (iii) using symmet-
ric relation patterns, we obtain the optimal upper-bound of positive triples score to enable encoding
of symmetric patterns. (iv) We additionally investigate the theoretical capability of translation-based
embedding model when translation is applied in complex space (TransComplEx). We show that
TransComplEx is a more powerful embedding model with fewer theoretical limitations in encoding
different relation patterns such as symmetric while it is efficient in memory and time.

2 RELATED WORKS

Most of the previous work have investigated the capability of translation-based class of embedding
models considering solely the formulation of the score function. Accordingly, in this section, we
review the score functions of TransE and some of its variants together with their capabilities. Then,
in the next section the existing limitations of Translation-based embedding models emphasized in
recent works are reviewed. These limitations will be reinvestigated in the light of score and loss
functions in the section 4.

TransE (Bordes et al., 2013) is one of the earlier KGE models which is efficient in both time and
space. The score function of TransE is defined as: fr(h, t) = ‖h + r− t‖.
TransH (Wang et al., 2014) projects each entity (e) to the relation space (e⊥ = e − wrewTr ). The
score function is defined as fr(h, t) = ‖h⊥ + r − t⊥‖. TransH can encode reflexive, one-to-many,
many-to-one and many-to-many relations. However, recent theories (Kazemi & Poole, 2018) prove
that encoding reflexive results in encoding the both symmetric and transitive which is undesired.

TransR (Lin et al., 2015b) projects each entity (e) to the relation space by using a matrix provided
for each relation (e⊥ = eMr, Mr ∈ Rde×dr ). TransR uses the same scoring function as TransH.
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TransD (Ji et al., 2015) provides two vectors for each individual entities and relations
(h,hp, r, rp, t, tp). Head and tail entities are projected by using the following matrices:

Mrh = rTp hp + Im×n,Mrt = rTp tp + Im×n

The score function of TransD is similar to the score function of TransH.

RotatE (Sun et al., 2019) rotates the head to the tail entity by using relation. RotatE embeds entities
and relations in Complex space. By inclusion of constraints on the norm of entity vectors, the model
would be degenerated to TransE. The scoring function of RotatE is fr(h, t) = ‖h ◦ r − t‖, where
h, r, t ∈ Cd, and ◦ is element-wise product. RotatE obtains the state-of-the-art results using very
big embedding dimension (1000) and a lot of negative samples (1000).

TorusE (Ebisu & Ichise, 2018) fixes the problem of regularization in TransE by applying translation
on a compact Lie group. The model has several variants including mapping from torus to Complex
space. In this case, the model is regarded as a very special case of RotatE Sun et al. (2019) that
applies rotation instead of translation in the target Complex space. According to Sun et al. (2019),
TorusE is not defined on the entire Complex space. Therefore, it has less representation capacity.
TorusE needs a very big embedding dimension (10000 as reported in Ebisu & Ichise (2018)) which
is a limitation.

3 THE MAIN LIMITATIONS OF TRANSLATION-BASED EMBEDDING MODELS

Here we review the six limitations of translation-based embedding models in encoding relation
patterns (e.g., reflexive, symmetric) mentioned in the literature: Wang et al. (2014); Kazemi &
Poole (2018); Wang et al. (2018); Sun et al. (2019).

Limitation L1: Wang et al. (2014): TransE cannot encode reflexive relations when relation vector
is non-zero.

Limitation L2 Wang et al. (2018): if TransE encodes a relation r, which is neither reflexive nor
irreflexive the following equations should be held simultaneously: h1 + r = h1,h2 + r 6= h2.
Therefore, both r = 0, r 6= 0 should be held, which result in contradiction. In this regard, TransE
cannot encode a relation which is neither reflexive nor irreflexive.

Limitation L3 Sun et al. (2019): If relation r is symmetric, the following equations should be held:
h + r = t and t + r = h. Therefore, r = 0 and so all entities appeared in head or tail parts of
training triples will have the same embedding vectors which is undesired. Therefore, TransE cannot
properly encode symmetric relation when r 6= 0.

The following limitations are held for TransE, FTransE Feng et al. (2016), STransE Nguyen et al.
(2016), TransH and TransR.

Limitation L4 Kazemi & Poole (2018): if a relation r is reflexive on ∆ ∈ E , where E is the set of
all entities in the KG, r must also be symmetric.

Limitation L5 Kazemi & Poole (2018): if r is reflexive on ∆ ∈ E , r must also be transitive.

Limitation L6 Kazemi & Poole (2018): if entity e1 has relation r with every entity in ∆ ∈ E and
entity e2 has relation r with one of entities in ∆, then e2 must have the relation r with every entity
in ∆.

4 OUR MODEL

TransE and its variants underperform compared to other embedding models due to their limitations
we iterated in Section 3. In this section, we reinvestigate the limitations. We show that the cor-
responding theoretical proofs are inaccurate because the effect of loss function is ignored. So we
propose new theories and prove that each of the limitations of TransE are resolved by revising either
the scoring function or the loss. In this regard, we consider several loss functions and their effects
on the boundary of the TransE scoring function. For each of the loss functions, we pose theories cor-
responding to the limitations. we additionally investigate the limitations of TransE using each of the

3



Under review as a conference paper at ICLR 2020

loss functions while translation is performed in Complex space (TransComplEx). TransComplEx
with a proper selection of loss function further mitigates the limitations as we discuss as follows.

4.1 TRANSCOMPLEX: TRANSLATIONAL EMBEDDING MODEL IN COMPLEX SPACE

Inspired by Trouillon et al. (2016), in this section we propose TransComplEx that translates head
entity vector to the conjugate of tail entity vector using relation vector in Complex space. The score
function is defined as follows:

fr(h, t) = ‖h + r− t̄‖ (1)

where h, r, t ∈ Cd are complex vectors i.e., each elements of the vectors is a complex number. For
example, the i-th element of the vector h is denoted by hi = Re(hi) + Im(hi). Respectively,
Re(.), Im(.) denote real and imaginary parts of a complex number. The complex vector h contains
real and imaginary vectors parts i.e. h = Re(h) + Im(h). t̄ = Re(t) − Im(t) is conjugate of the
complex vector t.

Advantages of TransComplEx:

i) Comparing to TransE and its variants, TransComplEx has less limitations in encoding different
relation patterns. The theories and proofs are provided in the next part.

ii) Using conjugate of tail vector in the formulation enables the model to make difference between
the role of an entity as subject or object. This cannot be properly captured by TransE and its variants.

iii) Given the example (A,Like, Juventus), (Juventus, hasP layer, C.Ronaldo), that
C.Ronaldo plays for Juventus may affect the person A to like the team. This type of in-
formation cannot be properly captured by models such as CP decomposition Hitchcock (1927)
where two independent vectors are provided Kazemi & Poole (2018) for Juventus (for subject and
object). In contrast, our model uses same real and imaginary vectors for Juventus when it is used
as subject or object. Therefore, TransComplEx can properly capture dependency between the two
triples with the same entity used as subject and object.

iiii) ComplEx Trouillon et al. (2016) has much more computational complexity comparing to
TransComplEx because it needs to compute eight vector multiplications to obtain score of a triple
while our model only needs to do four vector summation/subtractions. In the experiment section,
we show that TransComplEx outperforms ComplEx on various dataset.

4.2 REINVESTIGATION OF THE LIMITATIONS OF TRANSLATION-BASED EMBEDDING
MODELS

The aim of this part is to analyze the limitations of Translation-based embedding models (including
TransE and TransComplEx) by considering the effect of both score and loss functions. Different loss
functions provide different upper-bound and lower-bound for positive and negative triples scores,
respectively. Therefore, the loss functions affect the limitations of the models to encode relation
patterns. To investigate the limitations, we redefine the conditions that a triple is considered as
positive or negative by defining upper-bound and lower-bound for the scores.

Lets fr(h, t), fr(h
′
, t

′
) be the scores of a positive (h, r, t) and negative (h

′
, r, t

′
) triples respectively.

The negative triple (h
′
, r, t

′
) is generated by corruption of either head or tail of the triple (h, r, t) as

mentioned in Bordes et al. (2013). Four conditions are defined as follows:

Table 1: Region of truth and falsity
Condition Positive Negative γ1, γ2

(a) fr(h, t) = γ1, fr(h
′
, t

′
) ≥ γ2 γ1 = 0, γ2 > 0

(b) fr(h, t) = γ1 fr(h
′
, t

′
) ≥ γ2 γ2 > γ1 > 0

(c) fr(h, t) ≤ γ1 fr(h
′
, t

′
) ≥ γ2 γ2 > γ1 > 0

(d) fr(h, t) ≤ γ1(h,r,t) fr(h
′
, t

′
) ≥ γ2(h,r,t) γ2(h,r,t) > γ1(h,r,t) > 0
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Figure 1: The region of truth for a triple: A triple is positive if (a) its residual vector (i.e., ε = h+r−t)
becomes 0 (b) its residual vector (i.e., ε) lies on the border of a sphere with radius γ1, (c) its residual
vector (i.e., ε) lies inside of a sphere with radius γ1, (d) its residual vector (i.e., ε(h1,r1,t1)) lies inside
of a sphere with radius γ(h1,r1,t1).

.

Figure 2: Necessity condition for encoding symmetric relation: (a) when α < 1, the model cannot
encode symmetric relation.There is not any common points between two hyperspheres). (b) when
α = 1, the intersection of two hyperspheres is a point. u = 0 means embedding vectors of all entities
should be same. Therefore, symmetric relation cannot be encoded. (c) if α > 1, symmetric relation
can be encoded because there are several points which are intersection of two hyperspheres.

Figure 1 visualizes different conditions mentioned above. The condition (a) indicates a triple is
positive if h + r = t holds. It means that the length of residual vector i.e., ε = h + r − t, is zero.
It is the most strict condition that expresses being positive. Authors in Sun et al. (2019); Kazemi &
Poole (2018) consider this condition to prove their theories.

Condition (b) considers a triple to be positive if its residual vector lies on a hyper-sphere with radius
γ1. It is less restrictive than the condition (a) which considers a point to express being positive. The
optimization problem that satisfies the conditions (a) (γ1 = 0) and (b) (γ1 > 0) is as follows:
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minξh,t

∑
(h,r,t)∈S+ ξh,t

2

s.t.
fr(h, t) = γ1, (h, r, t) ∈ S+

fr(h
′
, t

′
) ≥ γ2 − ξh,t, (h

′
, r, t

′
) ∈ S−

ξh,t ≥ 0

(2)

where S+, S− are the set of positive and negative samples. The loss function that satisfies the
conditions (a) (γ1 = 0) and (b) (γ1 > 0) is:

La|b =
∑

(h,r,t)∈S+

λ1‖fr(h, t)− γ1‖+

λ2 max(γ2 − fr(h
′
, t

′
), 0).

(3)

Condition (c) considers a triple to be positive if its residual vector lies inside a hyper-sphere with
radius γ1. The optimization problem that satisfies the condition (c) is as follows (Nayyeri et al.,
2019):



minξh,t

∑
(h,r,t)∈S+ ξh,t

2

s.t.
fr(h, t) ≤ γ1, (h, r, t) ∈ S+

fr(h
′
, t

′
) ≥ γ2 − ξh,t, (h

′
, r, t

′
) ∈ S−

ξh,t ≥ 0

(4)

The loss function that satisfies the condition (c) is as follows Nayyeri et al. (2019):

Lc =
∑

(h,r,t)∈S+

λ1 max(fr(h, t)− γ1, 0) +

λ2 max(γ2 − fr(h
′
, t

′
), 0)

(5)

Remark: The loss function which is defined in Zhou et al. (2017b) is slightly different from the loss
3. The former slides the margin while the later fixes the margin by inclusion of a lower-bound for
the score of negative triples. The both losses put an upper-bound for scores of positive triples.

Condition (d) is similar to (c). But it provides different γ1, γ2 for each triples. Using the condition
(d), there is not a unique region of truth for all positive triples, rather for each triple (h, r, t) and its
corresponding negative samples (h

′
, r, t

′
) there are triple specific region of truth and falsity. Margin

ranking loss (Bordes et al., 2013) satisfies the condition (d). The loss is defined as:

Ld =
∑∑

[fr(h, t) + γ − fr(h
′
, t

′
)]+ (6)

where [x]+ = max(0, x). Considering the conditions (a), (b), (c) and (d), we investigate the lim-
itations L1 ,..., L6. We prove that existing theories are invalid under some conditions. During the
following investigations of the limitations, we assume that the relation vectors shouldn’t be null be-
cause the null vector for relation results same embedding vectors for entities appeared in head and
tail parts when conditions (a) is used.

Limitation L1: Lemma 1: Let assumption (a) holds, then TransE and TransComplEx cannot infer a
reflexive relation pattern with non-zero relation vector. With assumptions (b), (c) and (d), however,
this is not true anymore and the models can infer reflexive relation patterns

Proof: the proofs are provided in the supplementary material file.

Limitation L2: Lemma 2: 1) TransComplEx can infer a relation pattern which is neither reflexive
nor irreflexive with condition (b), (c) and (d). 2) TransE cannot infer the relation pattern which is
neither reflexive nor irreflexive.
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Limitation L3: Lemma 3: 1) TransComplEx can infer symmetric patterns with condition (a), (b),
(c) and (d). 2) TransE cannot infer symmetric patterns with condition (a) with non-zero vector for
relation. 3) TransE can infer a relation pattern which is symmetric with conditions (b).

Proof: proof of 1), 2) and 3) are included in the supplementary material.

3) For TransE with condition (b), there is

‖h + r− t‖ = γ1, (7)
‖t + r− h‖ = γ1. (8)

The necessity condition for encoding symmetric relation is ‖h + r− t‖ = ‖t + r− h‖. This implies
‖h‖cos(θh,r) = ‖t‖cos(θt,r). Let h− t = u, by definition we have ‖u + r‖ = γ1, ‖u− r‖ = γ1.

Let γ1 = α‖r‖. We have {
‖u‖2 + (1− α2)‖r‖2 = −2〈u, r〉
‖u‖2 + (1− α2)‖r‖2 = 2〈u, r〉 (9)

Regarding 9, there is

‖u‖2 + (1− α2)‖r‖2 = −(|u‖2 + (1− α2)‖r‖2).→ ‖u‖2 = (α2 − 1)‖r‖2.
To avoid contradiction, α > 1. If α > 1 we have cos(θu,r) = π/2. Therefore, TransE can encode
symmetric pattern with condition (b), if γ1 = α‖r‖ and α > 1. Figure 2 shows different conditions
for encoding symmetric relation.

Limitation L4: Lemma 4: 1) Let (a) holds. Limitation L4 holds for both TransE and TransComplEx.
2) Limitation L4 is not valid when assumptions (b), (c) and (d) hold.

Limitation L5: Lemma 5: 1) Under condition (a), the limitation L5 holds for both TransE and
TransComplEx. 2) Under conditions (b), (c) and (d), L5 is not valid for both TransE and TransCom-
plEx.

Limitation L6: Lemma 6: 1) With condition (a), the limitation L6 holds for both TransE and
TransComplEx. 2) With conditions (b), (c) and (d), the limitation L6 doesn’t hold for the models.

4.3 ENCODING RELATION PATTERNS IN TRANSCOMPLEX

Most of KGE models learn from triples. Recent work incorporates relation patterns such as tran-
sitive, symmetric on the top of triples to further improve performance of models. For example,
ComplEx-NNE+AER Ding et al. (2018) encodes implication pattern in the ComplEx model. RUGE
Guo et al. (2018) injects First Order Horn Clause rules in an embedding model. SimplE Kazemi &
Poole (2018) captures symmetric, antisymmetric and inverse patterns by weight tying in the model.
Inspired by Minervini et al. (2017) and considering the score function of TransComplEx, in this part,
we derive formulae for equivalence, symmetric, inverse and implication to be used as regularization
terms in the optimization problem. Therefore, the model incorporates different relation patterns to
optimize the embeddings.

Symmetric: In order to encode symmetric relation r, the following should be held:

fr(h, t)⇐⇒ fr(t, h),

Therefore the following algebraic formulae is proposed to encode the relation: ‖fr(h, t) −
fr(t, h)‖ = 0. According to the definition of score function of TransComplEx, we have the fol-
lowing algebraic formulae: RS = ‖Re(h) − Re(t)‖ = 0. Using similar argument for symmetric,
the following formulae are derived for transitive, composition, inverse and implication:

Equivalence: Let p, q be equivalence relations i.e., fp(h, t) ⇐⇒ fq(h, t). we obtain RE = ‖p −
q‖ = 0.

Implication: Let p→ q, we obtainRI = max(fp(h, t)− fq(h, t), 0) = 0.

Inverse: Let r ←→ r−1, we obtainRIn = ‖r− r−1‖.
Finally, the following optimization problem should be solved:

min
θ
L+

∑
ηiRi (10)
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where θ is embedding parameters, L is one of the losses 3, 5 or 6 and R is one of the derived
formulae mentioned above.

5 EXPERIMENTS AND EVALUATIONS

In this section, we evaluate performance of our model, TransComplEx, with different loss functions
on link prediction task. The aim of the task is to complete the triple (h, r, ?) ((?, r, t)) by prediction
of the missed entity h or t. Filtered Mean Rank (MR), Mean Reciprocal Rank (MRR) and Hit@10
are used for evaluations (Wang et al., 2017; Lin et al., 2015b).

Dataset. We use two dataset extracted from Freebase (Bollacker et al., 2008) (i.e., FB15K (Bor-
des et al., 2013) and FB15K-237 (Toutanova & Chen, 2015)) and two others extracted from Word-
Net (Miller, 1995) (i.e. WN18 (Bordes et al., 2013) and WN18RR (Dettmers et al., 2018)). FB15K
and WN18 are earlier dataset which have been extensively used to compare performance of KGEs.
FB15K-237 and WN18RR are two dataset which are supposed to be more challenging after remov-
ing inverse patterns from FB15K and WN18. Guo et al. (2018) and Ding et al. (2018) extracted
different relation patterns from FB15K and WN18 respectively. The relation patterns are provided
by their confidence level, e.g. (a,BornIn, b)

0.9−−→ (a,Nationality, b). We drop the relation pat-
terns with confidence level less than 0.8. Generally, we use 454 and 14 relation patterns for FB15K
and WN18 respectively. We do grounding for symmetric and transitive relation patterns. Thanks to
the formulation of score function, grounding is not needed for inverse, implication and equivalence.

Experimental Setup. We implement TransComplEx with the losses 3, 5 and 6 and TransE with
the loss 5 in Pytorch. Adagrad is used as an optimizer. We generate 100 mini-batches in each
iteration. The hyperparameter corresponding to the score function is embedding dimension d. We
add slack variables to the losses 3 and 5 to have soft margin as in (Nayyeri et al., 2019). The loss 5
is rewritten as follows Nayyeri et al. (2019):

min
ξrh,t

∑
(h,r,t)∈S+

λ0ξ
r
h,t

2 + λ1 max(fr(h, t)− γ1, 0) + λ2 max(γ2 − fr(h
′
, t

′
)− ξrh,t, 0) (11)

We set λ1 and λ2 to one and search for the hyperparameters γ1(γ2 > γ1) and λ0 in the sets
{0.1, 0.2, . . . , 2} and {0.01, 0.1, 1, 10, 100} respectively. Moreover, we generate α ∈ {1, 2, 5, 10}
negative samples per each positive. The embedding dimension and learning rate are tuned from
the sets {100, 200}, {0.0001, 0.0005, 0.001, 0.005, 0.01} respectively. All hyperparameters are ad-
justed by early stopping on validation set according to MRR. RPTransComplEx# denotes the
TransComplEx model which is trained by the loss function # (3, 5, 6). RP indicates that relation
patterns are injected during learning by regularizing the derived formulae (see 10). TransComplEx#
refers to our model trained with the loss # without regularizing relation patterns formulae. The same
notation is used for TransE#. The optimal configurations for RPTransComplEx3 are d = 200, λ0 =
100, γ1 = 0.4, γ2 = 0.5, α = 10 for FB15K, d = 200, λ0 = 100, γ1 = 1.5, γ2 = 2, α = 10 for
FB15K-237, d = 200, λ0 = 100, γ1 = 1, γ2 = 2, α = 10 for WN18; for RPTransComplEx5
are d = 200, λ0 = 10, γ1 = 0.4, γ2 = 0.5, α = 10 for FB15K, d = 200, λ0 = 100, γ1 =
1.5, γ2 = 2, α = 10 for FB15K-237, d = 200, λ0 = 100, γ1 = 0.6, γ2 = 1.7, α = 2 for WN18;
for RPTransComplEx6 are d = 200, γ = 5, α = 10 for FB15K, d = 200, γ = 10, α = 10 for
FB15K-237, d = 200, γ = 10, α = 10 for WN18; for TransComplEx5 are d = 200, λ0 = 10, γ1 =
0.4, γ2 = 0.5, α = 10 for FB15K, d = 200, λ0 = 100, γ1 = 1.5, γ2 = 2, α = 10 for FB15K-237,
d = 200, λ0 = 100, γ1 = 0.6, γ2 = 1.7, α = 2 for WN18, d = 200, λ0 = 1, γ1 = 1.6, γ2 =
2.7, α = 2 for WN18RR, for TransE5 are d = 200, λ0 = 10, γ1 = 0.4, γ2 = 0.5, α = 10 for
FB15K, d = 200, λ0 = 100, γ1 = 0.4, γ2 = 0.5, α = 10 for FB15K-237, d = 200, λ0 = 1, γ1 =
1, γ2 = 2, α = 10 for WN18, d = 200, λ0 = 1, γ1 = 0.6, γ2 = 1.7, α = 2 for WN18RR.

Results. Table 2 presents comparison of TransComplEx and its relation pattern encoded variants
(RPTransComplEx) with three classes of embedding models including Translation-based models
(e.g. TransX, TorusE), relation pattern encoded models (e.g. RUGE, ComplEx-NNE+AER, SimplE,
SimplE+), and other state-of-the-art embedding models (e.g. ConvE, ComplEx, ANALOGY). To
investigate our theoretical proofs corresponding to the effect of loss function, we train TransCom-
plEx with different loss functions. As previously discussed, FB15K-237 and WN18RR are two
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FB15k WN18

Hits Hits
MR MRR @10 MR MRR @10

TransE (Bordes et al., 2013) 125 - 47.1 251 - 89.2
TransH (bern) (Wang et al., 2014)* 87 - 64.4 388 - 82.3
TransR (bern) (Lin et al., 2015b)* 77 - 68.7 225 - 92.0
TransD (bern) (Ji et al., 2015)* 91 - 77.3 212 - 92.2
TransE-RS (bern) (Zhou et al., 2017a)* 63 - 72.1 371 - 93.7
TransH-RS (bern) (Zhou et al., 2017a)* 77 - 75.0 357 - 94.5
TorusE (Ebisu & Ichise, 2019) - 73.3 83.2 - 94.7 95.4
TorusE(with WNP) (Ebisu & Ichise, 2019) - 75.1 83.5 - 94.7 95.4

R-GCN (Schlichtkrull et al., 2018)+ - 65.1 82.5 - 81.4 95.5
ConvE (Dettmers et al., 2018)++ 51 68.9 85.1 504 94.2 95.5
ComplEx (Trouillon et al., 2016)++ 106 67.5 82.6 543 94.1 94.7
ANALOGY (Liu et al., 2017)++ 121 72.2 84.3 - 94.2 94.7
RotatE (Sun et al., 2019) 48 69.0 86.1 433 94.8 95.5

SimplE (Kazemi & Poole, 2018) - 72.7 83.8 - 94.2 94.7
SimplE+ (Fatemi et al., 2018) - 72.5 84.1 - 93.7 93.9
PTransE (Lin et al., 2015a) 58 - 84.6 - - -
KALE (Guo et al., 2016) 73 52.3 76.2 241 53.2 94.4
RUGE (Guo et al., 2018) 97 76.8 86.5 - - -
ComplEx-NNE+AER (Ding et al., 2018) 116 80.3 87.4 450 94.3 94.8

RPTransComplEx3 38 70.5 88.3 451 92.7 94.8
RPTransComplEx5 38 72.4 88.8 275 92.4 95.4
RPTransComplEx6 59 61.7 82.2 547 94.0 94.7
TransComplEx5 38 68.2 87.5 284 92.2 95.5
TransE5 46 64.8 87.2 703 68.7 94.5

Table 2: Link prediction results. Rows 1-8: Translation-based models with no injected relation
patterns. Rows 9-13: basic models with no injected relation patterns. Rows 14-18: models which
encode relation patterns. Results labeled with *, + and ++ are taken from Zhou et al. (2017a), Ebisu
& Ichise (2019) and Akrami et al. (2018) while the rest are taken from original papers/code. Dashes:
results could not be obtained.

FB15k-237 WN18RR

Hits Hits
MR MRR @10 MR MRR @10

TransE (Bordes et al., 2013)+ - 25.7 42.0 - 18.2 44.4
DistMult (Bordes et al., 2013)+ - 24.1 41.9 - 43.0 49.0
ComplEx (Trouillon et al., 2016)+ - 24.0 41.9 - 44.0 51.0
R-GCN (Schlichtkrull et al., 2018)+ - 24.8 41.7 - - -
ConvE (Dettmers et al., 2018)+ - 31.6 49.1 - 46.0 48.0
TorusE (Ebisu & Ichise, 2019) - 30.5 48.4 - 45.2 51.2
TorusE (with WNP) (Ebisu & Ichise, 2019) - 30.7 48.5 - 46.0 53.4
RotatE (Sun et al., 2019) 211 31.1 49.4 4789 47.3 54.9

RPTransComplEx3 210 27.7 46.4 - - -
RPTransComplEx5 226 31.9 49.5 - - -
RPTransComplEx6 216 25.3 43.8 - - -
TransComplEx5 223 31.7 49.3 4081 38.9 49.8
TransE5 205 27.2 45.3 3850 20.0 47.5

Table 3: Link prediction results. Rows 1-8: basic models with no injected relation patterns. Re-
sults labeled with + are taken from Ebisu & Ichise (2019) while the rest are taken from original
papers/code. Dashes: results could not be obtained.
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more challenging dataset provided recently. Therefore, in order to have a better evaluation, Table 3
presents comparison of our models with state-of-the-art embedding methods on these two dataset.
For WN18RR, we do not use any relation patterns to be encoded. The results labeled with ”*”, ”+”
and ”++” are taken from Zhou et al. (2017a), Ebisu & Ichise (2019) and Akrami et al. (2018) respec-
tively. To have a fair comparison, we ran the code of RotatE (Sun et al., 2019) in our setting e.g.,
embedding dimension 200 and 10 negative samples while the original paper reported the results of
RotatE using a very big embedding dimension and a lot of negative samples (embedding dimension
1000 and 1000 negative samples).

Boosting techniques: There are several ways to improve the performance of embedding models:
1) designing a more sophisticated scoring function, 2) proper selection of loss function, 3) using
more negative samples 4) using negative sampling techniques, 5) enriching dataset (e.g., adding
reverse triples). Among the mentioned techniques, we focus on the first and second ones and avoid
using other techniques. We keep the setting used in Trouillon et al. (2016) to have a fair comparison.
Using other techniques can further improve the performance of every models including ours. For
example, TransComplEx with embedding dimension 200 and 50 negative samples gets 52.2 for
Hits@10.

Dissuasion of Results. According to the Table 2, FB15K dataset part, PRTransComplEx trained
by the loss 5 significantly outperforms all Translation-based embedding models including the recent
work TorusE. Note that TorusE is trained by embedding dimension 10000 while our model uses
embedding dimension at most 200. Comparing to relation pattern encoded embedding models in-
cluding recent works ComplEx-NNE+AER, RUGE, SimplE and SimplE+, our model outperforms
them in the terms of MR and Hit@10. Moreover, the model significantly outperforms popular
embedding models including ConvE and ComplEx. Regarding our theories, the loss 5 has less
limitations comparing to the loss 3. This is consistent with our theories where RPTransComplEx5
outperforms RPTransComplEx3. TransComplEx without encoding relation patterns still obtains
accuracy as good as state-of-the-art models. TransComplEx outperforms TransE while both are
trained by the loss 5 in the terms of MR, MRR and Hit@10 which is consistent with our theories
(TransComplEx score function has less limitations than TransE). Regarding the results on WN18,
the accuracy of TransComplEx is very close to the state-of-the-art models. Encoding relation pat-
terns cannot improve the performance on WN18 because the models learn relation patterns from
data well. The loss 6 provides different upper-bounds and lower-bounds for the score of positive
and negative triples respectively and also the margin can slide. Therefore, the accuracy would be de-
graded Zhou et al. (2017a). Generally, the loss 5 gets better performance which is consistent to our
theoretical results. As shown in the Table 3, FB15K-237 part, with and without encoding relation
patterns, TransComplEx trained by the loss 5 outperforms all the baselines in terms of MRR and
Hit@10. TransComplEx5 outperforms TransE5 showing the effectiveness of our proposed score
function. Regarding WN18RR, TorusE has better performance comparing to our model. However,
the results are obtained with a very big embedding dimension (d = 10000).

6 CONCLUSION

In this paper, we reinvestigated the main limitations of Translation-based embedding models from
two aspects: score and loss. We showed that existing theories corresponding to the limitations of the
models are inaccurate because the effect of loss functions has been ignored. Accordingly, we pre-
sented new theories about the limitations by consideration of the effect of score and loss functions.
We proposed TransComplEx, a new variant of TransE which is proven to be less limited comparing
to the TransE. The model is trained by using various loss functions on standard dataset including
FB15K, FB15K-237, WN18 and WN18RR. According to the experiments, TransComplEx with
proper loss function significantly outperformed translation-based embedding models. Moreover,
TransComplEx got competitive performance comparing to the state-of-the-art embedding models
while it is more efficient in time and memory. The experimental results conformed the presented
theories corresponding to the limitations.
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A SUPPLEMENTARY MATERIAL

The proof of lemmas are provided as follows:

Lemma 1: Let assumption (a) holds, then TransE and TransComplEx cannot infer a reflexive relation
pattern with non-zero relation vector. With assumptions (b), (c) and (d), however, this is not true
anymore and the models can infer reflexive relation patterns

Proof 1) Let r be a reflexive relation and condition a) holds. For TransE, we have

h + r− h = 0. (12)

Therefore, the relation vector collapses to a null vector (r = 0). As a consequence of r = 0,
embedding vectors of head and tail entities will be same which is undesired. Therefore, TransE
cannot infer reflexive relation with r 6= 0.

For TransComplEx, we have
h + r− h̄ = 0. (13)

We have

Re(r) = 0,
Im(r) = −2Im(h).

(14)

Therefore, all entities will have same embedding vectors which is undesired.

2) Using condition (b), we have

‖h + r− t‖ = γ1.

It gives ‖r‖ = γ1. Therefore, in order to infer reflexive relation, the length of the relation vector
should be γ1. Consequently, TransE and TransComplEx can infer reflexive relation. The same
procedure can be used for the conditions (c) and (d).

Lemma 2: 1) Let the assumption b) or c) or d) holds. TransComplEx can infer a relation pattern
which is neither reflexive nor irreflexive. 2) TransE cannot infer the relation pattern.

proof: 1) Let the relation r be neither reflexive nor irreflexive and two triples (e1, r, e1), (e2, r, e2)
be positive and negative respectively. Therefore the following inequalities hold:

{
‖e1 + r− ē1‖ ≤ λ1,
‖e2 + r− ē2‖ ≥ λ2.

(15)

Equation 15 is rewritten as follows:

‖Re(r) + i(Im(r) + 2Im(e1))‖ ≤ γ1,
‖Re(r) + i(Im(r) + 2Im(e2))‖ ≥ γ2,

(16)

For TransE in real space, ‖Re(r)‖ ≤ γ1 and ‖Re(r)‖ ≥ γ2 cannot be held simultaneously when
γ2 > γ1. Therefore, TransE in real space cannot encode a relation which is neither reflexive nor
irreflexive. In contrast, TransE in complex space can encode the relation by proper assignment of
imaginary parts of entities. Therefore, theoretically TransComplEx can infer a relation which is
neither reflexive nor irreflexive.

Lemma 3: 1) TransComplEx can infer symmetric patterns with condition a), b), c) and d). 2) TransE
cannot infer symmetric patterns with condition a) with non-zero vector for relation. 3) TransE can
infer a relation pattern which is symmetric and reflexive with conditions b), c) and d).

Proof: 1), 2) Let r be a symmetric relation and a) holds. We have
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h + r = t̄,
t + r = h̄.

(17)

Trivially, we have

Re(h) +Re(r) = Re(t),
Re(t) +Re(r) = Re(h),

Im(h) + Im(r) = −Im(t),
Im(t) + Im(r) = −Im(h),

(18)

For TransE in real space, there is

Re(h) +Re(r) = Re(t),
Re(t) +Re(r) = Re(h),

Therefore, Re(r) = 0. It means that TransE cannot infer symmetric relations with condition a). For
TransComplEx, additionally we have

Im(h) + Im(r) = −Im(t),
Im(t) + Im(r) = −Im(h),

It concludes Im(h) + Im(r) + Im(t) = 0. Therefore, TransE in complex space with condition a)
can infer symmetric relation. Because a) is an special case of b) and c), TransComplEx can infer
symmetric relations in all conditions.

3) For TransE with condition b), there is

‖h + r− t‖ = γ1, (19)
‖t + r− h‖ = γ1. (20)

The necessity condition for encoding symmetric relation is ‖h + r− t‖ = ‖t + r− h‖. This implies
‖h‖cos(θh,r) = ‖t‖cos(θt,r). Let h− t = u, by 20 we have ‖u + r‖ = γ1, ‖u− r‖ = γ1.

Let γ1 = α‖r‖. We have {
‖u‖2 + (1− α2)‖r‖2 = −2〈u, r〉
‖u‖2 + (1− α2)‖r‖2 = 2〈u, r〉 (21)

Regarding 21, we have

‖u‖2 + (1− α2)‖r‖2 = −(|u‖2 + (1− α2)‖r‖2).

→ ‖u‖2 = (α2 − 1)‖r‖2.
To avoid contradiction, α ≥ 1. If α ≥ 1 we have cos(θu,r) = π/2. Therefore, TransE can encode
symmetric pattern with condition b), if γ1 = α‖r‖ and α ≥ 1. From the proof of condition b), we
conclude that TransE can encode symmetric patterns under conditions c) and d).

Lemma 4: 1) Let a) holds. Limitation L4 holds for both TransE and TransComplEx. 2) Limitation
L4 is not valid when assumptions b), c) and d) hold.

Proof: 1) The proof of the lemma with condition a) for TransE is mentioned in the paper Kazemi &
Poole (2018). For TransComplEx, the proof is trivial. 2) Now, we prove that the limitation L4 is not
valid when b) holds.

Let condition b) holds and relation r be reflexive, we have ‖e1 + r− e1‖ = γ1, ‖e2 + r− e2‖ = γ1.

Let ‖e1 + r− e2‖ = γ1. To violate the limitation L4, the triple (e2, r, e1) should be negative i.e.,

‖e2 + r− e1‖ > γ1,

→ ‖e2 + r− e1‖2 > γ21 ,

→ ‖e2‖2 + ‖e1‖2 + ‖r‖2 + 2 < e2, r > −2 < e2, e1 > −2 < e1, r > > γ21 .
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Considering ‖e1 + r− e2‖ = γ1, we have

< e2, r > − < e1, r > > 0,
→< e2 − e1, r > > 0,
→ cos(θ(e2−e1),r) > 0,

Therefore, the limitation L4 is not valid i.e., if a relation r is reflexive, it may not be symmetric.
TransE is special case of TransComplEx and also condition b) is special case of condition c). There-
fore using conditions b), c) and d), the limitation L4 is not valid for TransE and TransComplEx.

Lemma 5: 1) Under condition a), the limitation L5 holds for both TransE and TransComplEx. 2)
Under conditions b), c) and d), L5 is not valid for both TransE and TransComplEx.

proof

1) Under condition a), equation h + r − t = 0 holds. Therefore, according to the paper Kazemi &
Poole (2018), the model has the limitation L5.

2) If a relation is reflexive, with condition b), we have ‖e1 + r − e1‖ = γ1, ‖e2 + r − e2‖ = γ1.
Therefore, ‖r‖ = λ1. Let {

‖e1 + r− e2‖ = γ1,

‖e2 + r− e3‖ = γ1.
(22)

we need to show the following inequality wouldn’t give contradiction: ‖e2 + r− e3‖ > γ1.

From 22 we have < e2, (e1 + e2 + e3) >< 0, which is not contradiction.

Therefore, with conditions b) and c), the limitation L5 is not valid for both TransE and TransCom-
plEx.

Limitation L6: Lemma 6: 1) With condition (a), the limitation L6 holds for both TransE and
TransComplEx. 2) With conditions (b), (c) and (d), the limitation L6 doesn’t hold for the models.

Proof : 1) With condition (a), the limitation L6 is proved in Kazemi & Poole (2018). 2) Considering
the assumption of L6 and the condition (b), we have


‖e1 + r− s1‖ = γ1,

‖e1 + r− s2‖ = γ1.

‖e2 + r− s1‖ = γ1.

(23)

We show the condition that ‖e2 + r− s2‖ > γ1 holds.

Substituting 23 in ‖e2 + r− s2‖ > γ1, we have

cos(θ(s1−s2),(e1−e2)) < 0. Therefore, there are assignments to embeddings of entities that the limi-
tation L6 is not valid with condition (b), (c) and (d).

Figure 3 shows that the limitation L6 is invalid by proper selection of loss function.

A.1 FURTHER LIMITATIONS AND FUTURE WORK

In the paper, we have investigated the six limitations of TransE which are resolved by revision of
loss function. However, revision of loss functions can resolve further limitations including 1-N, N-1
and M-N relations. More concretely, setting upper-bound for the scores of positive samples can
mitigate the M-N problem. We will leave it as future work.

Our theories can be extended to every distance-based embedding models including RotatE etc.

Moreover, the negative likelihood loss has been shown to be effective for training different embed-
ding models including RotatE and TransE. This can also be explained by reformulation of negative
likelihood loss as standard optimization problem, showing the the loss put a boundary for the score
functions.

We will consider the mentioned points as future work.
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Figure 3: Investigation of L6 with condition (c): The limitation is not valid, be-
cause the triple (e2, r, s2) can get an score to be considered as negative while triples
((e1, r, s1), (e1, r, s2), (e2, r, s1)) are positive.
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